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V. PUPPE 

P. A. SMITH THEORY VIA DEFORMATIONS 

V. Puppe 

It has been shown in [10] that the theory of deformations of 
algebras can be a useful tool in studying cohomology of 
transformation g r o u p s . The essential observation is a c o r o l 
lary of the following proposition (s.[9]) which is in turn 
a consequence of Borel's approach to study transformation 
groups using the localization theorem in equivariant 
cohomology. 

Let X be a finite, connected G-CW-complex, G = S 1 , F it's 
fixed point set and X X G -> B G the fibration associated 
with the universal principal G-bundle G -> E G B G ; H*(-) 
denotes cohomology with coefficients in the rationals Q, 
R : = H* (B 0) = C D[t], degree t = 2 and fflG denotes Q together 
witn tne R-moduie structure given by R — $[t] -» 
t »-> e e 03-

PROPOSITION 1 ; If e * O, then <B£ ® H*(X^) is naturally   
R G 

isomorphic to H e v ( F ) © H o d d ( F ) as g/22-graded CD-algebra. 

COROLLARY (1.1) ( s . [ 7 ] ) : Tf X is TNHZ (i.e. totally non
homologous to zero) in X G , which is equivalent to 

I 1>0 dim H"(X) = I1>0 dim H 1 ( F ) ) r then H*(F) as a 2/22-graded 

Q-algebra is a de f o rr.ation of H * { X ) . 

This corollary allows to interpret results on d e f o r m a -
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tions of algebras in terms of cohomology of transformation 
groups, e.g. the well known fact that the embedding dimension 
of a local, noetherian algebra cannot increase under defor
mation gives a proof of Bredon's conjecture that the minimal 
number of algebra-generators of H * ( F ^ ) , F v being a component 
of the fixed point set F, is not larger than the minimal 
number of algebra generators of H*(X) (under the assumption 
that X is T N H Z ) . This and other results of this type are 
discussed in [10]. We add one further result in this direction 
which follows from the work of Avramov (s.[3]) in local algebra. 
We give a direct proof here which is adapted to the given 
graded situation. 
Let cid(A) denote the complete intersection defect of the 
local algebra A (s.[3]) which in case of the cohomology al
gebra of a connected, finite CW-complex Y is just the dif
ference between the minimal number of relations and the 
minimal number of algebra generators of H*(Y) (since the 
Krull dimension of H*(Y) is z e r o ) , then one has: 

COROLLARY (1.2): If X is TNHZ in XQ then 
cid(H*(X)) > cid(H*(F v)) for each component F v c F. 

If H o d d ( X ) = O then cid(H*(X)) and cid(H*(F v)) are always 
non negative. Hence in this case one gets in particular 
that H*(F v) is a complete intersection (cid(H*(F v)) = O) 
if H* (X) is; a result which in the context of deformation 
theory has been known for some time. 

Proof of (1.2). We use the following notation: If A is an 
augmented commutative graded algebra over a ring k, then 
p^: A -* k denotes the augmentation and Q(A) := /^2 the k-
module of indécomposables where A := ker is the augmen
tation ideal. Let A(V) be the free commutative graded CD-
algebra over the graded Q-vector space V (with the canonical 
augmentation). Choose a minimal (grading preserving) presen-
tation A(W) S A(V) H* (X) -> O of the connected commutative 
graded algebra H*(X) (i.e. a is surjective and induces an 
isomorphism of Q-vector spaces 
Q ( a ) : Q(A(V)). = V -> Q(H*(X)) and 3 induces an isomorphism 
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Q(3): Q(A(W)) = W -* ker a / k e r a.jj^y ) . It is well known 

(compare e.g. [7], chap, 1 for the non commutative case and the 
Lie algebra case) 
that dim^V = minimal number of generators of H*(X) 

dim^W = minimal number of relations of H*(X) 
diirigW-dimQV = cid(H*(X)). 

The algebra H*(X G) is a graded algebra over the graded ring 
R = Q)[t] which as a graded R-module is isomorphic to R ® H* (X) 
("®" means "®") but carries a "twisted" multiplicative structure 

(s.[10j) such that Proposition 1 holds and for e = 0 one has 
Q £ ® H*(X Q) = H * ( x

G ) / t H * ( x ) = H*(X). 
R G 

By choosing a base point for a component of F one gets an 
augmentation p U J ( c , v . : H*(X_) R such that id ® Pu*/ v \ 

H ( X G } b Q R ^ XG ; 

corresponds to p v : H*(F) -> H*(F^) -+ Q for e * 0 and to 
P H * ( X ) * H*(X) - Q for e = 0. 

One can "lift" a and 3 to morphisms of augmented graded 
R-algebras 
a: R®A(V) -> H* (X Q) and 3: R®A (W) -» R®A (V) 
(the algebra structure of R®A (V) resp, R®A(W) is given by the 
usual algebra structure of the tensor product) such that 

(i) id_ 0 ® a = a 
w R 

id o ® 3 = 3 
w R 

(ii) a°3(R®A(W)) = 0 

(iii) a: R®A (V) -+ H* (X_) (hence also Q (a) : Q(R®A(V)) = R®V Q(H*(X^)! 
and Q(3): Q(R®A(W)) = R®W ker a/ ker a-R®A(V) 

are surjective. ^ ^ 
(In fact, R®A(W) R®A(V) H*(X Q) —* 0 can be viewed as a 
presentation of the R-algebra H*(X Q)(compare [4], but we don't 
need this explicitly). 

To construct a one chooses a Q-linear map V -> H*(X_) 
G 

such that the composition with the projection 
H*(X G) - Q° ® H*(X G) = H*(X) coincides with a| v- Then there is 

R 
a unique extension to an R-algebra morphism a: R®A(V) -> H*(X^). 

G 
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By construction icLjO ® a = a and 
w R 

R®A(V) H*(X G) -* H * ( X G ) / t > H + ( x } 

G 
Q° ® H*(X„) 

R G 

is surjective. 

It follows by induction that 

R®A(V) H*(X G) - H*(X Q) 
t qH*(X Q) 

is surjective for each q GIN. 

Hence a (and Q(a)) is surjective since a preserves degree and 

( t q * H * ( X Q ) )
n O for q > 

n 
2 

The construction of 1? is similar. One chooses a Q-linear 

map W -> ker a c R®A(v) such that the composition with the 

projection R®A(V) -> ÇQ° ® (R®A(V)) = A (V) equals 3 L - This is 

R 

possible since a has an R-linear splitting (H*(X G) is a free 

R-module) . To show that Q (1?) : R®W -* K := ker a/, ~ ^ . / T T. 

'ker a«R®A(V) 

is surjective it suffices (by an argument similar to that above) 

to observe that the composition R®W ^JiD» K/ ~ is surjective. 
tx\ 

Tensoring the sequence R®A (W) R®A (V) H* (X Q) 0 

with Q over R (e*0) one gets a sequence of augmented 2/2Z-

graded (!) ffi-algebras 

Q e ® (R®A(W)) = A(W) BE-> Q E ® (R®A(V)) = 
R R 

A(V) aE-> Q £ ® H*(X_) = H*(F) - O 
R G 

such that a e := id ® a (and hence Q(a e)) and 
Q R 

Q(6 £) = Q(3) £ : W -> ker a e 

ker a e A(V) 
are surjective. 

Let a : A(V) -» H*(F^) denote the following composition 

A(V) = O}6 ® (R®A(V) ) 
a->QE 

® H*(X r) = H*(F) -* H*(F ) (e+O) 
R V 

which is a surjective morphism of augmented 2/22-graded algebras. 

By standard arguments (s.e.g. [7], Theorem (1.2.1)) one gets (even 

though does not neccessarily preserve the ^-grading) 

dinigj V > dim Q(H*(F^)) = minimal number of generators of H*(F v) 

d i V k e r Vker a •ÂTvT ) _dim(B V ^ C i d H* (V • 

To finish the proof it suffices to show that 

dimQ w > dim Q(ker < * v / k e r a .Â~(v7 ) m since ^rô?e) is surjective 
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one has d i m m W > d i m m (ker a
e/, ~e . , , T v ) . We claim that 

(D — ffi ker a •A(V; 

ker a e c ker induces a surjection 

ker S £ / k e r ae.A7vT ~ * k e r "v'ker a v . ATvT ' The alqebra
 H * ( F ) 

can be written as a direct product H*(F) = H*(F ) x H*(F') 

where F 1 = F ^ F

V • Then.ker a v = ( a e ) ~ 1 ( O , H * ( F • ) ) . Choose e G A(V) 

such that ae(e) = (0,1). If x G ker a then x = (x-ex)+ex shows 

that x € ker ae + ker •A(V). This gives the desired result. 

It might be worthwhile to remark that the above proof also 

reproves known results on the minimal number of generators and 

relations for H*(F ) in comparison with those for H*(X) 

(s.[4],[6],[9],[10]). In fact the proof given here is in a sense 

an extension of the proof for the number of generators given in 

[9] and simplifies the arguments given in [4] for the number of 

relations. 

These results generalize to torus actions (by induction 

on the dimension of the torus) and analogous results can be 

obtained for (fr/pfr)^-actions (p prime) and cohomology with 

Z/p2 coefficients by the same method. 

The theory of minimal models (S.[5],[11]) allows to use 

deformation theory of algebraic structures (different from 

algebra multiplication) to obtain results on rational homo-

topy (and cohomology) of transformation groups. 

We assume X to be a finite, 1-connected (to avoid 

complications with the fundamental group) G-CW-complex (G=S*) 

with £ dim (TT. (X)®(D) < °°. If M(X) is a minimal model of X , 
i>o ffl 1 

a model for the fibration X -* X Q B Q is given by 

R=(ß[t]=M(B G) - M(X) [t]=Q[t] ® M(X)=M(X Q) - M(X) (s. e.g.[5]) 

where M ( X Q ) is equipped with a differential which can be con

sidered a one-parameter family of deformations of the dif

ferential of M ( X ) (d(m) = d Q ( m ) + t d 1 ( m ) +...+ t
D d_. (m) +..., 

where m € M ( X ) c M ( X ) [t] , d^: M Q ( X ) -> M Q + 1 " 2 J ( X ) is a deri

vation, d Q = d M ( x ) , d
2 = O) . 

The following proposition follows* from Allday's results 

on rational homotopy of torus actions (s.[1],[2]). It re-
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lates to Allday's rational homotopy analogue of the locali

zation theorem in cohomology in the same way as Proposition 1 

relates to the later. 

Let n v : M(F) Q (M(F) := x M ( F v ) ) denote the augmentation 

corresponding to the inclusion of a point * into a non-empty 

component F of F, and 

nf: <D e
 ® M ( X r ) 
R 

( D £
 ® M( (F) r) 
R G 

i d ® ( % } G 
Q e ® R = Q the 

R 

induced augmentation on Q3e ® M ( X r ) . 
R G 

PROPOSITION 2; If e*Q, then 
(QE R 

M ( x G ) , ñ G ) and (M(F),n v) 

are weakly equivalent as augmented 2/22-graded, differential 

algebras. 

In particular one has; 

(i) H * « D e ® M(Xr)) = H * ( F ) 
p G 

as 2/22-graded algebras, 

(ii) I I * « D e ® M(X_) 
R G V 

= n*(F,n v) = n * ( F v , n v ) . 

( T T * ( A , r i ) of an augmented, differential algebra is defined by 

n * ( A , n ) := H(ker ^ e r n ) 2 * wnere the homology is taken 

with respect to the differential d on Q ( A , n ) : = k e r n / ( k e r n ) 2 

induced by the differential d of A . ) 

n * ( F ^ , n v ) is the pseudo-dual rational homotopy of F ^ , 

in particular if is 1-connected n * ( F ^ , n v ) is the dual 

(over CD) of T T + ( F v ) ® CD-

Proof of Proposition 2; The isomorphism between Q)6" ® H* (X Q) 
R 

and Q e ® H*(F^) = H*(F) (as 2/22-graded algebras) is induced 
R G 

by the inclusion F X (s. [9], compare Prop. 1 ) . Since the 

tensor product with (Qe over R (e * O!) commutes with homology 

F ^ X (resp. Q C ® M(X^) -+ Q 8 ® M(F-) = M (F) ) 
R G R G 

induces an isomorphism of 2/22-graded augmented algebra 

H*(Q £ ® M(X^)) = Q £ ® H*(X^) -> ffie ® H*(F-) = H*(Q £ ® M(F_)) = H*(M(F);. 
R G R G R G R G 

Applying (2.3) and (2.4) of [1] then gives the desired result. 
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Since ® M ( X G ) = M(X) for e=0 one has immediately 
R 

COROLLARY (2.1); Up to weak equivalence (M(F),n v) is a 

déformation of (M(X) ,n) (n: M(X) - M(F) - J U Q) . 

Of course, here the differential of M(X) and not the algebra 
structure is deformed. 

The cohomology of F and the pseudo-dual rational homo-
topy of F^ can be calculated from the deformation of the 
model (M(X),n). Therefore one gets immediately: 
X T F ( X ) := x ( n * ( X ) ) = X < n * ( F V > > = X^iF^ (s. [1 ]) . 

From semi-continuity of the dimension of homology groups of 
a chain complex under deformation of the boundary one has: 

COROLLARY (2.2): 
i>o 

dim n x(X) > 
i>o 

dim n x(F ) for all F^ cz F 

(s. [1 ]) . 

Using the fact that (M(X),n) can be considered a fil
tered Z/2Z-graded algebra (F (M(X), n) K 

j=0 
M j (x) : in such 

a way that the deformation preserves this filtration one 
easily gets the following refinement of Corollary (2.2): 

Corollary (2.2)': 
i>o 

dim n k + 2 i ( X ) > 
i>o 

dim n * + Z : L ( F v ) 

for all F v c F and all k € XJ (compare [1] and s. [12] for a 
different p r o o f ) . 

Proof of ( 2 . 2 ) ' . The morphism (of R-algebras) 
M(X^) = R®M(X) -> M(F^) = R®M(F) induced by F cr X preserves 
degrees and hence also the filtration given by 

F k ( M ( X )) = R ® 
k 

j=o 
(X) resp. F k ( M ( F Q ) ) = R ® 

j=o 

k 
(F). 

Therefore Q G <g> M(X^) Q e 0 M(F_) = M(F) 
R G R G 

(e+O) preserves 

the induced filtrations. For the indécomposables (with re
spect to the augmentations coming from n. ) one has the 
corresponding situation. 
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i.e. Œ e ® Q(M(X r) , n ) -> Q (M (F) , n ) 

R G v v 

= Q(M(F v) ,n v) = IÏ*(F v,n v) 

preserves the induced filtrations. 

This morphism is surjective and hence induces a surjective 

morphism 

QE 
R 

Q(M(X ) ,n )> 
F k ( Q £ ® Q(M(X r) ) ,n.) 

R 

Q(M(F v) , n v ) , 
F k ( Q ( M ( F v ) ,n v) " 

As (B-vector spaces the source of this morphism is isomorphic 

to n*(X), 
F kn*(X) j>k 

n3 (X) and the target is isomorphic 

to n*(F) 
F k n*(F) j>k 

n j
 (F) . 

Since "everything in sight" is (at least) Z/2Z-graded the 

assertion (2.2) 1 follows. 

The well known analogous result for cohomology can be 

obtained by similar arguments. 

As above these results generalize to torus actions. 

The analogous assumption to "X being TNHZ in X r " is 

the assumption 
i>o 

dim H 1(X) = 
i >o 

dim n x(F ) " and in fact 

under this hypothesis one gets a result which is analogous 

to Corollary (1.1) (compare 12)) namely: 

COROLLARY (2.3): If £ dim n xX = £ dim I I 1 (F ) then the 
i^o i>o 

co-Lie algebra H*(F ) is a deformation of the co-Lie algebra 

It*(X) . 

(The co-Lie algebra structure corresponds to the dual of the 

Whitehead product. To get graded co-Lie algebras L*(X), resp. 

L*(F v) one has to shift the degree by one, i.e. L 1(X) := n i + 1 ( X ) , 

L*(X) = Z~1II*(X) ) . 

Proof of (2.3). It is shown in [2] that under the above hypoth

esis (M(X G) /n" v) gives rise to a co-Lie algebra L(M(X G),n v) over 

Q[t] = R. The quadratic part of the differential of M(X^) = 

R ® M(X) (obtained by deforming the differential of M(X) in-
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duces the co-Lie algebra structure on L(M(X^),n ) = R ® Z n*(X) 
G v 

(as R-modules but with twisted co-Lie algebra structure). Since 

this construction is natural with respect to the inclusion F -> X 

and since the isomorphism given in Prop. 2 is induced by this 

inclusion, one has Q e ® L(M(X^),n ) = L(F ) for e * O. On the 

R G v v 
other hand it is immediate from the construction of L(M(X G),n v) 
that Q° 9 L(M(X r)n ) = L (X) . 

R G V 

If F is 1-connected one has the corresponding results 

for rational homotopy Lie algebras. Therefore the already 

developed theory of deformation of (graded) Lie algebras 

(s. e.g. [8]) is at hand to give further results on the 

rational homotopy of torus actions. 

I have learned at the conference that C. Allday has drawn 

similar conclusions. We plan to pursue some further questions 

in this direction in a joint paper. 
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