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S. PAPADIMA 

P O I N C A R E D U A L I T Y A L G E B R A S A N D T H E R A T I O N A L C L A S S I F I C A T I O N 

O F D I F F E R E N T I A T E M A N I F O L D S 

Stefan PAPADIMA 

Poincar/duality algebras. Let H be a connected P.d.a. For such an algebra, we 

shall focus our attention on two natural invariants, namely: n=c-d:m H (the formal 

dimension) rind Cj_j=H+/H",.H + (the graded vector space of indecomposable generators). 

In order to state the result, we fix n ar.d C and introduce a few notations: let A= 

A- A. (C) be the free commutative graded algebra on C, let G(C) be the group of 

automorphisms of A, and denote by Hr^&(C,n) c Hom(A n ,Q)\{o\ , the regular functional L, 

defined by the property? 

(beAP|L(a.b)=0, V * ̂ n'p\C(A+. A+)P, V p i n 

Let us note that the natural action of G(C)xGL(4) on Horn (A n,Q) restricts to the 

regular functionals. 

Given L£H r e^(C,n), we can construct an ideal Î jCA by: 

£=$btAP |Uaxb)=0,YaeA n-P} for p^n, and 

(i) 

i[--.Ap, for p>n. 

W~ then associate to L the graded algebra Ly: 

(ii) H L =A(C)/I L 

Theorem 1, The isomorphism classes c P.d.a.'s H, having n and C as invariants, are 

in bijection with the orbit space 

HreS(C,n)/G(C)xGL<4) 

268 



POINCARÉ DUALITY 

by the correspondence described inr(i) and (ii). 

Sketch of proof: Fixing C and n means dealing with algebras of the form H=A/J, 

where the ideal 3 satisfies: J C A + . A + and jP=A^ for p y n. The algebras H and IV are 

isomorphic precisely when the cor. esponding ideals are conjugate by an element of G(C). Jt 

finally turns out that the Poincare dtftlity requirement for A/3 is strong enough to 

determine 3 by the formulae (i), where L mod GL(4) is given by: ker L=J n . The details may 

be found in£6]. 

As an illustration, let us consider one of the simplest cai.es, namely when the 

group G(C) reduces tc a linear group, i.e. homogenously generated algebras H (that is H is 

generated as an algebra by some homogenous component - see also £5} for a geometric 

interpretation of this condition). 

The invariants n and C reduce to: m (the number of generators), d (the degree of 

the generators) and c (the length of the product of H). We define the regular forms q e 

H ĵ r e ^ m ) to be those degree c homogenous polynomials (exteriorforms), according to the 

parity of d, in m variables, with the property that the elements 
ex1 

13 
exn 

are linea; ly 

independent. 

Given such a form q, we write it as: q-
z : 

x=c 

qx X and we define a linear 

functions! Lq£Horn(An,Q) by; 

(iii) Lq(x*>=(c*!/c!)q for |o<| =c 

Corollary: The isomorphism classification of homogenous!'/ generated P.d.a's 

having d,rn and c as invariants coincides with the linear classification of regular forms (f6j). 

In particular this shows that, even in this simple case, we are still left with a very 

difficult (classical) classification problem. 

2. The rational homotopy types of closed manifolds 

Sullivan's results from ^9*j suggest the following approach to the rational 

classification problem for closed manifolds: first classify the Poincare duality algebras, 
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then determine those which come from manifotos and then try to describe the Q-types 

within such a cohomology algebra. As far as the second step is concerned, one has the 

following "differentiability test": 

Theorem (|Vj, Ql^ L e t be a simpler connected P.d.a. of formal dimension n. The 

necessary and sufficient condition for H in order to be the cohomology algebra of a closed 

manliold is: either n̂ O (mod '0 or n-^k and there exist an orientation 60 ^ H o m ( H ^ ^ , Q ) \ ^ 

and a Pontrjagin class p = 1 £ p j ' : <&• H 4 1 such that: 

(Dl) the quadratic form H 2 k ® H 2 k - W < i ^ Q is a sum of squares. 

(D2) the numbers Co (p*) I a partition of k are the Pontrjagin numbers of a closed 

manifold. 

(D3) the Hirzebruch formula: Co (Lk(p))=signature of the quadratic form H 2 k ® H2 k—> Q. 

In order to avoid the complications arising in general at the third step of the 

clc.rs.itication,- we have restricted our attention to the case of intrinsically formal algebras, 

i.e. thoce which contain exactly one Q-homotopy type (see ^3^). 

Proposition. If H is an homogenously generated P.d.a. 4-connected and if c^d+4, 

then H is intrinsically formal ([s]). 

If H is a (k-l)-connected P.d.a of formal dimension ^ 4k-2, then H is intrinsically 

formal ((Vj). 

It comes out that 1-connected homogencusly generated P.d.a.'s, with c £ 3, 

respectively the simply connected arbitrary P.d.a.'s of formal dimension n ^ 6, are 

intrinsically formal. It is worth mentioning that there are related examples of closed 

manifolds whose cohomology algebras are not intrinsically formal: for c=4 and d=2 

(P 2 C$( (P 4 C x P 1C))x P 2 C ([$]) and for n=7 (S 2xS 5)#(S 2x5 3) [7] 

The rational classification of homoiogically 4-connected closed manifolds M (i.e. 

H^(M;Q)=0) with homogenously generated cohomology and c ^ 3 is given by the theorem 

below. 
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Theorem 2. I) c=4: M has the Q-type of a sphere S d . 

II) c=2: if d=2k+4, M has the Q=type of a connected sum of p copies of 

s 2 k + 1 x S 2 k v t . 

If d=2k, M has the Q-type of a complex of the form: 

(S dv...vS dvS dv...vS d) 
t'n-v ni.... 

U 
f 

2d . 
2 , where 

[ f>r 2 d _ 1 ÏS d v . . .vS<») is given by: 

n+ n-
[f] 

Ï7i 1 > M j=1 

[sdj,sdj the invariants are: the dimension n=4k, the rank m 

(m=m +mj and the signature cr (cT=m+-m_) subject to a single restriction: <T is a multiple 

of a certain number <T^ , depending mly on k. 

Ill) c=3: for fixed d and m, the classification coincides with the linear 

classification of the regular forms in H , (m); if d is odd we must have: m=3 or nrù 4, see ° d,reg ' 7 

[ 4 

The proof is given in^7j essentially by using the conditions (DJ)-(D3) of Sullivan, 

which are nonvacuos only in the case c=2, d=2k. In this case, (Dl) gives the normal forr^ 

and (D2), (D3) reduce to the divisibility condition for the signature (compare with^ioj). The 

numbers <T^ are computable; fo r example, using results fromQQ it can be shown that: 

<T k =(2 2 k - 1 - l ) numerator (B^/k). 
22k-1 

2ak 
for k odd, 

where B^ stands for the k-th Bernoulli number and 2 a k denotes the greatest power of 2 

which divides (2k)! (see[Y)). 

A similar classification for homologically A -connected n-rnanifolds (for n^6) may 

also be found in £7]. 
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