Astérisque

CLAS LÖFWALL On the centre of graded Lie algebras

Astérisque, tome 113-114 (1984), p. 263-267

<http://www.numdam.org/item?id=AST_1984__113-114__263_0>

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE CENTRE OF GRADED LIE ALGEBRAS

Ъy

Clas Löfwall

If \underline{a} is a graded Lie algebra over a field k in general, its centre may of course be any abelian graded Lie algebra. But if some restrictions are imposed on \underline{a} such as

> 1) $\operatorname{cd}(\underline{a})$ (= gldim $U(\underline{a})$) < ∞ 2) $U(\underline{a}) = \operatorname{Ext}_{R}(k,k)$ R local noetherian ring 3) $\underline{a} = \pi_{*}S \otimes \underline{Q}$, $\operatorname{cat}_{\Omega}(S) < \infty$

what can be said about the centre?

Notation. For a graded Lie algebra \underline{a} , let $Z(\underline{a})$ denote its centre.

Felix, Halperin and Thomas have results in case 3) (cf [1]): Suppose $\dim_{\underline{Q}}(\underline{a}) = \infty$ then for each $k \ge 1$, $\sum_{n=k}^{2k-1} \dim_{\underline{Q}}(\mathbb{Z}_{2n}(\underline{a})) < \operatorname{cat}_{0}(S)$.

In case 1) we have the following result.

<u>Theorem 1</u> Suppose $cd(\underline{a}) = n < \infty$. Then $dim_{k}Z(\underline{a}) \le n$ and $Z_{odd}(\underline{a}) = 0$. Moreover if $dim_{k}Z(\underline{a}) = n$, then \underline{a} is an extension of an abelian Lie algebra on odd generators by its centre $Z(\underline{a})$.

<u>Proof.</u> We have that $U(Z(\underline{a}))$ is a sub Hopf algebra of $U(\underline{a})$ and hence $U(\underline{a})$ is free over $U(Z(\underline{a}))$ (cf [5], th 4.4) and from this it follows that $cd(Z(\underline{a})) \leq cd(\underline{a}) = n$. But $U(Z(\underline{a}))$ is a tensor product of a polynomial algebra on the even generators of $Z(\underline{a})$ and an exterior algebra on the odd generators of $Z(\underline{a})$. Since the global dimension of an exterior algebra is infinite, we must have $Z_{odd}(\underline{a}) = 0$ and since the global dimension of a polynomial algebra is the number of variables, we also get $\dim_{K} Z(\underline{a}) \leq n$. Suppose now $\dim_{K} Z(\underline{a})=n$. If $x \in \underline{a}$ and deg(x) is even and $x \notin Z(\underline{a})$, then $Z(\underline{a}) \oplus k \cdot x$ is a sub Lie algebra of \underline{a} of cohomological dimension n+1 which is impossible. Hence

263

C. LÖFWALL

 $x \notin Z(\underline{a})$ implies deg(x) odd, and then it follows that $\underline{a}/Z(\underline{a})$ is abelian on odd generators.

<u>Problem</u>. Characterise those graded Lie algebras <u>a</u> having $cd(\underline{a}) < \infty$ and which are an extension of an abelian finite dimensional Lie algebra on odd generators by its centre Z(a).

In case 2) we have the following result.

<u>Theorem 2.</u> Suppose (R,m) is an equi-characteristic local noetherian ring with $m^3 = 0$. Let <u>g</u> be the underlying Lie algebra of $Ext_R(k,k)$ (k = R/m). Then $Z(\underline{g}) = 0$ or $R = k[x]/(x^3)$ or $cd(\underline{g}) = 2$ (the last case is equivalent to saying that <u>g</u> is generated by its one-dimensional elements).

This theorem is a consequence of the following one.

<u>Theorem 3.</u> Suppose <u>a</u> is a graded Lie algebra and $V \neq 0$ is a syzygy in a (not necessarily minimal) resolution of k over $U(\underline{a})$. Let $\underline{g} = \underline{a} \ltimes F(V)$ be the semi-direct product of \underline{a} by F(V) = the free Lie algebra on V. Then $Z(\underline{g}) = 0$ or \underline{a} is abelian on one single odd generator.

<u>Notations.</u> If A is an augmented ring, we will use I(A) as a notation for the augmentation ideal. If I is an ideal in a ring A we denote by Ann(I) the ideal $\{x \in A ; x \cdot I = 0\}$.

We will use the following lemma (cf e.g. [6]).

<u>Lemma 1</u>. Suppose <u>a</u> is a graded Lie algebra and $Ann(IU(\underline{a})) \neq 0$, then <u>a</u> is abelian and generated by finitely many odd elements.

We also have the following lemma.

Lemma 2. Suppose A is a graded ring, $A = \bigoplus_{n \ge 0} A_n$, $I(A) = \bigoplus_{n \ge 1} A_n$ and $a \in A_n$ is a homogeneous element satisfying $a^2 = 0$ and $\{x ; xa = 0\} = Aa$. Suppose further $F_n \xrightarrow{d} F_{n-1} \xrightarrow{d} \cdots \xrightarrow{F_0} F_0 \xrightarrow{E} A_0 \rightarrow 0$ is the beginning of a graded free resolution of A_0 as a right A-module, and let $V = \ker(F_n \xrightarrow{d} F_{n-1})$.

ON THE CENTRE OF GRADED LIE ALGEBRAS

Suppose also $V \cdot a = 0$. Then $V \cdot I(A) = 0$. In particular, if $V \neq 0$ then Ann(I(A)) $\neq 0$.

<u>Proof</u>. Take a homogeneous element v of V. Since v is also an element of the free A-module F_n and v:a = 0, we can use the assumption $\{x \in A ; xa = 0\} =$ = Aa to get an element x_n of F_n such that $v = x_n a$. But $0 = dv = (dx_n)a$ so in the same way we have an element x_{n-1} of F_{n-1} such that $dx_n = x_{n-1}a$. Finally we get $dx_1 = x_0a$ where $x_0 \in F_0$. If x_0 has <u>positive</u> degree, there is $y_1 \in F_1$ with $dy_1 = x_0$. The equality $d(x_1 - y_1a) = 0$ implies that there is $y_2 \in F_2$ such that $x_1 - y_1a = dy_2$. From $dx_2 = x_1a = (dy_2)a$ it follows that there is $y_3 \in F_3$ such that $x_2 - y_2a = dy_3$ etc. At last $d(x_n - y_na) = 0$, hence $x_n - y_na \in V$ and since V:a = 0 it follows that $v = x_na = 0$. Suppose now x_0 is of degree zero. Then $deg(x_1) = deg(a)$, ..., $deg(x_n) = n \cdot deg(a)$ and $deg(v) = (n+1) \cdot deg(a)$. Hence V is concentrated in one single degree and therefore V:I(A) = 0.

<u>Remark.</u> Lemma 2 is valid also for a local <u>commutative</u> ring A (with A_0 equal to the residue field).

Lemma 3. Suppose <u>a</u> is a graded Lie algebra. Suppose $V \neq 0$ is a syzygy in a free (not necessarily minimal) resolution of k over $U(\underline{a})$ such that $V \cdot I(U(\underline{a})) = 0$. Then <u>a</u> is abelian generated by one single odd element. <u>Proof.</u> Since V is contained in a free module, the assumption $V \cdot I(U(\underline{a})) = 0$ implies that Ann $I(U(\underline{a})) \neq 0$. Hence by lemma 1 <u>a</u> is abelian on finitely many odd generators. If V is a nth syzygy it follows that

$$\operatorname{Tor}_{n+1+i}^{U(\underline{a})}(k,k) = \operatorname{Tor}_{i}^{U(\underline{a})}(k,k) \otimes_{k} V \text{ for } i \ge 1.$$

Hence $P_{U(\underline{a})}(z) = Pol(z)/(1 - dim(V)z^{n+1})$ where Pol(z) is a polynomial in z. But we also know that there are numbers e_1, \ldots, e_r such that

$$P_{U(\underline{a})}(z) = \prod_{i=1}^{r} (1 - z^{i})^{-1}$$

The first expression shows that z=1 is a pole of order at most one, while the second expression shows that z=1 is a pole of order r. Hence r=1.

265

C. LÖFWALL

<u>Proof of Theorem 3</u>. Suppose $z\neq 0$ is an element of $Z(\underline{g})$ and z = x + a where $x \in F(V)$ and $a \in \underline{a} \cdot \underline{1}$ Assume first that $x \neq 0$. For each $y \in V$, [x,y] + [a,y] = 0. Now F(V) is graded by the Lie degree "deg" defined by letting the elements of V have degree one. Since deg([a,y]) = deg(y) = 1 and deg([x,y]) = deg(x) + 1, it follows that [x,y] = 0. Since F(V) is free, V must be one-dimensional and hence $V \cdot I(U(\underline{a})) = 0$. Since V is contained in a free $U(\underline{a})$ -module, it follows that Ann $I(U(\underline{a})) \neq 0$ and by lemma 1 and 3 \underline{a} is abelian on one odd generator. <u>2</u>) Assume now that x=0, i.e. $z \in \underline{a}$. Then $y \cdot z = [y,z] = 0$ for all $y \in V$. Since V is non-zero and contained in a free $U(\underline{a})$ -module, z must be a zero-divisor on $U(\underline{a})$. But then z must be of odd degree and $z^2 = 0$. This follows from the Poincaré-Birkhoff-Witt theorem. Also from this theorem we get that $\{b \in U(\underline{a}); bz = 0\} = U(\underline{a}) \cdot z$. Since also $V \cdot z = 0$, lemma 2 may be applied to get Ann $I(U(\underline{a})) \neq 0$ and $V \cdot I(U(\underline{a})) = 0$ and then also in this case lemma 1 and 3 may be applied to get the result.

Finally, Theorem 2 follows from Theorem 3 since we know the structure of $\operatorname{Ext}_{R}(k,k)$ if (R,m) is an equi-characteristic local ring with $m^{3} = 0$. This may be deduced (with some effort) from [4], and hopefully it will appear in a forth-coming paper by the author. The structure of the underlying Lie algebra \underline{g} of $\operatorname{Ext}_{R}(k,k)$ is given as follows. Let \underline{a} be the underlying Lie algebra of $\operatorname{Ext}_{R}(k,k) =$ the sub algebra of $\operatorname{Ext}_{R}(k,k)$ generated by its one-dimensional elements. Let V be the third syzygy in a minimal resolution of k over $U(\underline{a})$. Then $\underline{g} = \underline{a} \ltimes F(V)$.

An application.

<u>Notation</u>. For a local ring R , let $e_i(R)$ denote $\dim(\underline{g}_i)$ where \underline{g} is the Lie algebra of R .

<u>Theorem 4.</u> If (R,m) is local with $m^3 = 0$, then $e_i(R) > 0$ for all $i \ge 1$ or R is a complete intersection (which is possible only if $dim(m/m^2) \le 2$).

266

<u>Proof.</u> We may assume that R is equi-characteristic since $P_R = P_{gr(R)}$ $(gr(R) = \bigoplus m^i/m^{i+1})$ (a result by Levin, cf [4]) and $e_i(R)$ may be computed $i \ge 0$ from P_R . During this conference I learned from Yves Felix that if $e_i(R) = 0$ for some i, then a "special variable" in the sense of André is defined (or, if you prefer, there exists a "Gottlieb element"). But according to Jacobsson [3] this defines an element in the centre of \underline{g} = the Lie algebra of R. And by Theorem 2 in this paper the centre of \underline{g} is trivial, <u>unless</u> \underline{g} is generated by \underline{g}_1 (or $R = k[x]/(x^3)$ which is a complete intersection). In this case we have the following. If $e_i(R) = 0$ for some i then $e_j(R) = 0$ for all j > i. Hence by Gulliksens theorem [2], R is a complete intersection.

References

- [1] Felix-Halperin-Thomas, The homotopy Lie algebra for finite complexes,
 Publications mathématiques de l'IHES, n° 56 (1982), p. 387-410.
- [2] Gulliksen, A homological characterization of local complete intersection, Compositio Math. 23, 1971, p. 251 - 255.
- [3] Jacobsson, On local flat homomorphisms and the Yoneda Ext-algebra of the fibre, Reports, Dep. of Math., Univ. of Stockholm, no 8, 1982.
- [4] Löfwall, On the subalgebra generated by the one-dimensional elements of the Yoneda Ext-algebra, Reports, Dep. of Math., Univ. of Stockholm, no. 5, 1976.
- [5] Milnor-Moore, On the structure of Hopf algebras, Annals of Math., 81, 1965, p. 210 - 264.
- [6] Sweedler, Hopf algebras, Benjamin, 1969, p. 108.

<u>Acknowledgement</u>. The author wants to thank Rikard Bøgvad and Calle Jacobsson for many fruitful discussions.