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ON THE CENTRE OF GRADED LIE ALGEBRAS 

by 

Clas Löfwall 

If a, is a graded Lie algebra over a field k in general, its centre may 

of course be any abelian graded Lie algebra. But if some restrictions are 

imposed on a. such as 

1) cd(a) (= gldim U(a) ) < °° 

2) U(a) = Ext̂ Ckjk) R local noetherian ring 
— ft 

3) a = TT̂S ® Q , catQ(S) < 0 0 

what can be said about the centre? 

Notation. For a graded Lie algebra a , let Z(a.) denote its centre. 

Felix, Halperin and Thomas have results in case 3) (cf [1]): Suppose dim (a)= 00 

then for each k>1 , 
2k-" 

n=k 
dimQ(Z2n(a)) < cat0(S). 

In case 1) we have the following result. 

Theorem 1 Suppose cd(a) = n < <». Then dim̂ Z(a) _< n and Zo^(a) - 0 . 

Moreover if dim̂ zCa) = n , then a is an extension of an abelian Lie algebra 

on odd generators by its centre Z(a). 

Proof. We have that U(Z(a.)) is a sub Hopf algebra of U(a) and hence U(a,) 

is free over U(Z(a)) (cf [5 ] , th k.h) and from this it follows that 

cd(Z(a,)) £ cd(a,) = n . But U(Z(a)) is a tensor product of a polynomial algebra 

on the even generators of Z(a) and an exterior algebra on the odd generators 

of Z(a.) . Since the global dimension of an exterior algebra is infinite, we 

must have ZQ^(a.) = 0 and since the global dimension of a polynomial algebra 

is the number of variables,we also get dim̂ zCa) < n . Suppose now dim^ZCa)^. 

If x€a and deg(x) is even and x £ Z(a.) , then Z(a) @ k«x is a sub Lie 

algebra of a of cohomological dimension n+1 which is impossible. Hence 
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x E Z(a) implies deg(x) odd, and then it follows that a/Z(a) is abelian on 

odd generators. 

Problem. Characterise those graded Lie algebras a having cd(a) < <» and which 

are an extension of an abelian finite dimensional Lie algebra on odd generators 

by its centre Z(a) . 

In case 2) we have the following result. 

Theorem 2. Suppose (R,m) is an equi-characteristic local noetherian ring with 

m = 0 . Let g be the underlying Lie algebra of Ext_(k,k) (k = R/m). Then 
ri 

o 

Z(&) = 0 o r R = k[x]/(x ) or cd(g) = 2 (the last case is equivalent to saying 

that £ is generated by its one-dimensional elements). 

This theorem is a consequence of the following one. 

Theorem 3. Suppose a is a graded Lie algebra and V f 0 is a syzygy in a 

(not necessarily minimal) resolution of k over U(a) . Let £ = a K F(V) be 

the semi-direct product of a. by F(V) = the free Lie algebra on V . Then 

Z(j£.) = 0 or & is abelian on one single odd generator. 

Notations. If A is an augmented ring, we will use I(A) as a notation for the 

augmentation ideal. If I is an ideal in a ring A we denote by Ann(l) the 

ideal {x € A ; x«I = 0} . 
We will use the following lemma (cfe.g. [6] ). 

Lemma 1. Suppose a is a graded Lie algebra and Ann(lU(a)) 4 0 , then a is 

abelian and generated by finitely many odd elements. 

We also have the following lemma. 

Lemma 2. Suppose A is a graded ring, A = ffi A ,l(A)= © A and a € A 
n>0 n>1 

is a homogeneous element satisfying a = 0 and {x ; xa = 0 } = Aa . Suppose 

further Fn F n - 1 ... —> FQ ^> AQ —• 0 is the beginning of a 

graded free resolution of AQ as a right A-module, and let V = ker(Fn ^*
 Fn - 1 ^ ' 
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Suppose also V-a = 0 . Then V«l(A) = 0 . In particular, if V ± 0 then 
Ann(l(A)) 4 0 . 

Proof. Take a homogeneous element v of V . Since v is also an element of the 
free A-module Fn and v;a = 0 , we can use the assumption {x £ A ; xa = 0} = 

= Aa to get an element x of F such that v = x a . But 0 = dv = (dx )a & n n n n 
so in the same way we have an element x „ of F . such that dx = x .a . 

J n-1 n-1 n n-1 

Finally we get dx̂  = x̂ a where x̂  € F̂  . If x̂  has positive degree, there 
is ŷ  € F̂  with dŷ  = x̂  . The equality d(x̂  - ŷ a) = 0 implies that there 
is ŷ  € F̂  such that x̂  - y a = dy2 . From dx̂  = x̂ a = (dŷ )a it follows 
that there is ŷ  € F̂  such that x̂  - y2a = dŷ  etc. At last d ( x

n ~ y n
a) = °> hence x - y a £ V and since V«a = 0 it follows that v = x a = 0 . Suppose n Jn n 

now xQ is of degree zero. Then degCx^ = deg(a) , deg(xn) = n»deg(a) 
and deg(v) = (n+l)-deg(a) . Hence V is concentrated in one single degree 
and therefore V-l(A) = 0 . 

Remark. Lemma 2 is valid also for a local commutative ring A (with AQ equal to 
the residue field). 

Lemma 3. Suppose a is a graded Lie algebra. Suppose V i- 0 is a syzygy in a 
free (not necessarily minimal) resolution of k over U(a) such that 
V«l(u(a)) = 0 . Then a, is abelian generated by one single odd element. 

Proof. Since V is contained in a free module, the assumption V«l(U(a)) = 0 

implies that Ann l(u(a)) ^ 0 . Hence by lemma 1 a is abelian on finitely 
many odd generators. If V is a n t h syzygy it follows that 

Tor U(a) 
n+1+i (k,k) Tor U (^ i U,k) & V for i > 1 . 

k — Hence Py^jCz) = Pol(z)/(l - dim(V)zn+1) where Pol(z) is a polynomial in z . 
But we also know that there are numbers e...... ,e such that 

1 ' ' r PU(a)(z) r 
i=1 

(1 - z e i)-2 

The first expression shows that z=1 is a pole of order at most one, while the 
second expression shows that z=1 is a pole of order r . Hence r=1 . 
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Proof of Theorem 3. Suppose ẑ O is an element of Z(g) and z = x + a where 

x € F(V) and a 6 a . ]J Assume first that x ̂  0 . For each y € V , 

tx»y] + [a»y3 = 0 . Now F(V) is graded by the Lie degree "deg" defined by 

letting the elements of V have degree one. Since deg([a,y]) = deg(y) = 1 and 

deg([x,y]) = deg(x) + 1 , it follows that [x,y] = 0 . Since F(V) is free, V 

must be one-dimensional and hence V»l(u(a)) = 0 . Since V is contained in a 

free U(_a)-module, it follows that Ann l(U(a)) 4 0 and by lemma 1 and 3 a. is 

abelian on one odd generator. 2j_ Assume now that x=0 , i.e. z € a, . Then 

yz = [y,z] = 0 for all y G V . Since V is non-zero and contained in a free 

U(a)-module, z must be a zero-divisor on U(a_) . But then z must be of odd 
2 „ 

degree and z = 0 . This follows from the Pomcare-Birkhoff-Witt theorem. Also 

from this theorem we get that {b € U(a.) ; bz = 0} = U(a)«z . Since also V-z = 0, 

lemma 2 may be applied to get Ann l(U(a)) 4 0 and V«l(u(a_)) = 0 and then also 

in this case lemma 1 and 3 may be applied to get the result.! 
Finally, Theorem 2 follows from Theorem 3 since we know the structure of 

3 

Ext̂ Ckjk) if (R,m) is an equi-characteristic local ring with m = 0 . This 

may be deduced (with some effort) from [k] , and hopefully it will appear in a 

forth-coming paper by the author. The structure of the underlying Lie algebra £ 
of Extr)(k,k) is given as follows. Let a be the underlying Lie algebra of ft 
Ext̂ .1 (̂k,k) = the sub algebra of Ext (k,k) generated by its one-dimensional ft ft 

elements. Let V be the third syzygy in a minimal resolution of k over U(a_) . 

Then £ = a cx F(V) . 

An application. 

Notation. For a local ring R , let ê (R) denote dim(jĝ ) where £ is the 

Lie algebra of R . 

o 

Theorem k. If (R,m) is local with m = 0 , then ê (R) > 0 for all i > 1 

or R is a complete intersection (which is possible only if dim(m/m ) < 2 ) . 
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Proof. We may assume that R is equi-characteristic since PR =
 p

g r( R) 

(gr(R) = @ ml/ml+1 ) ( a result by Levin, cf [U] ) and e.(R) may be computed 
i>0 ^ 1 

from PD . During this conference I learned from Yves Felix that if e.(R) = 0 

for some i , then a "special variable" in the sense of Andre is defined (or, if 

you prefer, there exists a "Gottlieb element"). But according to Jacobsson [3] 

this defines an element in the centre of £ = the Lie algebra of R . And by 

Theorem 2 in this paper the centre of £ is trivial, unless is generated 

by (or R = k[x]/(x̂ ) which is a complete intersection). In this 

case we have the following. If ê (R) = 0 for some i then ej(^) = 0 f o r a 1^-

j .> i . Hence by Gulliksens theorem [2] , R is a complete intersection. 

References 

[1] Felix-Halperin-Thomas, The homotopy Lie algebra for finite complexes, 
Publications mathématiques de l'IHES, n° 56 (1982), p. 387-410. 

[2] Gulliksen, A homological characterization of local complete intersection, 
Compositio Math. 23, 1971, p. 251 - 255. 

[3] Jacobsson, On local flat homomorphisms and the Yoneda Ext-algebra of the fibre, 
Reports, Dep. of Math., Univ. of Stockholm, no 8, 1982. 

[4] Löfwall, On the subalgebra generated by the one-dimensional elements of the 
Yoneda Ext-algebra, Reports, Dep. of Math., Univ. of Stockholm, 
no. 5, 1976. 

[5] Milnor-Moore, On the structure of Hopf algebras, Annals of Math., 81, 1965, 
p. 210 - 264. 

[6] Sweedler, Hopf algebras, Benjamin, 1969, p. 108. 

Acknowledgement. The author wants to thank Rikard BØgvad and Calle Jacobsson 

for many fruitful discussions. 

267 


