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M. J. HOPKINS

Formulotions of Cocategsory and the

Ttevated Suspension

M.J. Hopkins

The ILusternik--Schnirelmann category of a space X is
usually defined to iec one less than the minimum number of

open subse it takes to cover X such that the inclusions

Ui -+ X are nullhomotopic. As & homotopy invariant it is
usuvally associated with cohomological nilpotence. It was
Ganea [ 3 1 who first gave a formulation of category to which
one could apply Eckmann~-Hilton duality. He was then able to
define a noticn of 'tocategory' which bore a similar relation to
homotopical nilpotence.

To define category Ganea first constructed a sequence of
spaces Bix inductiwvely, bwv starting with BOX = P¥ » X and

obtaining Bi+ix as the mapping cone Bix () CFiX,where F.X - Bix

i
is the inclusion of the homotopy fibre of BiX - X. With care
he was able to piece these into a sequence filtering the homo-

topy type of X.

0x QX*0X QX*OX*QX
+ 4 +
BoX = PX » PX/0X =B XE IQX » B X/GX*QX > ...
¥
X

(an * X has the homotopy type of the (n+l)-fold fibre join of
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FORMULATIONS OF COCATEGORY

the universal fibration over X, and the above seguence is
the natural sequence of iterated fibre joins). Ganea then
defined catX < n if an -+ X admits a section. He was able to
show that this definiticn agrecs with the original definition
in suitabla cases (when X is path connected, paraccmpact, and
say, locally contractible).

Ganea's formulation of cocategory [3,4] was then as cne would
expect. Beginning with X -> CX = BOX, and having defined

i

+1i - i
% as the howotowy fibre of B X - BYX/X.

X - le, one obtains BT

B1+1“
td
/
s
, .
, . .
% > BYx -+ Bry/x

With care, the Bix fit naturally together to form a tower.
Ganea defined cocatX < n if BUX retracts back to X.

One unsatisfactory feature of this formulation is its
lack of reseriblance to the original definiticn of category.
Consequently, whatever it is that cocategory measures about
a space is somewhat obscure.

In this note I will present new formulations of category
and cocategory closer in spirit to the original definition of
category. Hopefully this will make the meaning of cocategory
less obscure. One byproduct of these formulations is a new
characterization of iterated loop spaces and a dual characteri-
zation of iterated suspensions. Along with these characteri-
zations come spectral sequences whose edge homomorphisms axre
the iterated homotopy and hcomolcecgy suspensions. I have confined
myself to statements of most results. Details will appear

elsewhere.
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1 Lusternik-Schnirelmann Category

The original definition of Lusternik-Schnirelmann category
was based on deconiposing a space as a union of subspaces. As
Lckmann-Hilton dualiity can only be avplied to functors and the
transformations hetween them we must phrase this decomposition
in category theoretic terms.

Let X = Ul\j Uz\j U3. This can be represented by the

diagram

L L T e |

where U01 = Uofj Ul et.c., and the maps are the inclusions. Such
a diagram is a (contravariant) functor from the category cf ncn-
empty subsets cf {0,1,2} to the category of topological spaces,
and the condition that X be the union of the Ui translates into
X being the direct limit of this functor.

For a set S let Cs denote the category of non-empty subsets
of S and inclusions. With the above as motivation we make the
following

Definition: A homotopy covering of a space X is a contravariant

functor F:Cs + Spaces for some set S, together with maps

p: holimF -+ X and s:X =+ holimF such that p-s is homotopic to the
identity map of X. (holim F denotes the homotopy direct limit
of F {2 ,/31).

Given a homotopy covering F of X we give precedence to the
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FORMULATIONS OF COCATEGORY

spaces F{a} a ¢ S over their intersections by saying that the

p
F{o} homotopy cover X via the maps F{o} > holim F » X. We

will also say that X can be homotopy coverad by {pa: Ua-*Xla e S}
if there exists a homotopy covering F:CS + Spaces of X together

with hemotopy equivalences F{a} » U, such that the diagrams

F{o} -+ holimF
+ ¥

U -+ X
a

commute up to homotopy.

FExample: A connected space X is a co h-space if and only if it
can be homotopy covered by two points. Indeed, consider the
functor F:C{O,l} -+ Spaces given by the diagram #* « QX =+ *. The
homotopy direct limit of this diagram is IQX and it is well-
known that a connected space is a co h-space if and only if it is
dominated by the suspension of its loop space.

We can now define category.

Definition: Let X be a connected space. Then cat X < n if X

can be homotopy covered by n+ 1 points.

We will see at the end of this section that this definition
agrees with that of Ganea [3,4].

To actually make computations it is impossible to go through
the whole category of spaces looking for intersections. One's
natural instinct is to ask about universal intersections. They
do indeed exist and are provided by the homctopy inverse limit
e ,131.

More precisely, given {pa:Ua + X|a ¢ 8} we construct a functor
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p: C, > Spaces by setting I'A = holim {p_: U, - Xla ¢ A} for A C
b Jbtesasiiel “ G

Proposition 1: A space X can be homotopy covered by
{p,: U, Xla ¢ S} if and only if X is dominated by holim F in

such a way that the composition

U, = Flu} » holim F » X

is homotopic to p;-

Remarks: 1) There is an obvicus genecralization of proposition 1
in which one is allowed to specify various of the intersections.
The statement involves beginning with a functor defined on a
full subcategory of CS together with a natural transformaticn to
the functor which is constant at X, and then using homotcpy
inverse limits to "fill in" the missing intersections thereby
extending functor and transformation to all of CS.

2) In propecsition 1 (and its generalization) it is
possible to obtain a canonical map p : holim F -+ X with the
property that X can be homotopy covered by {pi: Ui + X} iff p
adwits a section up to homotopy. To construct p one must either
convert all of the P; Ui + X into fibratiozs or else be willing
to replace X by the function space (X x As) $ where As is the
sinmplex with |S| vertices.

3) Proposition 1 and its generalization influence
the theory of homotopycoverings in two ways. Not only do they
convert questions about homotopy coverings into questions about
certain maps admitting sections, but they transform guestions
like "how many points does it take to homotopy cover X2?" into
gquestions about certain filtrations of X. We shall see in §3

that the filtrations arising in this way are themselves of some
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interest.

Example: Consider the following situation: p:E » B is a fibratian
and we want to know how many open subsets Ui it takes to cover

B such that each inclusion Ui -+ B lifts through p. The

universal example of a 1ift throuch p is p: E » B itself so in the
present terminclogy we would ask how many copies of p: E » B

it takes to homotopy cover B. Proposition 1 suggests an approach.
For example, to sec if two copies suffice we must consider the

functer F: C{0 1}-* Spaces given by the diagram
4

E « ExBE -+ E

In this case Bglig F is the fikbre jeoin of E with itself over B.
In genceral one finds that B can be homotopy covered by n copies
of p:E » B iff the n fold fibre join of p admits a secticn.
The filtration of B we obtain is the filtration by iterated fibre
joins of p. {This shiculd be compared with the work of A.S. évarc
[7 ,/2] who first pointed out the relationship between sections
of the iterated fibre joins of a fibration and coverings of the
base by open subsets over which the fibration admits a section.)
The above example with E -+ B the standard contractible
fibration shows that catB < n iff the (n+1)-fold fibre join
of the universal fibration over B admits a section. It follows

that our definition of category agrees with Ganea's.

2 Formulations of Cocategory

We now present the dual of §1.

Definition: A homotopy co-covering of a space X is a covariant

217



M. J. HOPKINS

functor F : CS + Spaces for some set S, together with maps
i: X » holim F and r : holim F » X such that r e i is homotopic

to the identity map of X. X is said to be homotopy co-covered

by F{a} a ¢ S via

X > holim F - F{al}.
holim

The geometric situation out of which such a functor arises
occurs when one space is written as an intersection of others.
For instance X = Ucf\ Ulf\ U2 can be interpreted as saying that

X is the inverse limit of

where U01 = Uok/ u' etc. It follows that the notion of cocategory

should be based on writing a space as an intersection of other
spaces in the same way that category is based on writing a space
as a union of subspaces.

There is one important property of unions for which there
is not a clear cut dual. Namely, suppose X = Ul\J U, and

2

Ul = Vlu e U Vn' 02 = WlL/ cee U Wm' Then it is hard to deny

that X = V, U e U Vn\/ W,V oUW However in the dual
situation X = Uy N U,, U, =V, N ...AV s U, =W ... NW .,
one needs to do something artificial to even form

Vl(\ .o F\Vnr\ Wlf\ e f\Wh. For this reason it is possible

to formulate many notions of cocategory. We single out the two

most important.
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Definition: A space X has symmetric cocategory < n (abbr.

sym cocat X <« n) if it can be homotopy co-covered by n + 1

points.

Definition: A space X has inductive cocategory < n (abbr.

ind cocat X £ n) if it can be homotopy co-covered by a point and

a space X' with ind cocat X' < n - 1.

When one wishes to know whether a collection of maps
{ia: X + U|lo ¢ S} suffices to homotopy co-cover X, universal
unions are provided by the homotopy direct limit. Thus given
{ia: X > U|a ¢ S} define a covariant functor F :CS -+ Spaces by
FA = holim {i :X - Uula e A S}. We then have the dual of

proposition 1.

Proposition 1': X can be homotopy co-covered by {ia: X > Uala e S}

iff X is dominated by holim F in such a way that the composition

X ~» holim r > Fla} =y,

is homotopic to ia'

Remark: The remarks after proposition 1 dualize.

Proposition 1' translates the question of computing sym cocat
and ind cocat into a question about certain towers of fibrations.
It is easy to see that the tower used to compute inductive
cocategory is the same as Ganea's tower s$o that his notion of
cocategory is our notion of inductive cocategory.

Symmetric and inductive cocategory certainly appear to be

distinct notions though at present 1 can prove neither that they

coincide nor that they differ. The following sums up most of the
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present state of affairs:

1) ind cocat < sym cocat.
2) ind cocat X = 0 <> sym cocat X = 0 & X is contractible.
3) ind cocat X = 1 4 sym cocat X = 1 & QIX dominates
X & X is an h-space.
4) ind cocat K(m,1l) = sym cocat K(m,l) = nilpotency class of m.
5) If there is a non-trivial n-fold Whitehead product in
m,X then both ind cocat X and sym cocat X are 2 n.

6) If catX < n then both ind cocat and sym cocat of the

)

*
space (Y,*)(X’ of base point presexrving maps are <n.

7) 1£f F > E » B is a fibration then ind cccat F < ind cocatt E + 1.

Property 7) actually characterizes inductive cocategory [3,4].
Could it be established for symmetric cocategory it would follow
that the two notions adgree.

Finally, I have remarked that proposition 1' gives us towers
of fibrations for computing ind cocat X and sym cocat X . Taking
homotopy groups of the tower results in an exact couple and hence
a spectral sequence. In good cases (when X is connected and can
be written as an inverse limit of nilpotent spaces) these spectral
seguences converge to mxX.

The spectral sequence arising from sym cocat is particularly
interesting as its E2 term can be computed by applying the cobar
construction to IX (in the homotopic category), taking homotopy
groups, and then taking cohomology of the resulting complex. An
easy consequence of the Hilton-Milnor theorem [6,8] is that in a
range of about three times the connectivity of X the spectral

sequence collapses to an exact sequence
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T (ZX) > m (EXAX) > wn_z(x) > (2X)

which is the EHP sequence.

This spectral scquence is the dual of the Rotlienberg-Steenrod
spectral sequence [9 ] and was originally obtained by M.G. Barratt
in a slightly different setting [ 1 ]. One advantage of the above
formulation is that it is made clear that the higher differentials
are the obstructions to maps s+ x being co h-maps compatible
with higher associativity. A second advantage is that it generalizes

to n-fold suspensions.

3 The Tterated Suspensicn

We can summarize the preceding sections with a slightly
different emphasis. Let Cn denote the category of non-empty sub-
sets of {0,...,n} and let Pyree.s/P i *>X be n + 1 copies of the
inclusion of some point in the connected space X. To decide
whether X can be homotopy covered by n + 1 points one is led by
proposition 1 to consider the homotopy direct limit of the
(contravariant) functor Fn :Cn + Spaces given by FnA = holim
ﬁ)i: * - X|i ¢ A}. The inclusions {0,...,n-1} - {0,...,n} define

natural transformations »Fn -> Fn - Fn + ... hence one

-1 +1

obtains a sequence of cofibrations

««. »> holim Fo-1 ™ holim Fo = holim Foep ™ oo

We have remarked that this is just the sequence of iterated fibre
joins of the universal fibration over X, so that in the limit one
recovers the homotopy type of X.

The spaces hgii@ Fn are built out of the "universal inter-

sections" FnA and various maps between them. It is not hard to
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see that the FnA all have the homotopy type of a product of copies
of 9X, and. furthermore, that the only maps between these products
which arise are the projections and the loop multiplication. It
follows that the sequence of functors ... » F +~ F_~» F +> e
n-1 n n+l

stores the algebraic information needed to recover a connected
space from its loop space.

Dually, to decide whether a space X can be homotopy co-

covered by n + 1 points one is led by provosition 1' to consider

the (covariant) functor . Cn -+ Spaces given by

F'A = holim {i

R xlo e A} ac¢ {0,...,n}

where iO' ceer in are n + 1 cecpides of the unique map X » *, The

inclusions {0,...,n-1} > {0,...,n} define a sequence of trans-

formations anl > Fn -+ Fn+l and hence a tower of fibrations
- 1
e.. < holim F* 1 < holim F" <« holim F"F% « ...
e ——

In good cases (when X is connected and can be written as an
inverse limit of nilpotent spaces) the inverse limit of this tower
recovers the homotopy type of X.

The spaces Eggiﬂ F" are built out of wedges of LX and use
only inclusions of factors and the co-multiplication. It follows
that the sequence of functors ... = FP7l s PP s B
stores the algebraic information needed to recover a space from
its suspension.

Without going into too many details, the guestion "can X be
homotopy covered by n + 1 points in such a way that the homotopy
intersection of any j points, j < k, is again a point?" gives
rise to a sequence of functors storing the algebraic information needed

to recover the homctopy type of a space from its k-fold loop space.
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The dual remark goes for k=fold suspensions.

To extract recognition principles from the above it is
convenient to use the language of simplicial and cosimplicial
spaces. lLet A denote the cateqgory of finite ordered sets and
let [nle Ob A be the set {0 < ... < n}. The catecory of simplicial
spaces ig the catec¢ory of contravariant functors & -+ Spaces and
natural transformations. There is a free functor F : Spaces -

A
Simplicial Spaces given by FX[n] = X' ™ - the space of maps from
the standard n-simplex into X. This functor has a right adjoint
X + |%| which is the geometric realjzation [/0].

Analogously, the category of cosimplicial spaces is the
categery of covariant functers A - Spaces. There is a (cc-)free
functor T : Spaces - Cosimplicial Spaces given by FX[n] = X X An.
This functor has a right adjcint X = Tot X which is a kind of

geometric realization [2 ].

Theorem 1: Let [n] - Xn be a simplicial space such that
i) Xgreeor®y _, are contréctlble
n n
® (%)
ii) p_ = 711 06, : X > II X is a homotopy equivalence,
S B R noogey K

where Gj runs through the injections [k] » [n] satisfying
ej(O) = 0.
Then the map X, ~ Qk|xl adjoint to the inclusion of the "k-skeleton"

is a homotopy equivalence.

Theorem 1': ©Let [n] - X" be a (pointed) cosimplicial space
such that

i) Xo,...,xk_1 are contractible; X* is k-connected
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& 6

ii) in = VvV Gj*: V'Xk > X is a homotopy equivalence.
j=1

Then the map Ek Tot X - Xk adjoint to the projection onto

the "k-coskeleton" (Tot X - Toth in [2 ] p.271) is a homotopy

equivalence.

Remarks: 1) Theorems 1 and 1' should be compared to [11]

Proposition 1.5. .
(a . k1)
2) The functors [nl] = (X,=*) and

[n} + X An/An(k—l) satisfy the conditions of Theoremsl and 1'

with Xk = Qkx and Xk = EkX respectively. It follows that we can
deloop any n-fold loop space and desuspend any n-fcld suspension
using Theorems 1 and 1' respectively.

3) The geometric realizations in theorems 1 and 1' need
tc be modified slightly in order to land in the right homotopy
type. The appropriate discussion can be found in the appendix
to [14 3.

4) The proof of Theorem 1 is by induction on k using
the simplicial path space PX,where (PX)n = Xn+l,and the observation

that the fibres of dn : (PX)n > Xn form a simplicial space

+1
satisfying the conditions of the theorem with k replaced by k - 1.
Theorem 1' is an easy consequence of the work of 2. Wojtkowiak
on the homology spectral sequence of a cosimplicial space [1%].

5) The homology spectral sequence for simplicial spaces

(k-1)
(/01 applied to [nl1 + (X,+) ®nsfn )

gives a spectral sequence
starting from Hs (HQkX) and converging (by Theorem 1 - provided
X is connected) to HxX. The homotopy spectral sequence for

(k-1)

cosimplicial spaces [ 2 ] applied to [n] + X /\.An/An gives a

spectral sequence starting from m« (Zka ...x'EkX) and converging
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{hy Theorem 1' - provided X is connected and can be written as
an inverse limit of nilpotent spaces) to wxX. The edge
homomorphisms of these spectral sequences are the iterated
homotopy and homclogy suspensions respectively. They generalize
the Rothenberg-Steenrod spectral seguence and the spectral

sequence mentioned in §2.
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