Astérisque

Stephen Halperin
 Spaces whose rational homology and de Rham homotopy are both finite dimensional

Astérisque, tome 113-114 (1984), p. 198-205
http://www.numdam.org/item?id=AST_1984__113-114__198_0

© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

S. HALPERIN

SPACES WHOSE RATIONAL HOMOLOGY AND DE RHAM HOMOTOPY ARE BOTH FINITE DIMENSIONAL
by

Stephen Halperin

1. INTRODUCTION

Let S be a path connected space with rational minimal model ($\Lambda X, d$) $-\operatorname{cf}[4]$. We say S is of type F ([1]) if dim X and dim $H(\Lambda X)$ are both finite.

Now $H(\Lambda X) \cong H *(S ; Q)(s i n g u l a r ~ c o h o m o l o g y) ~ w h i l e ~$ $X \cong \pi{ }_{\mathrm{DR}}^{*}(\mathrm{~S})$ by the definition of ΛX and of $\pi_{\mathrm{DR}}^{*}(\mathrm{~S})$. Moreover, if S is 1 -connected and $\operatorname{dim} H^{P}(S ; Q)<\infty$ for all P then $X \cong \operatorname{Hom}_{\mathbf{Z}}\left(\pi_{*}(S) ; Q\right)$. In this case dim $X^{P}=\operatorname{rank} \pi_{p}(S)$, and the condition dim $X<\infty$ can be restated as: π_{p} (S) is finite for sufficiently large p.

Henceforth we consider a fixed S of type F and denote by n the degree of its fundamental class: $H^{P}(\Lambda X)=0, p>n$. We also adopt the convention that $|x|$ denotes the degree of a homogeneous element of a graded vector space, and we work over Q as ground field.
2. THE SPACE ${ }^{\pi} \stackrel{*}{\mathrm{DR}}$ (S).

In [l] is shown that $X^{P}=0, p>2 n-1$. Here we will show that at most one element in a homogeneous basis of X has degree $\geq n$. More precisely, let q be the largest

ELLIPTIC SPACES

integer with $x^{q} \neq 0$. According to $[3], q$ is odd. Theorem 1. Suppose $q>n$. The algebra ($\Lambda X, d$) is then of the form $\Lambda X \cong \Lambda(y, x) \otimes \Lambda Z$, where:
(i) $\mathrm{Z}^{\mathrm{P}}=0, \mathrm{p} \geq \mathrm{n} \quad$ (ii) $|\mathrm{x}|=\mathrm{q}$
(iii) $d x=y^{k}$ (some $k \geq 2$).

Moreover, if \bar{d} is the differential in ΛZ obtained from d by putting $y=x=0$ in ΛX, then $H^{P}(\Lambda z, \bar{d})=0, p \geq|y|$. Corollary: $H(\Lambda X, d) \cong\left(\Lambda y / y^{k}\right) \otimes H(\Lambda Z, \bar{d})$, as $\Lambda y / y^{k}$-modules. Proof: Write $X^{\text {odd }}=P$ and $X^{e v e n}=Q$. Define a second differential d_{σ} in ΛX by the conditions $d_{\sigma}: X \rightarrow \Lambda Q$ and $d-d_{\sigma}$: $X \rightarrow P . \Lambda X$. By $[2], H^{P}\left(\Lambda X, d_{\sigma}\right)=0, p>n$.

Fix a homogeneous basis y_{i} of Q.
Since d_{σ} maps the indecomposable elements of $(P \otimes \Lambda Q)^{q}$ injectively into $(\Lambda Q)^{+1}$ and since it maps $(P \otimes \Lambda Q)^{q}$ onto $(\Lambda Q)^{+1}$ there is an indecomposable $x_{1} \varepsilon(P \otimes \Lambda Q)^{q}$ such that $d_{\sigma} \mathrm{x}_{1}$ has the form
(I)

$$
d_{\sigma} x_{1}=y_{i_{1}}^{k_{1}} \cdot \ldots \cdot y_{i_{r}}^{k_{r}}, \quad k_{v}>0
$$

Choose x_{1} so that $\left|y_{i_{1}}\right|$ is minimized and so that (once $y_{i_{1}}$ is fixed) k_{1} is maximized.

Denote by ($\Lambda W, d^{\prime}$) the differential algebra obtained from ($\Lambda X, d_{k}^{\sigma}$) by dividing by $y_{i_{1}}$. We observe first that $y_{i_{2}}^{k_{2}} \ldots \cdot y_{i_{r}}^{k_{r}^{\sigma}}=\Phi$ is not a coboundary in ΛW. Indeed, if we could write $\underset{k_{k}}{\Phi=d^{\prime}} \underset{k_{1}}{ } \Psi$ we would have $\mathrm{d}_{\sigma} \Psi=\Phi+y_{i_{1}} \Phi_{1}$, whence $d_{\sigma}\left(x_{1}-y_{1}^{k} l^{\prime}\right)=y_{i_{1}}^{k_{1}} \Phi_{1}$. It would follow that one of the

S. HALPERIN

constituent monomials of $y_{i}{ }_{1}{ }_{1}{ }_{\Phi} \Phi_{1}$ was of the form $d_{\sigma} v$, v an indecomposable element of $(P \otimes \Lambda Q)^{q}$ and this would contradict our hypothesis on x_{1} above.

Now ($\left.\Lambda W, d^{\prime}\right)$ is if the form $\left(\Lambda x_{1}, 0\right) \otimes\left(\Lambda Y, d^{\prime}\right)$. Hence $y_{i_{2}}^{k_{2}} \ldots \cdot y_{i_{r}}{ }_{r}$ is not a coboundary in ($\Lambda Y, d^{\prime \prime}$). In particular, if n^{\prime} is the maximum degree in which $H(\Lambda W) \neq 0$,
(2)

$$
n^{\prime} \geq q+\sum_{v=2}^{r} k_{v}\left|y_{i_{v}}\right|
$$

On the other hand by [2; Theorem 3]
(3)

$$
n^{\prime}=n+\left|y_{i_{1}}\right|-1
$$

It follows that $\left|y_{i_{i}}\right|>(q-n)+\sum_{2}^{r} k_{v}\left|y_{i_{v}}\right|$ and hence $k_{v}=0$, $v \geq 2$. We thus obtain (calling $y_{i_{1}}$ simply y_{1}) that $d_{\sigma} x_{1}=y_{1}^{k}$ for some k.

Write $\Lambda X=\Lambda\left(y_{1}, x_{1}\right) \otimes \Lambda Z_{1}$. The induced projection $\rho: \Lambda X \rightarrow \Lambda Z_{1}$ determines a differential $\overline{\mathrm{d}}_{\sigma}$ in ΛZ_{1}. We show now that
(4)

$$
H^{P}\left(\Lambda Z_{1}, \overline{\mathrm{~d}}_{\sigma}\right)=0 \quad \text { if } \mathrm{p} \geq\left|y_{1}\right| \text { or } p \geq \frac{n}{2} .
$$

Indeed if m is the maximum degree in which $H\left(\Lambda Z_{1}, \bar{d}\right) \neq 0$ then by [2; Theorem 3]

$$
n=m+(k-1)\left|y_{1}\right| .
$$

ELLIPTIC SPACES

Since $d_{\sigma} x_{1}=y_{1}^{k}$ we have

$$
q+1=k\left|y_{1}\right|
$$

and these two equations imply (1).
In view of [l] we have
(5)

$$
Q=\left(y_{1}\right) \oplus Q^{<}\left|y_{1}\right| \text { and } x=\left(x_{1}\right) \oplus X^{<|n|} .
$$

Now we show that
(6) $H^{\mid y} y_{1} \mid\left(\Lambda X^{<\left|y_{1}\right|}, d\right)=H^{\left|y_{1}\right|+1}\left(\Lambda X^{\langle | y_{1} \mid}, d\right)=0$.

Because ([2]) there is a spectral sequence converging from $H\left(, d_{\sigma}\right)$ to $H(, d)$ it is sufficient to prove (6) with d_{σ} replacing d. Now (5) shows that the projection ρ restricts to a map $\rho_{1}:\left(\Lambda X^{<\left|y_{1}\right|}, d_{\sigma}\right) \rightarrow\left(\Lambda Z_{1}, \bar{d}_{\sigma}\right)$ which is injective in degrees $\leq\left|y_{1}\right|+1$ and surjective in degrees $\leq\left|y_{1}\right|$. Thus (6) follows from (4). From (6) we may deduce an element $\Omega \varepsilon\left(\Lambda X^{\left.<\left|y_{1}\right|_{n P} \cdot \Lambda X\right)}\left|y_{1}\right|\right.$ such that $d\left(y_{1}+\Omega\right)=0$.

Since $X^{<n}=\left(y_{i}\right) \oplus Z_{1}$ we conclude that $H\left(\Lambda X^{<n}, d_{\sigma}\right) \cong$ $\Lambda y_{1} \otimes H\left(\Lambda Z_{1}, \overline{\mathrm{~d}}_{\sigma}\right)$, using (4). Since $q+1=k\left|y_{1}\right|$ it follows further from (4) that $\operatorname{dim} H^{q+1}\left(\Lambda X^{<n}, d\right) \leq 1$. Moreover, if $\left(y_{1}+\Omega\right)^{k}$ were a d-coboundary in $\Lambda X^{<n}$ then y_{l}^{k} would be a d_{σ}-coboundary in $\Lambda x^{<n}$, which is impossible. Hence $\left(y_{1}+\Omega\right)^{k}=d x$ for some indecomposable element x. Put $y=y_{1}+\Omega$ and choose an automorphism of ΛX which fixes y and
carries x to an element of X .
q.e.d.

Remark. Call ($\Lambda X, d$) exceptional if one is in the case of Theorem l, and ordinary otherwise. One sees easily that if $(\Lambda Z, \bar{d})$ is ordinary, then $(\Lambda X, d) \cong(\Lambda(x, y), d) \otimes(\Lambda Z, \bar{d})$. There are, however, simple examples in which ($\Lambda Z, \bar{d}$) is also exceptional and the isomorphism of the corollary cannot even be made multiplicative.
3. DIMENSION OF $\mathrm{H}^{*}(\mathrm{~S})$.

Theorem 2. dim $H^{*}(S)=\operatorname{dim} H(\Lambda X) \leq 2^{n}$. This inequality is sharp when S is an n-torus.

Proof: In [l] is shown that

$$
\operatorname{dim} H *(S) \leq \frac{q}{\pi} 2 b_{i}
$$

where $2 b_{1}-1, \ldots, 2 b_{q}-1$ are the degrees of a basis of P. Moreover it is shown there that $\sum b_{i} \leq n$. If $b_{i}>1$ then $2 b_{i} \leq 2\left(b_{i}-1\right) 2$ and so $\prod_{1}^{q} 2 b_{i} \leq 2^{\Sigma b_{i}} 2^{n}$.
q.e.d.

4. LEFSCHETZ NUMBER.

Suppose $f: S \rightarrow S$ is a continuous map. It induces $\Phi:(\Lambda X, d) \rightarrow(\Lambda X, d)$, and $H(\phi): H(\Lambda X) \rightarrow H(\Lambda X)$ is identified with $f *$, so that in particular the Lefschetz number of f is given by

ELLIPTIC SPACES

$$
L(f)=\sum_{P}(-1)^{P} \text { trace } H^{P}(\phi)
$$

To calculate $L(f)$ we extend the coefficients (by tensoring) to \mathbb{C}. Let ψ be the semisimple part of ϕ. It is a semisimple automorphism of ΛX and hence we can suppose it preserves X. Because ψ is the semisimple part of ϕ it is a polynomial in ϕ in each $(\Lambda X)^{\mathrm{P}}$, and so commutes with d. Since ψ also preserves X it commutes with d_{σ}. Hence

$$
L(f)=\sum(-1)^{P_{H}^{P}}(\psi, d)=\sum(-1)^{P} \text { trace } H^{P}\left(\psi, d_{\sigma}\right)
$$

Choose a homogeneous bases y_{1}, \ldots, y_{r} and x_{1}, \ldots, x_{q} of Q and P such that $\psi y_{i}=\alpha_{i} y_{i}$ and $\psi x_{j}=\beta_{j} x_{j}$, and such that $\alpha_{i}(i \leq s)$ and $\beta_{j}(j \leq t)$ are the eigenvalues distinct from 1. Putting $y_{1}=\ldots y_{S}=0$ we arrive at a factor model ($\Lambda \bar{X}, \overline{\mathrm{~d}}_{\sigma}$) of the form $\left(\Lambda\left(y_{s+1}, \ldots, y_{r}\right) \otimes \Lambda\left(x_{t+1}, \ldots, x_{q}\right), \bar{d}_{\sigma}\right) \otimes\left(\Lambda\left(x_{1}, \ldots\right.\right.$, x_{t}), 0). The Lefschetz number of the induced endomorphism $\bar{\psi}$ is the product of the Euler characteristic x of the first factor with $\prod_{i=1}\left(1-\beta_{i}\right)$.

Define a model ($\Lambda X \otimes \Lambda U, D$) extending ($\Lambda X, d_{\sigma}$) by putting $U=\left(u_{1}, \ldots, u_{s}\right)$ and $D u_{i}=y_{i}$. A spectral sequence converges from $H(\Lambda X \otimes \Lambda U)$ to $H\left(\Lambda \bar{X}, \overline{\mathrm{X}}_{\sigma}\right)$ and so we conclude that

$$
L(f) \cdot \prod_{i=1}^{s}\left(I-\alpha_{i}\right)=\sum_{i=1}^{t}\left(I-\beta_{i}\right)
$$

S. HALPERIN

Finally let $\left|y_{i}\right|=2 a_{i}$ and $\left|x_{i}\right|=2 b_{i}-1$. We can apply
[2] to obtain
Theorem 3: With the notation above q-t \geq r-s. Moreover, $L(f)=0$ if $q-t>r-s$, and

$$
L(f)=\frac{{ }_{\Pi}^{t}\left(1-\beta_{i}\right) \stackrel{q}{\Pi} b_{i}}{\frac{1}{s} b_{t+1}^{r}}, \quad \text { if } q-t=r-s .
$$

Remark: Let $\bar{\phi}$ denote the linear part of ϕ. Then $\bar{\phi}$ is the action of f on $\pi_{\psi}^{*}(S)$. If S is l-connected this is dual to the action of $f_{\#}$ in $\pi_{*}(S)$. In this case $\alpha_{i}(i \leq r)$ and $B_{j}(j \leq q)$ are the eigenvalues of $f_{\#}$ corresponding to a basis of $\pi_{\%}(S) \otimes \mathbb{C}$. Thus $L(f)$ can be computed from $f_{\#}$.

Physical Sciences Division, Scarborough College, University of Toronto.

REFERENCES

[l] J. Friedlander and S. Halperin.. Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) P. 117-133.
[2] S. Halperin. Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) P. 173-199.
[3] S. Halperin. Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223.
[4] D. Sullivan, Infinitesimal Computations in Topology. Inst. Hautes Études Sci. Publ. Math. 47 (1978) p. 269-331).

