Astérisque

STEPHEN HALPERIN

Spaces whose rational homology and de Rham homotopy are both finite dimensional

Astérisque, tome 113-114 (1984), p. 198-205 http://www.numdam.org/item?id=AST_1984_113-114_198_0

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SPACES WHOSE RATIONAL HOMOLOGY AND DE RHAM HOMOTOPY ARE BOTH FINITE DIMENSIONAL

Ъу

Stephen Halperin

1. INTRODUCTION

Let S be a path connected space with rational minimal model $(\Lambda X,d)$ - cf [4]. We say S is of <u>type F</u> ([1]) if dim X and dim H(ΛX) are both finite.

Now $H(\Lambda X) \approx H^*(S; Q)$ (singular cohomology) while $X \approx \pi_{DR}^*(S)$ by the definition of ΛX and of $\pi_{DR}^*(S)$. Moreover, if S is 1-connected and dim $H^P(S; Q) < \infty$ for all p then $X \approx Hom_{\mathbb{Z}}(\pi_*(S); Q)$. In this case dim X^P =rank $\pi_p(S)$, and the condition dim X< ∞ can be restated as: $\pi_p(S)$ is finite for sufficiently large p.

Henceforth we consider a fixed S of type F and denote by n the degree of its fundamental class: $H^{p}(\Lambda X)=0$, p>n. We also adopt the convention that |x|denotes the degree of a homogeneous element of a graded vector space, and we work over Q as ground field.

2. <u>THE SPACE π_{DR}^* (S)</u>.

In [1] is shown that $X^{P}=0$, p>2n-1. Here we will show that at most one element in a homogeneous basis of X has degree $\geq n$. More precisely, let q be the largest

ELLIPTIC SPACES

integer with $X^{q} \neq 0$. According to [3], q is odd. <u>Theorem 1</u>. Suppose q>n. The algebra (AX,d) is then of the form $\Lambda X \cong \Lambda(y,x) \otimes \Lambda Z$, where: (i) $Z^{p} = 0$, $p \ge n$ (ii) |x| = q(iii) $dx = y^{k}$ (some $k \ge 2$).

Moreover, if \overline{d} is the differential in AZ obtained from d by putting y=x=0 in AX, then $H^{P}(AZ,\overline{d})=0$, $p\geq |y|$. <u>Corollary</u>: $H(AX,d) \cong (Ay/y^{k}) \otimes H(AZ,\overline{d})$, as Ay/y^{k} -modules. <u>Proof</u>: Write $X^{odd}=P$ and $X^{even}=Q$. Define a second differential d_{σ} in AX by the conditions $d_{\sigma}:X + AQ$ and $d - d_{\sigma}:$ $X + P \cdot AX$. By [2], $H^{P}(AX, d_{\sigma}) = 0$, p > n.

Fix a homogeneous basis y; of Q.

Since d_{σ} maps the indecomposable elements of $(P@AQ)^{q}$ injectively into $(AQ)^{q+1}$ and since it maps $(P@AQ)^{q}$ onto $(AQ)^{q+1}$ there is an indecomposable $x_{1} \epsilon (P@AQ)^{q}$ such that $d_{\sigma} x_{1}$ has the form

(1)
$$d_{\sigma}x_{1} = y_{i_{1}}^{k_{1}} \cdots y_{i_{p}}^{k_{p}}, \quad k_{\nu} > 0.$$

Choose x_1 so that $|y_{i_1}|$ is minimized and so that (once y_{i_1} is fixed) k_1 is maximized.

Denote by (AW,d') the differential algebra obtained from (AX,d_) by dividing by y_{i_1} . We observe first that $y_{i_2}^k \cdots y_{i_r}^{r=\Phi}$ is not a coboundary in AW. Indeed, if we could write $\Phi = d'\Psi$ we would have $d_{\sigma}\Psi = \Phi + y_{i_1} \Phi_i$, whence $k + 1 \\ d_{\sigma}(x_1 - y_1^{-1}\Psi) = y_{i_1}^{-1} \Phi_i$. It would follow that one of the

 k_1+1 constituent monomials of $y_1 = \Phi_1$ was of the form $d_\sigma v$, v an indecomposable element of (P0AQ)^q and this would contradict our hypothesis on x_1 above.

Now (AW,d') is if the form $(\Lambda x_1, 0) \otimes (\Lambda Y, d'')$. Hence $y_{i_2}^k \cdots y_{i_r}^r$ is not a coboundary in (AY,d''). In particular, if n' is the maximum degree in which $H(\Lambda W) \neq 0$,

(2)
$$n' \ge q + \sum_{\nu=2}^{r} k_{\nu} |y_{i_{\nu}}|.$$

On the other hand by [2; Theorem 3]

(3)
$$n' = n + |y_{i_1}| - 1.$$

It follows that $|y_{i_1}| > (q-n) + \sum_{i_1}^{r} k_{v_i} |y_{i_v}|$ and hence $k_{v_i} = 0$, $v \ge 2$. We thus obtain (calling y_{i_1} simply y_1) that $d_{\sigma} x_1 = y_1^k$ for some k.

Write $\Lambda X = \Lambda(y_1, x_1) \otimes \Lambda Z_1$. The induced projection $\rho: \Lambda X \rightarrow \Lambda Z_1$ determines a differential \overline{d}_{σ} in ΛZ_1 . We show now that

(4)
$$H^{P}(\Lambda Z_{1}, \overline{d}_{\sigma}) = 0$$
 if $p \ge |y_{1}|$ or $p \ge \frac{n}{2}$.

Indeed if m is the maximum degree in which $H(\Lambda Z_1, \overline{d}) \neq 0$ then by [2; Theorem 3]

$$n = m + (k-1)|y_1|.$$

Since $d_{\sigma} x_1 = y_1^k$ we have

$$q + 1 = k|y_1|$$

and these two equations imply (1).

In view of [1] we have

(5) $Q = (y_1) \oplus Q^{<|y_1|}$ and $X = (x_1) \oplus X^{<|n|}$.

Now we show that

(6)
$$H^{|y_1|}(\Lambda X^{<|y_1|}, d) = H^{|y_1|+1}(\Lambda X^{<|y_1|}, d) = 0.$$

Because ([2]) there is a spectral sequence converging from H(,d_g) to H(,d) it is sufficient to prove (6) with d_g replacing d. Now (5) shows that the projection ρ restricts to a map $\rho_1:(\Lambda X^{<|y_1|}, d_g) \rightarrow (\Lambda Z_1, \overline{d_g})$ which is injective in degrees $\leq |y_1|+1$ and surjective in degrees $\leq |y_1|$. Thus (6) follows from (4). From (6) we may deduce an element $\Omega \in (\Lambda X^{<|y_1|} \cap P \cdot \Lambda X)^{|y_1|}$ such that $d(y_1 + \Omega) = 0$.

Since $X^{<n} = (y_1) \oplus Z_1$ we conclude that $H(\Lambda X^{<n}, d_{\sigma}) \cong \Lambda y_1 \otimes H(\Lambda Z_1, \overline{d}_{\sigma})$, using (4). Since $q+l=k|y_1|$ it follows further from (4) that dim $H^{q+1}(\Lambda X^{<n}, d) \le l$. Moreover, if $(y_1+\Omega)^k$ were a d-coboundary in $\Lambda X^{<n}$ then y_1^k would be a d_{σ} -coboundary in $\Lambda X^{<n}$, which is impossible. Hence $(y_1+\Omega)^k = dx$ for some indecomposable element x. Put $y=y_1+\Omega$ and choose an automorphism of ΛX which fixes y and

carries x to an element of X.

<u>Remark.</u> Call (Λ X,d) <u>exceptional</u> if one is in the case of Theorem 1, and <u>ordinary</u> otherwise. One sees easily that if (Λ Z,d) is ordinary, then (Λ X,d) \approx (Λ (x,y),d) \otimes (Λ Z,d). There are, however, simple examples in which (Λ Z,d) is also exceptional and the isomorphism of the corollary cannot even be made multiplicative.

3. DIMENSION OF H*(S).

<u>Theorem 2</u>. dim $H^*(S)$ =dim $H(\Lambda X) \le 2^n$. This inequality is sharp when S is an n-torus. Proof: In [1] is shown that

where $2b_1-1, \ldots, 2b_q-1$ are the degrees of a basis of P. Moreover it is shown there that $\sum_{j \le n} b_j \le n$. If $b_j > 1$ then $2b_j \le 2(b_j-1)2$ and so $\prod_{j=2}^{q} 2b_j \le 2^{\sum_j j} \le 2^n$.

q.e.d.

a.e.d.

4. LEFSCHETZ NUMBER.

Suppose f:S+S is a continuous map. It induces $\phi:(\Lambda X,d) \rightarrow (\Lambda X,d)$, and $H(\phi)$: $H(\Lambda X) \rightarrow H(\Lambda X)$ is identified with f*, so that in particular the Lefschetz number of f is given by

$$L(f) = \sum_{p} (-1)^{p} \text{ trace } H^{p}(\phi).$$

To calculate L(f) we extend the coefficients (by tensoring) to \mathbb{C} . Let ψ be the semisimple part of ϕ . It is a semisimple automorphism of AX and hence we can suppose it preserves X. Because ψ is the semisimple part of ϕ it is a polynomial in ϕ in each (AX)^P, and so commutes with d. Since ψ also preserves X it commutes with d_g. Hence

$$L(f) = \sum (-1)^{p} H^{p}(\psi, d) = \sum (-1)^{p} \text{ trace } H^{p}(\psi, d_{\sigma}).$$

Choose a homogeneous bases y_1, \ldots, y_r and x_1, \ldots, x_q of Q and P such that $\psi y_i = \alpha_i y_i$ and $\psi x_j = \beta_j x_j$, and such that α_i (i≤s) and β_j (j≤t) are the eigenvalues distinct from 1. Putting $y_1 = \ldots = y_s = 0$ we arrive at a factor model $(\Lambda \overline{X}, \overline{d}_{\sigma})$ of the form $(\Lambda(y_{s+1}, \ldots, y_r) \otimes \Lambda(x_{t+1}, \ldots, x_q), \overline{d}_{\sigma}) \otimes (\Lambda(x_1, \ldots, x_t), 0)$. The Lefschetz number of the induced endomorphism $\overline{\psi}$ is the product of the Euler characteristic χ of the first factor with $\prod_{i=1}^{t} (1-\beta_i)$.

Define a model ($\Lambda X \otimes \Lambda U$,D) extending (ΛX ,d_g) by putting U=(u₁,...,u_s) and Du_i=y_i. A spectral sequence converges from H($\Lambda X \otimes \Lambda U$) to H($\Lambda \overline{X}, \overline{d}_g$) and so we conclude that

$$L(f) \cdot \prod_{i=1}^{s} (1-\alpha_i) = \chi \prod_{i=1}^{t} (1-\beta_i).$$

Finally let $|y_i|=2a_i$ and $|x_i|=2b_i-1$. We can apply [2] to obtain <u>Theorem 3</u>: With the notation above q-t≥r-s. Moreover, L(f)=0 if q-t>r-s, and

$$L(f) = \frac{\begin{pmatrix} t & q \\ \pi(1-\beta_i) & \pi_{b_i} \\ \frac{1 & t+1 & i}{s & r} \\ \pi(1-\alpha_i) & \pi_{a_i} \\ 1 & s+1 & i \end{pmatrix}}{r}, \quad \text{if } q-t=r-s.$$

<u>Remark</u>: Let $\overline{\phi}$ denote the linear part of ϕ . Then $\overline{\phi}$ is the action of f on $\pi_{\psi}^{*}(S)$. If S is l-connected this is dual to the action of $f_{\#}$ in $\pi_{*}(S)$. In this case $\alpha_{i}(i \le r)$ and $\beta_{j}(j \le q)$ are the eigenvalues of $f_{\#}$ corresponding to a basis of $\pi_{*}(S) \otimes \mathbb{C}$. Thus L(f) can be computed from $f_{\#}$.

Physical Sciences Division, Scarborough College, University of Toronto.

ELLIPTIC SPACES

REFERENCES

- [1] J. Friedlander and S. Halperin. <u>Rational homotopy</u> groups of certain spaces, Invent. Math. 53 (1979) p. 117-133.
- [2] S. Halperin. <u>Finiteness in the minimal models of</u> <u>Sullivan</u>. Trans. Amer. Math. Soc. 230 (1977) p. 173-199.
- [3] S. Halperin. Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223.
- [4] D. Sullivan, Infinitesimal Computations in Topology. Inst. Hautes Études Sci. Publ. Math. 47 (1978) p. 269-331).