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SOME REMARKS ON THE RATIONAL HOMOTOPY 
TYPE OF DIAGRAMS AND REDUCED KO . 

by 

Marek GOLASINSKI 

1 - THE RATIONAL HOMOTOPY TYPE OF DIAGRAMS 
Let (C be a closed model category in the Quillen's sense (see 5) . If II is a 

small category denotes the functors category. A map in (C1 f : C •> C1 is a 
fibration, respectively a weak equivalence if f(i) is a fibration, respectively a 
weak equivalence for every i e ob I . A cofibration is a map that has the left 
lifting property with respect to all trivial fibrations. We have the following 
result of Quillen-Bousfield-Kan (see 1, p. 313). 
THEOREM 1.1.- dP" equipped as above is a closed model category. 

Let € be a discrete group. G-Set is the category of left G-sets and 31 is 
the full subcategory of G-Set determined by G/H as ]H varies over all subgroups 
of G. Denote by G-SS the category of left G-simplicial sets and G-Top the 
category of left G-topological spaces. Define functors J : G-SS SS1 by 
J(X)(G/E) = X K , where ^ = {x e X ; h x = x , for all h e M} and 
T : SS1 + G-SS by T(F) = F(G) provided with its natural G-action acquired from 
G-Set(€,G) = G. 

Let f : T(F) -> X be a map in G-SS. Define f1 : F J(X) by 
ff(a) = f F(q)(a) for a e F(G/B) and q : G G/1H the natural quotient map. 
It is routine to check that f' is natural. Furthemore if h : F -> J(X) then 
h(a) = hv F(q)(a) where h v : F(G) -+ X is the G-component of h, i.e. h is 
determined by hv. We have thus established : 

187 



M. GOLASINSKI 

PROPOSITION 1.2.- J is full and faithul and right adjoint to T. Furthemore T 

preserves limits and both T and J preserve tensor products over SS. 

Using J we view G-SS as a subcategory of SS 1. A map f : X -> X1 of G-SS 

is said to be a fibration, respectively a weak equivalence if J(f) is a fibration, 

respectively a weak equivalence of SÊF" . A cofibration in G-SS is a map of 

G-SS that has the left lifting property with respect to all trivial fibrations in 

(G-SS. We have 

PROPOSITION 1.3.- G-SS equipped as above is a closed model category. Furthemore  

each monomorphism of (G-SS is a cof ibration and thus any object of (G-SS is 

cofibrant. 

Consider the adjoint pair S : Top SS : | | , where S is the singular 

functor and | | is the geometric realization. The functors yield by naturality 

an adjoint pair Ŝ  : (G-Top (G-SS : | |fi with natural isomorphism 

C-Top(|F|c , X) - G-SS (F, s c (x)) . 

Let Q-DGA be the category of differential graded Q-algebras and 

A : SS -<— Q-DGA : F the pair of de Rham adjoint functors (see 6) . These functors 

determine an adjoint pair A*1 : SŜ " <^ Q-DGA11 : F*1 . If fQ" s s^ ̂  SS1 is the 

full subcategory given by functors X e such that X(G/3H) is nilpotent, 

rational and of finite Q-type for every subgroup K C G and fQ-DGÂ " C Q-DGÂ " 

is the full subcategory given by those functors A e Q-DGÂ " that A(G/IH) is 

equivalent to a minimal algebra with finitely many multiplicative generators in 

each dimension for every subgroup H C G. Then we obtain a generalization of the 

Sullivan-de Rham result (cf. 6) : 

THEOREM 1.4.- Let G be a finite group. The adjoint pair A : SS^ Q-DGA : F 

induces an equivalence of homotopy categories 

Ho(fQ-SS^) H (fQ-DGA1). 

Let fQ G-SS be the full subcategory of G-SS given by nilpotent, rational 
N 1 

and of finite Q-type G-simplicial sets. The functor J : G-SS • SS is full 

and faithful, then we have. 

COROLLARY 1.5.- The above equivalence induces a bijection between equivariant  

rational homotopy types of fQ ®~SSN on the one hand and isomorphism classes of  

minimal systems of DGA1s in the Triantafillou sense (see 7) on the other. 
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2 - REDUCED K Q OF Q-FORMS ON A FINITE SIMPLICIAL COMPLEX 
Sullivan has proved (see 6, cf. also 4) that for a finite simplicial complex 

X with vertices v j » , , , » v
n
 a n c* corresponding barycentric coordinates bj,...,b^ 

the algebra of rational forms on X 

A°Y -
Q[b1,...,bn]0A(db1,...,dbn) 

/1 > 

where Q[bj,...,bJ is the ring of rational polynomials in b^,...,b^ , 
A ( d b d b ) is the exterior algebra on db,,...,db and I is the ideal I n I n 
generated by b +...+b -1 , db +...+db , b. ...b. db. ...db. if there is no 1 n ' l n' 1, 1 j, j 

1 p Jl Jq 
p+q - simplex of X with vertices v. ,...,v. , v. ,...,v. . 

Kan and Miller have shown (see 3) that the weak homotopy type of a finite 
simplicial set X can be reconstructed from R-algebra A^X of O-forms on X, 
when R is a unique factorization domain. 

If pro R-A denote the pro-category of R-algebras then Jardine has proved 
(see 2) that there are functors A : SS <— pro R-A : F inducing an equivalence of 
suitable homotopy categories 

Ho(SS) < Ho(pro R-A) . 

Our purpose is to show that there exists a simplicial set G^C00) (the 
simplicial Grassman variety) such that for a finite simplicial complex X, 

SIQ(A^X) = [x, G^oo)] where K^ is the reduced Grothendieck's group of A^X 
and k is a field. 

The Grassman variety ^ m( n) ^ s defined as a functor from the K-algebras 
category k-A to the category of sets, for 1 £ n < m and R in k-A by 

Gm(n) (R) = {QC R m ; Q is R-split projective of rank n}. 

The assignment QK> Q 0 S associated to the k-algebra homomorphism 0 : R ->• S 
R defines the function 6 : G (n)(R) y G (n)(S) . 
* m m 

Let P(R) (P (R)) be the set of isomorphism classes of R-modules finitely 
generated and projective over R (of rank n), KQ(r) the Grothendieck's group 
of P(R) and KQ(R) reduced KQ. 
The natural embeding R m —*• R m +* induces a map G (n) —• G , (n) . 

m m+1 Put G (n) : = colim G (n) 
n m 

Then there is a natural surjective function T : G (n)(R) • P (R) 
R 0 0 n 

which is induced by the assignment (P • Rm) » ^ P . 
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Let X be a finite simplicial complex, thought of a member of as a member of 
the category SS of simplicial sets, and let k be an arbitrary field. Recall that 
there is a natural simplicial set map 

^ : X — > Spec(A^X)(A^ Â ) = k-A(A^X, A£ Â ) 

where A is the standard n-simplex. n r 

Let Sch^ denotes the category of schemes over k, thought of as a full 
subcategory of the functors category from k-A to Set. 

may be used to define a function 

ip : Schk(Spec A£X,Y) — * SS(X, Y(A£ Â )) 

for arbitrary k-schemes Y in such a way that $ associates to a k-scheme map 
f : Spec A^X • Y the composition 

X 
n x Spec(Â X) <*2 V 

f Y(Aok A*) 

PROPOSITION 2.1.- $ induces a bijection 

^ : Schk(Spec A£X,Y) — S S ( X , Y ( A ° A^)) 

for all finite simplicial complexes X and all schemes Y. 
Then the above map T gives rise to a natural surjective function 

Ty : SS(X, G (n) 
A oo 

(AokA*))->Pn(AokX) 

in view of above theorem and the Yoneda lemma. 

THEOREM 2.2.- The map T x : SS(X, G^Cn) (A^ A # ) ) > P (A^X) factors through a 
bijection 

(tx)*:[X,Goo(n)(Aok A*)]->Pn(AokX) 

The map Pn(AokX) 
Pn +1 

(AokX) which is defined by P I -> A^X © P clearly fits 
into a commutative diagram 

[X, G_(n) A° Aj - [X, G_(n+I) A£ A J 

( x x } * 

Pn(AokX) 

(tX) 

Pn+1(AokX) 
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Formal nonsense now shows that 
[X,Goo(oo) 

'4 v i - colim (P ' il A ) p „ + 1

( A k x ) ) 

Or (J 
may be identified with K̂ (Â X) via a map which is induced by the assignments 

O rkP 
P» y P - (Â X) , where G^O) = colim G^Cn) . 

n 
There is also a similar result for finite G-simplicial complexes. 
Let G be a finite group such that x(k) X|G | , x(k) is the characteristic 

of k , V ,...,V£ all irreducible G-modules over k and V : = © V. . The 
G 1 = 1 

(E-Grassman variety ^ m( n) defined as a functor from the k-algebras category 
k-A to the category of sets, for 1 £ n < m and R in k-A by 

G®(n)(R) : = {Q C R m 8 V ; Q is R-split projective of rank n}. 
Remark that for a k-G-algebra R the category of R-G-modules is equivalent 

to the category of R * G-modules, where R * G is the twisted product of R and 
G 

G. Let P (R) denotes the set of isomorphism classes of R * G-modules finitely 
G G 

generated and projective over R, K R the Grothendieck1s group of P (R) and 
K (R) reduced K . Then we have. 
THEOREM 2.3.- For a finite group G such that x(k) xI € I and a finite G-simpli 
cial complex X 

Kgo(AokX) 
[X, 6«(-) (A£ A , ) ] E . 

R E F E R E N C E S . 
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