Astérisque

MAREK GOLASINSKI

Some remarks on the rational homotopy type of diagrams and reduced K_O

Astérisque, tome 113-114 (1984), p. 187-191

<http://www.numdam.org/item?id=AST_1984__113-114__187_0>

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOME REMARKS ON THE RATIONAL HOMOTOPY

TYPE OF DIAGRAMS AND REDUCED K

bу

Marek GOLASINSKI

1 - THE RATIONAL HOMOTOPY TYPE OF DIAGRAMS

Let **C** be a closed model category in the Quillen's sense (see 5). If **I** is a small category $\mathbf{C}^{\mathbf{I}}$ denotes the functors category. A map in $\mathbf{C}^{\mathbf{I}}$ f : C \rightarrow C' is a <u>fibration</u>, respectively a <u>weak equivalence</u> if f(i) is a fibration, respectively a weak equivalence for every i ϵ ob **I**. A <u>cofibration</u> is a map that has the left lifting property with respect to all trivial fibrations. We have the following result of Quillen-Bousfield-Kan (see 1, p. 313).

THEOREM 1.1.- C^{II} equipped as above is a closed model category.

Let **C** be a discrete group. **C**-Set is the category of left **C**-sets and **I** is the full subcategory of **C**-Set determined by **C**/**H** as **H** varies over all subgroups of **C**. Denote by **C**-SS the category of left **C**-simplicial sets and **C**-Top the category of left **C**-topological spaces. Define functors $J : \mathbf{C}$ -SS \rightarrow SS^I by $J(X)(G/\mathbf{H}) = X^{\mathbf{H}}$, where $X^{\mathbf{H}} = \{x \in X ; h x = x, \text{ for all } h \in \mathbf{H}\}$ and $T : SS^{\mathbf{I}} \rightarrow \mathbf{C}$ -SS by $T(F) = F(\mathbf{C})$ provided with its natural **C**-action acquired from **C**-Set(\mathbf{C}, \mathbf{C}) = **C**.

Let $f: T(F) \to X$ be a map in **C**-SS. Define $f': F \to J(X)$ by $f'(\sigma) = f F(q)(\sigma)$ for $\sigma \in F(G/H)$ and $q: C \to C/H$ the natural quotient map. It is routine to check that f' is natural. Furthemore if $h: F \to J(X)$ then $h(\sigma) = h^{\mathbf{v}} F(q)(\sigma)$ where $h^{\mathbf{v}}: F(C) \to X$ is the **C**-component of h, i.e. h is determined by $h^{\mathbf{v}}$. We have thus established : PROPOSITION 1.2.- J is full and faithul and right adjoint to T. Furthemore T preserves limits and both T and J preserve tensor products over SS.

Using J we view G-SS as a subcategory of SS^I. A map $f: X \rightarrow X'$ of G-SS is said to be a <u>fibration</u>, respectively a <u>weak equivalence</u> if J(f) is a fibration, respectively a weak equivalence of SS^I. A <u>cofibration</u> in G-SS is a map of G-SS that has the left lifting property with respect to all trivial fibrations in G-SS. We have

PROPOSITION 1.3.- C-SS equipped as above is a closed model category. Furthemore each monomorphism of C-SS is a cofibration and thus any object of C-SS is cofibrant.

Consider the adjoint pair S: Top \rightarrow SS: | |, where S is the singular functor and | | is the geometric realization. The functors yield by naturality an adjoint pair S_C: C-Top \rightarrow C-SS: $| |_{C}$ with natural isomorphism C-Top($|F|_{C}$, X) \simeq C-SS (F, S_C(X)).

Let Q-DGA be the category of differential graded Q-algebras and $A^*: SS \stackrel{\longrightarrow}{\leftarrow} Q-DGA : F^*$ the pair of de Rham adjoint functors (see 6). These functors determine an adjoint pair $A^{*II}: SS^{II} \stackrel{\longrightarrow}{\leftarrow} Q-DGA^{II}: F^{*II}$. If $fQ-SS^{II}_{N} \subset SS^{II}$ is the full subcategory given by functors $X \in SS^{II}$ such that X(G/H) is nilpotent, rational and of finite Q-type for every subgroup $H \subset G$ and $fQ-DGA^{II} \subset Q-DGA^{II}$ is the full subcategory given by those functors $A \in Q-DGA^{II}$ that A(G/H) is equivalent to a minimal algebra with finitely many multiplicative generators in each dimension for every subgroup $H \subset G$. Then we obtain a generalization of the Sullivan-de Rham result (cf. 6) :

<u>THEOREM</u> 1.4.- Let **G** be a finite group. The adjoint pair $A^{*II} : SS^{II} \leftrightarrow Q-DGA^{II} : F^{*II}$ induces an equivalence of homotopy categories

$$Ho(fQ-SS_N^{\mathbb{I}}) \xrightarrow{\longrightarrow} H_o(fQ-DGA^{\mathbb{I}}).$$

Let fQ G-SS_N be the full subcategory of G-SS given by nilpotent, rational and of finite Q-type G-simplicial sets. The functor $J: G-SS \longrightarrow SS^{I}$ is full and faithful, then we have.

COROLLARY 1.5.- The above equivalence induces a bijection between equivariant rational homotopy types of fQ G-SS_N on the one hand and isomorphism classes of minimal systems of DGA's in the Triantafillou sense (see 7) on the other.

2 - REDUCED K, OF O-FORMS ON A FINITE SIMPLICIAL COMPLEX

Sullivan has proved (see 6, cf. also 4) that for a finite simplicial complex X with vertices v_1, \ldots, v_n and corresponding barycentric coordinates b_1, \ldots, b_n the algebra of rational forms on X

$$A_{Q}^{O}X = {Q \left[b_{1}, \dots, b_{n}\right] \otimes (db_{1}, \dots, db_{n}) / I}$$

where $Q[b_1,...,b_n]$ is the ring of rational polynomials in $b_1,...,b_n$, $\Lambda(db_1,...,db_n)$ is the exterior algebra on $db_1,...,db_n$ and I is the ideal generated by $b_1+...+b_n-1$, $db_1+...+db_n$, b_1 ... b_1 , db_1 ... db_1 if there is no p+q - simplex of X with vertices $v_1,...,v_n, v_1,...,v_n$.

Kan and Miller have shown (see 3) that the weak homotopy type of a finite simplicial set X can be reconstructed from R-algebra $A_R^O X$ of O-forms on X, when R is a unique factorization domain.

If pro R-A denote the pro-category of R-algebras then Jardine has proved (see 2) that there are functors \hat{A} : SS \leftarrow pro R-A : \hat{F} inducing an equivalence of suitable homotopy categories

Ho(SS)
$$\stackrel{\longrightarrow}{\longleftarrow}$$
 Ho(pro R-A) .

Our purpose is to show that there exists a simplicial set $G_{\infty}(\infty)$ (the simplicial Grassman variety) such that for a finite simplicial complex X, $\widetilde{K}_{0}(A_{k}^{0}X) = [X, G_{\infty}(\infty)]$ where \widetilde{K}_{0} is the reduced Grothendieck's group of $A_{k}^{0}X$ and k is a field.

The Grassman variety $G_m(n)$ is defined as a functor from the K-algebras category k-A to the category of sets, for $l \le n < m$ and R in k-A by

 $G_{m}(n)(R) = \{Q \subset R^{m}; Q \text{ is } R\text{-split projective of rank } n\}.$

The assignment $Q \mapsto Q \otimes S$ associated to the k-algebra homomorphism $\theta : R \to S$ defines the function $\begin{array}{c} R \\ \theta_{*} \end{array}$: $G_{m}(n)(R) \longrightarrow G_{m}(n)(S)$.

Let P(R) (P_n(R)) be the set of isomorphism classes of R-modules finitely generated and projective over R (of rank n), $\mathring{K}_{0}(R)$ the Grothendieck's group of P(R) and $K_{0}(R)$ reduced K_{0} . The natural embeding $R^{m} \rightarrow R^{m+1}$ induces a map $G_{m}(n) \rightarrow G_{m+1}(n)$. Put $G_{\infty}(n) := \operatorname{colim} G_{m}(n)$.

Then there is a natural surjective function $\tau_R : G_{\infty}(n)(R) \longrightarrow P_n(R)$ which is induced by the assignment $(P \longrightarrow R^m) \longmapsto P$.

M. GOLASINSKI

Let X be a finite simplicial complex, thought of a member of as a member of the category SS of simplicial sets, and let k be an arbitrary field. Recall that there is a natural simplicial set map

$$m_X : X \longrightarrow \text{Spec}(A_k^0 X)(A_k^0 \Delta_*) = k - A(A_k^0 X, A_k^0 \Delta_*)$$

where Δ_n is the standard n-simplex.

Let ${\rm Sch}_k$ denotes the category of schemes over $\,$ k, thought of as a full subcategory of the functors category from k-A to Set. $\eta_{\rm v}$ may be used to define a function

$$\vartheta : \operatorname{Sch}_k(\operatorname{Spec} \operatorname{A}^0_k X, Y) \longrightarrow \operatorname{SS}(X, Y(\operatorname{A}^0_k \Delta_{\bigstar}))$$

for arbitrary k-schemes Y in such a way that \oint associates to a k-scheme map f : Spec $A_k^0 X \longrightarrow Y$ the composition

$$X \xrightarrow{\eta_{X}} Spec(A_{k}^{0}X) (A_{k}^{0} \Delta_{*}) \xrightarrow{f_{*}} Y(A_{k}^{0} \Delta_{*})$$

PROPOSITION 2.1.- ↓ induces a bijection

$$\Psi_*$$
: Sch_k(Spec $A_k^{O_X}, Y$) $\xrightarrow{\mathcal{X}}$ SS(X, Y($A^O \Delta_*$))

for all finite simplicial complexes X and all schemes Y.

Then the above map $\ \tau$ gives rise to a natural surjective function

$$\tau_{X} : SS(X, G_{\infty}(n) (A_{k}^{O} \Delta_{*})) \longrightarrow P_{n}(A_{k}^{O}X)$$

in view of above theorem and the Yoneda lemma.

<u>THEOREM</u> 2.2.- <u>The map</u> $\tau_X : SS(X, G_{\infty}(n) (A_k^0 \Delta_*)) \longrightarrow P_n(A_k^0 X)$ <u>factors through a bijection</u>

$$(\tau_{\mathbf{X}})_{\mathbf{*}} : [\mathbf{X}, \mathbf{G}_{\mathbf{\omega}}(\mathbf{n}) \ (\mathbf{A}_{\mathbf{k}}^{\mathbf{0}} \ \mathbf{\Delta}_{\mathbf{\star}})] \xrightarrow{\mathcal{X}} \mathbf{P}_{\mathbf{n}}(\mathbf{A}_{\mathbf{k}}^{\mathbf{0}}\mathbf{X})$$

The map $P_n(A_k^0 X) \longrightarrow P_{n+1}(A_k^0 X)$ which is defined by $P \longmapsto A_k^0 X \oplus P$ clearly fits into a commutative diagram

$$\begin{bmatrix} X, G_{\infty}(n) & A_{k}^{O} & \Delta_{\star} \end{bmatrix} \xrightarrow{(\tau_{X})_{\star}} \begin{bmatrix} X, G_{\infty}(n+1) & A_{k}^{O} & \Delta_{\star} \end{bmatrix}$$

$$\begin{pmatrix} (\tau_{X})_{\star} \\ & & & \\ P_{n}(A_{k}^{O}X) & \xrightarrow{(\tau_{X})_{\star}} P_{n+1}(A_{k}^{O}X) \end{bmatrix}$$

Formal nonsense now shows that

$$\begin{bmatrix} X, G_{\infty}(\infty) & (A_{k}^{0} \Delta_{*}) \end{bmatrix} = \operatorname{colim} (P_{n}(A_{k}^{0}X) \longrightarrow P_{n+1}(A_{k}^{0}X))$$

may be identified with $\widetilde{K}_{O}(A_{k}^{O}X)$ via a map which is induced by the assignments $P \longmapsto P - (A_{k}^{O}X)^{rkP}$, where $G_{\infty}(\infty) = \operatorname{colim} G_{\infty}(n)$.

There is also a similar result for finite G-simplicial complexes.

Let G be a finite group such that $\chi(k) \chi |G|, \chi(k)$ is the characteristic of k, V_1, \ldots, V_ℓ all irreducible G-modules over k and $V := \bigoplus_{i=1}^{\ell} V_i$. The G-Grassman variety $\mathbb{G}_m^{\mathbb{G}}(n)$ is defined as a functor from the k-algebras category k-A to the category of sets, for $1 \leq n \leq m$ and R in k-A by

$${
 \mathbb{G}}_{m}^{\mathbb{G}}(n)(R) := \{ Q \subset R^{m} \otimes V ; Q \text{ is } R\text{-split projective of rank } n \}.$$

Remark that for a k-G-algebra R the category of R-G-modules is equivalent to the category of R * G-modules, where R * G is the twisted product of R and G. Let $P^{G}(R)$ denotes the set of isomorphism classes of R * G-modules finitely generated and projective over R, $K_{O}^{G}R$ the Grothendieck's group of $P^{G}(R)$ and $\widetilde{K}_{O}^{G}(R)$ reduced K_{O} . Then we have.

THEOREM 2.3.- For a finite group **G** such that $\chi(k) \chi |\mathbf{G}|$ and a finite G-simplicial complex X

$$K_0^{\mathcal{G}}(A_k^0 X) = [X, G_{\infty}^{\mathcal{G}}(\infty) (A_k^0 \Delta_*)]_{\mathcal{G}}$$
.

REFERENCES.

- [1] A.K. BOUSFIELD, D.M. KAN Lecture Notes in Math. 304 1972.
- [2] J.F. JARDINE Algebraic homotopy theory, Can. J. Math. 33 1981, pp. 302-319.
- [3] D.M. KAN, E.Y. MILLER Homotopy types and Sullivan s algebras of O-forms, Topology vol. 16 1977, pp. 193-197.
- [4] M.A. PENNA On a theorem of Sullivan, Can. Math. Bull. Vol. 21 1978 pp. 201-206.
- [5] D.G. QUILLEN Lecture Notes in Math. 43 1967.
- [6] D. SULLIVAN Differential forms and the topology of manifolds, Proc. of Congress on Manifolds, Tokyo, Japan 1973 pp. 37-49.
- [7] G. TRIANTAFILLOU Equivariant minimal models, Trans. of A.M.S. Vol.274 2 1982, pp. 509-532.