Astérisque

Stephen Halperin
 The structure of $\pi_{*}(\Omega S)$

Astérisque, tome 113-114 (1984), p. 109-117
http://www.numdam.org/item?id=AST_1984__113-114__109_0
© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

THE STRUCTURE OF $\quad \pi_{*}(\Omega S)$

by

Stephen HALPERIN

1. INTRODUCTION : In this lecture S will always denote a simply connected CW complex with finitely many cells in each dimension. Associated with S are the two algebraic invariants :
(i) Its cohomology, $\mathrm{H}^{*}(\mathrm{~S})$,
and
(ii) The homotopy of the loop space, $\pi_{*}(\Omega s)$.

These are both graded groups each of which carries additional structure : $H^{*}(S)$ is a graded commutative (associative) algebra and $\pi_{*}(\Omega S)$ is a graded Lie algebra, the homotopy Lie algebra for S.

These two invariants are Eckmann-Hilton dual to each other, and play symmetric roles in the two major approaches to rational homotopy theory. At a deeper level, however, the duality breaks down. A simple instance of this is the enormous difference between free graded commutative associative algebras and free graded Lie algebras ; the latter have a very much richer product structure. This can be seen, in particular, from the fact that for graded Lie algebras the subobject of a free object is again free. There is no analogous result in the other category.

S. HALPERIN

Let me recall how the Lie algebra $\pi_{*}(\Omega S)$ is defined. Of course $\pi_{p}(\Omega S) \cong \pi_{p+1}(S)$ is the group of homotopy classes of base point preserving continuous maps $S^{p} \rightarrow \Omega S$, with the standard addition. If $f: S^{P} \rightarrow \Omega S$, $g: s^{q} \rightarrow \Omega s \quad$ then the map $s^{p} \times s^{q} \rightarrow \Omega s$ given by

$$
(x, y) \longmapsto f(x) g(y) f(x)^{-1} g(y)^{-1}
$$

is null homotopic on $S^{p} v S^{q}$ and hence defines a map

$$
[f, g]: s^{p+q}=s^{p} \times s^{q} /{ }_{s}^{p} v s^{q} \longrightarrow \Omega S
$$

This is the Lie bracket,

A theorem of Serre guarantees that $\pi_{p}(S)$ is a finitely generated (abelian) group for each p. Hence $\pi_{\star}(\Omega S) \otimes$ is a graded connected rational Lie algebra of finite type (finite dimensional in each degree). It is the rational homotopy Lie algebra of S. One the first results in rational homotopy theory was the remarkable theorem of quillen [Q] : every graded connected Lie algebra over Q of finite type arises in this way.

Here I will be concerned with the following question, and variations thereof.

PROBLEM 1 : What conditions are imposed on the rational homotopy Lie algebra of S if S is a finite compiex.

This may be regarded as an analogue of the well known

PROBLEM $1^{\prime}:$ What conditions are imposed on a discrete group G if $K(G, 1)$ is a finite complex ?

Now let me restate problem 1, with its variations.
$\underline{P R O B L E M}:$ What conditions are imposed on the rational homotopy Lie algebra of S if

1. S is a finite complex.
or
2. $\operatorname{dim} H^{*}(S ; Q)<\infty$.
or
3. S is a closed manifold.
or
4. S has finite rational category : cat $(S)<\infty$.

The restrictions on S in problems 1 and 2 are equivalent (for this problem), the restriction in 3 is stronger while that in 4 is weaker.

I include problem 4 because almost all the results we have up to now are answers to it (which then apply to the other problems) ; shortly I will attempt to explain why.

As far as problem 3 is concerned, it is known that with the exception of the spheres a manifold cannot have a free rational homotopy Lie algebra. I am unaware of any other restrictions which do not also hold for finite complexes.

As to problems 1 and 4 we have available the beautiful

Conjecture (Avramov-Felix). If cat $(S)<\infty$ then $\pi_{\star}(\Omega S) \otimes \otimes$ contains a free Lie algebra with at least two generators.

Henceforth I shall always assume $\operatorname{cat}_{0}(S)<\infty$, and attempt to survey known results on $\pi_{\star}(\Omega S) \otimes \mathbb{Q}$. Let us denote the integers $\operatorname{dim} \pi_{p}(S) \otimes Q$ by $\rho_{p}(S)$ and call them the Hurewicz numbers for S. Results fall into three classes :
(i) Restrictions on the $\rho_{p}(S)$.
(ii) Restrictions on the Lie structure.
(iii) Spaces of low category.

S. HALPERIN

Before beginning the survey, however, it seems reasonable to recall the definition of $\operatorname{cat}_{0}(S)$ and explain its role here.

2 . THE ROLE OF RATIONAL CATEGORY. The rational category of S is the Lusternik-Schnirelmann category of the localization S_{Q}, normalized so that cat $_{0}$ (point) $=0$. It is majorized by the $L-S$ category of S and by the largest n such that $H^{n}(S: Q) \neq 0$.

Its usefulness stems from the result of Felix-Halperin
$[F-H]$ that if $\varphi: S \rightarrow T$ induces an injection $\pi_{*}(S) Q Q \xrightarrow{\varphi \rightarrow \pi_{*}(T) \otimes Q}$ then $\operatorname{cat}_{0}(S) \leqq \operatorname{cat}_{0}(T)$. This implies in particular that in any fibration $S_{F} \longrightarrow S \xrightarrow{P} S_{B}$ in which $P_{\#}$ is surjective, $\operatorname{cat}_{O}\left(S_{F}\right) \leqq$ cat (S). CONJECTURE : If $2 \leqq \operatorname{cat}_{0}(S)<\infty$ then there exists such a fibration with

$$
1 \leq \operatorname{cat}_{0}\left(S_{F}\right)<\operatorname{cat}(S)
$$

This conjecture implies the Avramov-Felix conjecture.

REMARK : An unpublished result of Felix-Halperin-Thomas asserts the existence (if dim $\pi_{*}(S) \otimes Q=\infty$ and $\operatorname{dim} H^{*}(S ; Q)<\infty$) of a Postnikov decomposition $S_{F} \rightarrow S \rightarrow S_{B}$ in which $\operatorname{dim} H^{*}\left(S_{F} ; Q\right)=\infty!$

3 RATIONALLY ELLIPTIC SPACES : There is a profound difference in the
behaviour of S of finite rational category depending on whether
$\operatorname{dim} \pi_{\star}(S) \otimes \mathbb{Q}$ is finite or infinite. In the first case S is called rationally elliptic and according to [F-H]

$$
\operatorname{dim} H^{*}(S ; Q)<\infty \quad \text { and } \operatorname{cat}_{O}(S) \geqq \operatorname{dim} \pi_{o d d}(S) \otimes Q
$$

Furthermore $[H]$, the algebra $H^{*}(S ; Q)$ must satisfy Poíncaré duality, and the degree n, of the fundamental class is given by

$$
n=\sum_{p \text { odd }} p \rho_{p}-\sum_{p \text { even }}(p-1) \rho_{p}
$$

Friedlander and Halperin $[\mathrm{Fr}-\mathrm{H}]$ have completely solved the problem of characterizing the Hurewicz numbers of rationally elliptic spaces. Indeed let $f(t)=\sum_{i=1}^{r} t^{2 a_{i}}+\sum_{j=1}^{q} t^{2 b_{j}^{-1}}$ be any polynomial with non negative integral coefficients and zero constant and linear terms. Then $f(t)=\sum \rho_{p}(S) t^{p}$ for rationally elliptic S if and only if for each s and each $i_{1}<\ldots<i_{s} \leq r$ there exist $j_{1}<\ldots<j_{s} \leqq q$ and $k_{\nu \mu} \in z \quad$ such that

$$
\begin{aligned}
& k_{\nu \mu} \geqq 0, \sum_{\mu=1}^{s} k_{\nu \mu} \geqq 2, \quad \nu=1, \ldots, s, \quad \text { and } \\
& b_{j \nu}=\sum_{\mu=1}^{s} k_{\nu \mu} a_{i_{\mu}}, \quad \nu=1, \ldots, s .
\end{aligned}
$$

In particular, setting $s=r$ one sees that

$$
x_{\pi} \stackrel{\operatorname{def}}{=} \sum(-1)^{p^{p}} \rho_{p}=r-q \leqq 0
$$

They also deduce the relations

$$
\operatorname{dim} \pi_{\star}(s) \otimes Q \leqq \sum_{p \text { even }} \rho_{p} \cdot p+\left|x_{\pi}\right| \leqq n
$$

and

$$
\sum_{p \text { odd }} \rho_{p}(p+1) \leq 2 n
$$

Since [H] the largest p for which $\rho_{p} \neq 0$ is odd it follows that

$$
\rho_{p}=0, p \leqq 2 n \quad \text { and } \quad \sum_{p=n}^{2 n-1} \rho_{p} \leqq 1
$$

Finally let me mention the inequality

$$
\operatorname{dim} H^{*}(S) \leqq 2^{n}
$$

S. HALPERIN

As to the Lie structure, one sees trivially that the Lie algebra is nilpotent because $\operatorname{dim} \pi_{\star}(S) \otimes Q<\infty$. It can in fact easily be abelian, and there does not seem to be any reasonable structure theorem.

4 . RATIONALLY HYPERBOLIC SPACES. If $\operatorname{cat}_{\mathrm{O}}(\mathrm{S})<\infty$ and $\operatorname{dim} \pi_{\star}(S) \otimes Q$ is infinite, S is called rationally hyperbolic. The justification for this
is the result of Felix-Halperin-Thomas [F-B-T] .
THEOREM : If S is rationally hyperbolic there exists an infinite sequence p_{1}, p_{2}, \ldots with $p_{i+1}=\ell_{i} p_{i}-1 \quad\left(\ell_{i}\right.$ an integer in $\left.[2, \operatorname{cat}(S)+1]\right)$ and there is a constant $C>1$ such that

$$
\rho_{p_{i}}(s) \geq c^{p_{i}}
$$

Let ${ }_{R}{ }_{S}$ denote the radius of convergence of the series $\sum_{\rho_{i}}(S)^{i}$:

$$
\frac{1}{R_{S}}=\underset{p \rightarrow \infty}{\lim \sup _{p}} \rho_{p}^{1 / p}
$$

This theorem then implies that $R_{S}<1$. Indeed, if $m=c a t_{0}(S)$ and $e=\left(\frac{1}{2(m+1)}\right)^{m+1}$ it follows from $[F H T]$ that

$$
\frac{1}{R_{S}} \geq\left(e \rho_{p}\right)^{1 / p} \quad, \quad \text { all } p
$$

Suppose now that $H^{P}(S ; Q)=0, P>n . A$ result of Babenko
shows that ${ }^{R}{ }_{S}$ is the radius of convergence of the Poincare series $\sum \operatorname{dim}{ }_{H}{ }^{\mathrm{P}}(\Omega S ; Q) t^{\mathrm{P}}$ for $\Omega \mathrm{S}$. It can also be shown that there is a constant $C_{n}>1$, depending only on n such that

$$
\frac{1}{R_{S}} \geqq c_{n}
$$

Finally in [F-T] Felix and Thomas give a lower bound for $\frac{1}{R_{S}}$ for a large class of spaces S, including all formal spaces with $\operatorname{dim} H^{*}(S ; Q)<\infty: R_{S} \leq r$ where r is the least modulus of the roots of $\sum \operatorname{dim~} H^{P}(S ; Q) t^{P}=0 \quad$.
5. LIE STRUCTURE FOR RATIONALLY HYPERBOLIC' SPACES. Suppose S is rationally hyperbolic. As we have just seen this implies that the integers $\operatorname{dim} \pi_{2 k}(\Omega S) \otimes Q$ are unbounded. Thus the following theorem of Felix-Halperin-Thomas $[F-H-T]$ guarantees the existence of enormous numbers of non zero brackets in the rational homotopy Lie algebra.

THEOREM : Suppose cat $(S)=m$ and $\operatorname{dim} \pi_{\star}(S) \otimes Q=\infty$. If $\alpha_{1}, \ldots, \alpha_{m} \in \pi_{2 k}(\Omega s) \otimes Q$ are linearly independent then either the α_{i} generate an infinite dimensional sub lie algebra, or for some $\beta \in \pi_{\star}(\Omega s) \mathbb{Q}$ and some $i, \quad 1 \leq i \leq m, \quad\left(\operatorname{ad} \alpha_{i}\right)^{q} B \neq 0$, for all q.

COROLLARY : A space of finite category and finite cocategory is rationally elliptic.

For any (graded) Lie algebra L, its upper central series is the increasing sequence $z^{(i)}$ of ideals in L in wich $z^{(0)}=0$ and $z^{(i+1)}$ projects to the centre of $L / Z^{(i)}$. Put $\tilde{Z}=\underset{i}{U} \tilde{Z}^{(i)}$. The théorem above implies the COROLLARY : if $Z(S)=\tilde{\mathrm{Z}}_{\mathrm{k}}(\mathrm{S})$ is associated with the Lie algebra $\pi_{\star}(\Omega S) \otimes \mathbb{Q}$ where $\operatorname{cat}_{0}(S)=m$ and $\operatorname{dim} \pi_{\star}(S) \otimes Q=\infty$ then

$$
\operatorname{dim} \tilde{z}_{2 k}(S)<m \quad, \quad \text { all } k
$$ If S is π-formal it then follows that $\operatorname{dim} \tilde{Z}_{\text {even }}(S) \leqq m$ and $\operatorname{dim} \tilde{\mathrm{Z}}(S)<\infty$; it seems reasonable to make the

CONJECTURE : If $\operatorname{dim} \pi_{*}(S) \otimes Q=\infty$ and cat $(S)<\infty$ then

```
                        dim}\tilde{\textrm{Z}}(\textrm{S})<\infty\quad
```

 Finally, from FHT we have the

S. HALPERIN

$\underline{\text { THEOREM }}:$ If $\operatorname{cat}_{\circ} \cdot(S)<\infty$ and $\operatorname{dim} \pi_{\star}(S) \otimes Q=\infty$, then the Lie algebra $\pi_{\star}(\Omega S) \quad Q \quad$ is not solvable。

6 SPACES OF LOW CATEGORY : A well known result going back to Toomer T asserts that cat $(S)=1$ if and only if $\pi_{*}(\Omega S) \otimes Q$ is a free graded Lie algebra. One possible attack on the conjectures is thus by induction on cat ${ }_{0}(S)$

In fact by a collection of ad hoc techniques the Avramov-Felix conjecture has been established when cat $(S)=2$ and S is not π-formal ($F-H-T^{\prime}$). It is unclear how to proceed when $\operatorname{cat}_{0}(S)=3$.

7 . QUANTITATIVE RESULTS : When $H^{\mathrm{P}}(\mathrm{S} ; \mathrm{Q})=\mathrm{O}, \mathrm{p}>\mathrm{n}$ it should be possible to obtain estimates in terms of n for the size of the ρ_{p} and for the location of non-trivial Lie brackets. For instance it is shown in [$\mathrm{F}-\mathrm{H}]$ that for some N ,

$$
\sum_{p=k+1}^{k+n} \rho_{p} \geqq 1 \quad, \text { if } k \geq N
$$

when S is rationally hyperbolic .

Felix has conjectured that this should be true for all $\mathrm{N} \geqq \mathrm{n}$.
It can in fact be shown that for rationally hyperbolic S

$$
\sum_{p=k+1}^{n k} \rho_{p} \geqq 1 \quad, k \geq 1
$$

and it is this fact which gives the estimate $1 / R_{S} \geqq C_{n}>1$ referred to in sec.4.

REFERENCES

$[\mathrm{B}]$	I.K. Babenko , One analytic properties of the Poincare series of loop spaces, Math Zametki 27 (1980) 751-765. English Translation in Math Notes 27 (1980).
$[\mathrm{F}-\mathrm{H}]$	Y.Felix and S.Halperin , Rational LS category and its applications, Transactions of A.M.S., Vol. 273, $\mathrm{n}^{\circ} 1$ (1982), p. 1-37.
[$\mathrm{F}-\mathrm{H}-\mathrm{T}$]	Y. Felix, S. Halperin and J.C. Thomas, The homotopy Lie algebra for finite complexes, Publications Mathématiques de l'I.H.E.S., $\mathrm{n}^{\circ} 56$ (1982), p. 387-410.
[F-H-T']	Y. Felix, S. Halperin and J.C. Thomas, Espaces de catégorie deux, preprint.
$[\mathrm{F}-\mathrm{T}]$ $\left[\mathrm{F}_{\mathrm{r}}-\mathrm{H}\right]$	Y. Felix and J.C. Thomas , The radius of convergence of Poincare series of loop spaces, Inventiones Math. , Vol. 68, fasc. 2 (1982), p. 257-274. J. Friedlander and S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Inventiones Math. 53(1979) 117-138.
[H]	S. Halperin, Finiteness in the minimal models of Sullivan, Trans. A.M.S. 230 (1977) 173-199.
[Q]	D. Quillen, Rational homotopy theory, Ann of Math. 90 (1969) 205-295.

