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STABILITY OF DEGENERATE FIXED POINTS 

OF ANALYTIC AREA PRESERVING MAPPINGS 

Carles Simó 

Facultat de Maternâtiques, Universität de Barcelona, 

Gran Via 585, Barcelona 7, Spain. 

Abstract. It is well known that hyperbolic points of a germ (at 0) of 

a R-analytic diffeomorphism leaving 0 fixed, preserving the Lebesgue 

measure and orientation (from now on analytic APM on this paper),T, 

are unstable. As a Corollary of Moser's twist theorem the elliptic 

ones are stable provided the eigenvalues A of DT at the fixed point 

are not a k-th root of the unity, k=l,2,...,2p+2 (for shortness k=l-r 

2p+2), p-1, and any one of the first p coefficients of the Birkhoff 

normal form is non-zero. To end the study of the stability of fixed 

points we study the parabolic or degenerate case. Elliptic points for 

which stability can not be decided using directly Moser's theorem(spe 

cially if X is a 3r(̂  or root of 1) can be reduced to the para­

bolic case taking a suitable power of T. The main result is that a 

degenerated fixed point of an analytic APM is stable if and only if 

the generating function of T, with the part which generates the iden­

tity suppressed, has a strict extremum at the fixed point.Some exam­

ples and comment are included. 

§1.Introduction. The stability (in the sense of Lyapunov) of fixed 

points of analytic APM is a method usually employed for the study of 

the qualitative properties of periodic orbits in hamiltonian systems 

with two degrees of freedom. When the fixed point, that we take 

always as the origin, is degenerated or parabolic, i.e., the eigen­

values of the differential DT of the mapping T at the fixed point are 

t1, the stability is a more subtle question. As we shall see it is 

not always enough to consider only the lower degree nonlinear terms 

to decide about stability. If the fixed point is elliptic with eigen­

values A , A , the cases A^=l, A^=l do not allow an easy application of 

Moser's twist theorem. Difficulties can appear for every A , k-th root 

of the unity provided that all the determined coefficients (the first 

f(k-2)/2] ones) in the Birkhoff normal form are zero. In fact we can 
find examples of instability for every k (see[io] £31) . 

From the numerical point of view a complete survey for quadratic 

APM was initiated by Hgnon [5] and completed in [ll]. The only nontrivial 
maps of this family with elliptic or parabolic fixed points can be 
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reduced to one of the following forms fuj : 
a) (x,y)-* (x cos «c - (y-x )sin«(, xsin«(+(y-x )cos*0, oU(0,TT). These maps 

are the composition of a de Jonquieres map (x,y)-* (x,y-x ) and a 
rotation RA and the origin is an elliptic point, 

b) (x,y) (x+y,y+(x+y) ). The origin is a double fixed point of para­
bolic type. 

c) (x,y)-* (-(x+y),-y-(x+y) ). The origin is a fixed point of parabol­
ic type. 
It follows from the figures in [5] , fll] that in case a) for d = ^/2 

one has stability and for o(=2Tf/3 instability. For cases b) and c) we 
get instability and stability, respectively. 

In [2] Chirikov and Izraelev study the behavior of the iterates 
of the map (x,y)-+ (x-y^,x+y-y^). The origin is parabolic. However it 
seems that there is a region of bounded motion reaching the point 
(0.52 , 0). The parabolic point has stable character surrounded by in­
variant curves. The point (1,0) is 6-periodic and DT^(1,0)=|Q . By 
simulation it seems that there are stable islands near the orbit, des_ 
pite the parabolic character of the points. 

A criterion due to Levi-Civita assures that for maps T : (x,y)-* 
(x+f(x,y),x+y+g(x,y)) where f and g begin with terms of second or lar 
ger order, the origin is unstable if the coefficient of y in f is 
non-zero [7] . However this criterion tells nothing about cases b) and 
c) of quadratic maps or about the Chirikov-Izraelev map, that prompt 
us for a theorem. 

A question related to the stability of parabolic points is the 
study of the stability of some second order finite difference equa­
tions. Let E be the shifting operator: Exn=xn+^. Then the equations (E-2+E"1)z =f(z ) and (E+2+E"1)Z =f(z ) are equivalent to the maps n n n n 
(x,y) (x+f(x+y),x+y) and (x,y)(-x+f(x-y),x-y). For instance, if 
T(xn,yn) = (xn+i'yn+i) 1 ncE, for the first map we have xn=xn_i+f <Yn) 
and x^m-l^n-l* From this the relation Yn+1-2Yn+Yn_1=f (Yn) follows. 
If f is an analytic function without zero or first order terms, the 
origin is a parabolic point. 

The case A k-th root of the unity is reduced to the parabolic 
one taking T instead of T. Without loss of generality we can suppose 

2 
that in the parabolic case the eigenvalues are equal to one.(Take T 
if necessary. This accounts also for T orientation reversing).However 
see later for some direct applications to the elliptic case and for 
the case with -1 eigenvalues. 

Two cases appear : diagonal and non diagonal linear part. In [12] 
the following results are proven for the second case : 
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1.1.Lemma. Let T(x,y)=(x+f(x,y),x+y+g(x,y)) be an analytic APM with 
f,g beginning with terms of degree at least two. Then, for each posi­
tive integer n, there exists a near the identity polynomial change of 

* -1 
variables C such that the transformed mapping T =C TC is given by * 
T (x,y)=(X+Fn(x+y)+0n+2'x+v+0n+l^ wnere Fn is a degree n polynomial without linear terms and 0 stands for a series with terms of lower  s 
degree at least s. 
1.2.Theorem. In the hypothesis of the Lemma, lej: Fn (z) =amzm+Om+1, 
a^O. Then the origin is stable under T (and therefore under T) if 
and only if m is odd and a < 0.  A m 

Our main objective is to give a theorem characterizing the sta­
ble parabolic points for the first case. Let (x1,y')=T(x,y) a canonic 
al mapping (for dimension two, canonical is equivalent to APM). If 
D y* is regular (that is the case if T is near the identity, i.e., 
T(x,y)=(x+02,y+02)) we can define an analytic generating function 
(see[l]) G(x,y') such that G(x,y1)=xy1+G(x,y1) and x'=D ,G , y=D G. 
For the non-diagonal case of 1.2. we get G(x,y')=-x /2+ jFn(u)du+ 
On+2(xfy,)« Theorem 1.2. can be reformulated as: stability is equiva­
lent to G(x,y) having a strict extremum at the origin. We shall prove 
that this characterization is applicable to the diagonal case. We sta­
te the main result. 

1.3.Theorem. Let O be a parabolic fixed point of an analytical APM,T, 
and S(x,y')=xy1+G(x,y') a generating function for T. Then O is Lyapu- 
nov stable if and only if G has a strict extremum at O. 

We end this section giving some explicit results for the nondia-
gonal case with eigenvalues -1. In section 2 we prove some prelimina­
ry results concerning the conditions to be fulfilled by the Newton 
polygon associated to G and showing the twist character of an auxil­
iar mapping T^. Section 3 is devoted to the proof of 1.3. We end with 
some examples with third and fourth roots of the unity as eigenvalues. 
Stable and unstable mappings are displayed in both cases. Some remarki 
are added concerning the stable and unstable invariant branches in 
the unstable case and a better method for obtaining T^ which allows 
for more accurate estimates of the branches and for the unification 
of the proofs of 1.2. and 1.3. 

As far as instability is concerned the results obtained here ex­
tend the ones obtained by McGehee [8] but only for the conservative ca­
se. A short account of the statements of this paper was given in [l3] . 
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Now we come directly to the case (x,y) (-x+f (x,y) ,x-y+f (x,y) ) . 
Using the method of [l2] for the proof of Lemma 1.1. with minor modif­
ications, we can find the following result. 
1.4.Lemma. Let T(x,y)=(-x+f(x,y),x-y+g(x,y)) be an analytic APM with 
f,g beginning with terms of degree at least two. Then, for each posi­
tive integer n, there exists a near the identity polynomial change of 
variables C such that the transformed mapping T =C TC is given by 
T ( x,y) = (-x+Fn(x-y)+0n+1,x-y+On+1). 

Let us suppose Fn(x-y)=a(x-y) +b(x-y) +c(x-y) +..., where 
2£r<s<t<..., a,b,c,... different from zero. Then, removing the 
terms 0n+1 (of order as large as desired) we have 
x'=-x+F (y'), y'=x-y, x"=-x*+F (y"), y'^x'-y', where T(x,y)= n n ^ ^ 
(x',y'), T (x1 ,y') =/(x" ,y") . Let z=x-y, z =x+y. From z =-z+F (z) we get 
the inverse function z=-z +Q(z ). Then the desired function G is 
given by G(x,y")=x -JQ(z )dz +JF (y")dy". We need some approximate 
expression of Q(z ). For our purpose it is enough to take 
Q(z*)=a(-z*)r+b(-z*)s+(-z*)t+... . Therefore 
G(x,y")=x2+(-l)r+1a(x+y")r+1/(r+l) + (-l)S+1b(x+y")S+1/(s+l) + 

+ (-l)t+1c(x+y")t+1/(t+l) + ... + ay"r+1/(r+l) + by"s+1/(s+l) 
+ cy"t+1/(t+l) + ... + (-l)2ra2(x+y")2r/2 + ... . 

If r is odd the dominant terms in the Newton polygon of G are 
2 r+1 
x +2ay" /(r+1), but for even r we must take into consideration the 
terms x2-axy"r+ (1+(-1)s+1)by"s+1/(s+1) + (1+(-1)t+1cy"t+1/(t+1) + 

2 2r 
+ . .. +a y" /2 . We can state the following result. 
1.5.Corollary. Under the hypothesis of 1.4. we have the following  
character concerning the stability of the origin : 

r odd : a>0 (a<0) stable (unstable) . 
r even: (*) s> 2r stable. 

s=2r-l 4b/r+a >0 (<0) stable (unstable). 
s<2r-l : s odd b>0 (b<0) stable (unstable). 

s even : replace b(x-y) by the next term  
and go to (*) . 

For instance, the map (x,y) -»- (-x+(x-y) ,x-y) which is equivalent 
to the quadratic case c) is stable, but a modification like (x,y)—* 

2 3 
(-x+(x-y) -(x-y) ,x-y) turns out to be unstable. 

2 
The missing case in 1.5., i.e., r even, s=2r-l, 4b/r+a =0, re­

quires a more detailed study (see $2). If there is some term c(x-y)fc 
in F^ after the (present) term b(x-y)s such that t is odd and less 
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than 3r-2, we take the term of lower degree with this property. Then 
c>0 (c<0) implies stability (instability). If there is no term with 
this property the fixed point is unstable. For instance, consider the 
mapping T.(x,y)=(-x,x-y) and the successive modifications T2(x,y)= 
(-x+(x-y) ,x-y), T-(x,y)=(-x+(x-y)4-(x-y)7,x-y), T.(x,y)= 

(-x+(x-y) -(x-y) +(x-y) ,x-y). Under i=l,2,3,4 the origin is res­
pectively unstable, stable, unstable and stable. The addition of new 
terms of higher order does not modify the character of the origin. 

$2.Preliminary results. Let us suppose that a real analytic function 
G of two variables G(x,y) has a strict minimum at the origin and 
G(0,0)=0 (the case of a strict minimum being similar). It is clear 
that G(x,0) and G(0,y) can not be identically zero, i.e., if G(x,y)= 
51 a(m,n)xmyn, there are terms a(m,0), a(0,n) different from zero. 
There are additional conditions on the Newton polygon and on the 
coefficients of G (see [l5] , Ch.IV, §3). 

2.1.Proposition. A necessary and sufficient condition in order that 
G(x,y) has a minimum at the origin is that the Newton polygon of G 
satisfies : 
a) Every vertex has even coordinates. The associated coefficient is  

positive. 
b) Let (mk,nk) , mk=m+kr, nk=n-ks, r,s«Z +, g.c.d. (r,s) =1, k=0r2q be 

the points on one of the sides of the polygon. Then the function 
r k 

g(t)= La(m^,n^)t has no real zeros of odd multiplicity. 
c) If g has a zero of even multiplicity, three cases are possible, 

associated to each one of such zeros: y=0(x); x=0(y^), p>l; 
y=0(x^), p>l. The first and second cases can be reduced to the  
third one through a rotation or a relabelling of the axes, respec­ 
tively. Therefore, we can suppose y=mx i^ + ..., i/j>l. Introducing 
x=u-*, y=mu1+z we get a new Newton polygon and we start again the  
process of checking the conditions for the terms of the form 
z=0(ut), t>j. 

Proof. If we have a vertex in the Newton polygon of G with at least 
one odd coordinate, selecting the quadrant in a suitable form we have 
some curve y=mxi//-' such that the dominant term on it is negative. 
If both coordinates are even but the coefficient is negative than G 
is locally negative along the curves y=mx*^ for which this term is 
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dominant.This ends a). 
Now we go to the sides of the polygon. If for one side g(t) (see 

condition b)) has a zero of odd multiplicity, as we have that the do-
minant terms are found on curves of the type y=zx ' , they are 
x ( s m + r n ) / / s z n g(t) , with t=z"s. Then for curves whose t is near the 
odd zero of g, G(x,y) changes sign, against the hypothesis of being 
a strict minimum. It is clear that if g has a zero of even multipli­
city we must check the subdominant terms as explained in condition c). 

In order to prove the sufficiency let us suppose that for each 
side of the Newton polygon there are no real zeros of the associated 
function g(t).(If there are zeros of even multiplicity but in some of 
the next steps we have condition a) satisfied and no real zeros on 
the new sides, the proof can be obtained through an easy modification 
of the following argument). Then the curves y=mx^, qcQ, m€R and x=0 
cover all the possible approaches to the origin (in fact all but a 
finite number of q are associated to the verteces of the polygon). 
Over each one of those curves G is positive definite. Therefore, gi­
ven a value of h small enough, there is locally one point on each one 
of the curves for which the value of G equals h. The curve formed 
with all the points obtained in this way encloses the origin. This is 
true for h in a set (0,hQ). Therefore the origin is a strict minimum. 
By the way this proves that G(x,y)=h, 0<h<hQ defines a closed curve 
and there is only one component near 0. 

Remark 1. If G changes sign in a neighborhood of the origin, the bran 
ches of G(x,y)=0 can be easely obtained studying the odd zeros of the 
sides of the Newton polygon (or the possible odd zeros of the new po­
lygons if the original one has zeros of even multiplicity).( [6] ChX, 1.2) 
Remark 2. The procedure a),b),c) of 2.1. has cases without stop. They 
correspond to a non strict minimum but to a minimum. For instance, if 
f(x) is a real analytic function with f(0)=0, take G(x,y)=(y-f(x))2. 
Then 0 is not an isolated singularity. If G has an isolated singulari-
ty at the origin in C then we claim that the fact that 0 is a strict 
minimum can be decided in a finite number of steps. To prove this 
claim it is enough to use the Weierstrass preparation theorem [6,Ch.I, 
14.l]. Then, having an isolated singularity at 0, G(x,y)=(yP+a^(x)yp-1 

+...+a (x))E(x,y), where a.(x) is a polynomial in x and E(x,y) is a 
P -̂unit (E(0,0)=0). To decide about the strict minimum character it is 

enough to study y^+...a^(x) and this has a finite number of a(m,n)=0. 
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Remark 3. In [8] McGehee considers maps (x,y)(x-xn+yPn_^+On+1, 
y+nyx11 ̂ +Y^Qn_2+0n+l^ that for the conservative case give 
G(x,y1)=-xny1+y'2Rn„i+0n+2 where P,Q,R are polynomials of the showed 
degree and n*2. The vertex (n,l) in the Newton polygon implies insta­
bility according to 1.3. and 2.1. There are several cases of instabi­
lity for which McGehee criterion does not apply and we must use 1.3. 
For instance, take T(x,y)=(x-4(y-6x5)3,y-6x5), where G(x,y1)=x6-y'4. 

3/2 3/2 There are two tangent manifolds y=x ' +... (stable) and y=-x ' + . . . 
(unstable) 

Let us suppose now that G(x,y)=h defines closed curves around 
the origin for small values of h (of some sign, for instance, positi­
ve) . Let T^ be the time unit flow associated to the hamiltonian sys­
tem with hamiltonian G : (x,y)=(x,y). Let U be a neighborhood of 
the origin. We intend to use T^ as an approximation of T in U. In 
U-{o} we define r=G(x,y), s=2TTt/T(r), where T(r) is the period of the 
flow of hamiltonian G along the closed curve w={G(x,y)=rj . Here t 
stands for the time interval in going from (Xq,0) to (x,y) along w, 
with Xq>0. In the (r,s) variables one has T^(r,s)=(r,S+2T1/T(r)). 
Now we consider T.̂  associated to G as defined in §1 for T parabolic 
with linear diagonal terms at the origin. 

2.2.Lemma. The mapping T^ is a twist. 
Proof. The only thing to prove is dT(r)/dr^0 if r is small enough. 
We claim that the curves G(x,y)=r are star shaped with respect to the 
curves y=zxU//v if r is small. We can select values of z, u/v>l such 
that on the curves y=zxU//v the dominant term of G is of the form 
x(mv+un)/vzng(z-v} (see 2.i.b)) when this curve cuts w if r is small. 
Therefore we have ax +0(x )=r with b<c and a>0. A similar expression 
is obtained if for some z the function g is zero and we must use sub-
dominant terms. Then we get locally only one value of x (other values 
are relatively as far as desired if r is small). In fact we have 
x=0((r/a)1/b) with b»4. We can exchange x and y if u/v<l. Using com­
pactness we get a value rQ of r such that for all r^rQ the claim is 
true. 

Let S(r) the area enclosed by the curve w. For the period T(r) 
one has T(r)=dS/dr. One needs d S/dr . We compute S using slices of 
the type regions comprised between curves zxUŷ v and (z+Az)xU//v. For 

1 /b 2 
instance, for the sector where y=0(x) one has f=0(r ' ) where y = 
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2 2 
x +y . The contribution of this sector is 

< 
< < (fi>)de=o(r2/b , For the 

other sectors we get similar terms with a larger value of b. Through 
integration we obtain S=mrn(l+o(1)) with n£l/2. Therefore d2S/dr2= 
0(rn 2) and in fact it is negative, showing that T(r) goes to infini­
ty when r goes to zero and proving the Lemma. 

$3.Proof of the main theorem. In order to compare T and T^ we obtain 
an approximate expression for T^. We have x=x+x+x/2+...,y=y+y+y/2+... 
and x=G2, y=-G1, x=G12G2-G22G1, y=~GnG2+Gi2Gl' where Gi is tne par­
tial derivative of G w.r.t. the i-th argument and G. ., G. the 

1J 2.JK 
second, third,...partial derivatives. Then 
x=x+G2+(G12G2-G22G^)/2+... , x'=x+G2-G22G1+... 
y=y-G1+(G12G1-G11G2)/2+... , y'=y-G1+G12Gi+••• ' and therefore 
A=(E"X1= [(G12G2+G22Gl)/2+--- ), [0(G12G2'G22GlM 

ly-yV \(-G1lG:>-Gl?Gl)/2+.../ l0(G11G2,G12G1)/ " 
Let us compute the difference between T1 and T in the r,s coordinates. 

r'=G(x',y,)=G(x,7)+G1(x'-x)+G2(y'-y)+...= 
=r+G1(-G22G1-G12G2)/2+G2(G11G2+G12G1)/2+...=r+0(r ), 

because from terms xmyn, m,n>0, m,n even, we get perturbations of the 
, 3m-2 3n-2 order x y 

In order to see the relative variation ŝ  of s with respect to s 
due to the difference between the images of (x,y) under T1 and T, we 
introduce the velocity v=(G2,-G1)T. Then we have s^=(A,v)/(v,v) where 
( , ) denotes the inner product on the plane. By substitution we have 

sh= |(G12(G2+G2)+G±G2(G22+Gll)}(1))/(Gl+G2} • 
If the current dominant terms are xmyn, m,n>0, m,n even, we obtain 
s =0(xm"1yn"1)= (rd), d^l/2. Therefore T is a relatively small pertur­
bation of a twist. Then we can use the Moser's perturbed twist theorem 
(see [10] ,§32) . This produces the existence of invariant curves and 
hence the stability. 

If G has not a strict minimum at the origin there are curves 
reaching the origin. If the multiplicity of these curves is one we 
have hyperbolic sectors (see[6]ChX) and therefore instability for T1 and 
hence for T. If there are branches with multiplicity larger than one 
(then the origin is not an isolated singular point of the hamiltonian 
field associated to G) on the left and right neighborhoods of these 
branches the flow approaches or leaves any (sufficiently small) 
neighborhood of the origin on both sides (even multiplicity) or ap­
proaches on one side and leaves on the other (odd multiplicity). In 
any case we get instability. This ends the proof of 1.3. 
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Remark 1. A better choice of the hamiltonian can produce maps more 

faithful to T. For instance we can take 

1 1 2 2 1 2 2 2 
H=G"2G1G2+T2(G11G2+4G12G1G2+G22G1)"2(G112G1G2+G122G2G1+G11G12G2+ 

2 2 
+G22G12G1+G11G22G1G2+3G12G1G2)+''' * 

Taking the first two terms of H we can unify the proofs of 1.2. and 

1.3. 

Let us check the given expression of H up to the second term dis­

played. We have x'=x+G2(x,y1), y'=y-G1(x,y1). Using the implicit func­

tion theorem we get 
x,=x+G2-G22G1+.•• / y,=y-G1+G12G1+... 

From x=H2, y=-H1 follows 

x=x+x+x/2+...=x+H2+(H21H2-H22H1)/2+...=x+G2-G21G2/2-G1G22/2+ 

+(G12G2-G22G1)/2+...=x+G2-G22G1+... 

y=y+Y+y/2+...=y-H1+(-H11H2+H12H1)/2+...=y-G1+G11G2/2+G1G12/2+ 

+(-G11G2+G12G1)/2+...=y-G1+G12G1+... , 

as desired. 

Remark 2. Between the invariant curves of the stable case there are 

(at least generically) elliptic and hyperbolic periodic points. The 

period of these points increases while the rotation number tends to 

zero as r goes to zero. This can be seen because the rotation number 

of T on the invariant curves behaves like the rotation number of T^. 

Then the argument of Poincar£-Birkhoff can be applied. 

J4.Some examples and applications. Take a map (x,y)-* (x,y+ a .x-5) , 

a^O. Through composition with a rotation ^2^/3 we ^ave an elliptic 

fixed point whose eigenvalue A is a cubic root of the unity. Let 
(x1,y1)=T3(x,y). It is convenient to use the map T in complex form : 

z-*A(z+.^a. 2 ^(z+z")^). Then if k is odd we obtain the function 

G(x,y )-]Sr(x +2 r>0|2r]3 x y )+02k . 

If k is even we must change the sign in the first term x . Hence 

we have the following result. 

4.1. Corollary. Let T (x,y) =R2 n/3 (*,y+Ak ajx ) with a^O . If k is even  

(odd) the origin is unstable (stable). 

In a similar but longer way we can study the case of a quartic 

root of the unity. 
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4. 2.Corollary. Let T (x,y) =Rn^2 (x,y+^k a_.xJ ) with ak^0 . If k is odd 
k+1 k+1 

the origin is stable (the dominant terms in G are a(x +y1 )).If 
k is even we can scale and suppose ^=1. Then if for all odd i k% we  
have a^O, the origin is stable. Otherwise let a., be the first non 
zero term of odd index. If j<2k-l one has stability. 

If j=2k-l the origin is unstable (stable) when â  belongs (does 
not belong)to (0,k/2]. 

If 2k-l*j^k(k+1)-2 the origin is unstable (stable) when a^>0 
(a_.<0) . 

If j=k(k+l)-l the origin is unstable (stable) when a^k/2 
(a_.<k/2) . 

If j^k(k+l) the origin is always stable. 
Some results related to 4.2. can be found in |9J . 
Another interesting application concerns the stability of the 

Lagrangian equilibrium poits L^, L^ for the restricted problem of 
three bodies when the mass ratio of the primaries equals one of the 
critical masses of Routh. In [3] it is shown stability except for the 
critical values f̂ , ^' ^3 (and another exceptional value that has 
been shown to be stable after). These exceptional cases are related 
to 1:1, 2:1 and 3:1 resonances and can be studied using a suitable 
Poincaré map or its power. See [14] for the details. 

As a last application we mention that also for the RTBP, G.Gomez 
[4] has used those methods to show the stability of some families of 
periodic orbits at the bifurcation point .(RTBP=Restrieted Three Body 
P roblem) . 
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