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L. MARKUS 

1. Motivations and examples of Lie Dynamical Systems (1) 

A Lie dynamical system will be later defined as an action of a certain 
kind of Lie group G on a space M that is a differenljiable manifold. Our 
goal is to develop various generalizations of the classical results of 
the qualitative theory of ordinary differential equations, or classical 
flows where the Lie group is the real time line R. In order to maintain 
the concepts of past and future trajectories, we shall impose the demand 
that the group G will be the product of R with some connected compact 
Lie group K and the classical results obtain when K collapses to a sin­
gle point. Furthermore in order to extend the classical theories of 
flows on surfaces to comparable dynamical results on n-dimensional ma­
nifolds M, we shall be primarily concerned with Lie dynamical systems 
of co-dimension 1, mainly the case where K has orbits of highest di­
mension (n-2) and some G-orbits are of dimension (n-1). We always ta­
ke n > 2. 

One of the most important classical results for smooth flows of R on 
surfaces is the Poincare-Bendixson Theorem |8,13| ; a future recurrent 

2 
orbit of the sphere S 4 containing no singular point in its future li­ 
mit set, must be a periodic orbit. 
Another phrasing of this same classical result asserts that a minimal 

2 
set Z for a flow on S must be either a singular orbit (critical or 
stationary point) or else a periodic orbit (topological circle). In 
this form the theorem has been shown to hold on every compact surface 
2 2 2 M , excepting the torus T , see |13,38|. For smooth flows on T 

2 
the famous theorem of Denjoy |8,10,13| asserts ; a minimal set on T 
must be either a singular point, a periodic orbit, or the entire sur-

2 
face T , which is then filled by almost periodic trajectories so the  
flow is topologically equivalent to a familiar "linear irrational  
flow" on the torus. 

(1) This article is an enlargement and extension of the invited address 
on Lie Dynamical Systems presented by this author before the AMS meeting 
in St. Louis in April 1972. The author was encouraged to return to these 
ideas and to complete this paper by his participation in two Symposia 
|41,42| at the University of Warwick during the Summers of 1979 and 1980. 
A will-o'the-wisp fragment of our main Theorem 3 was glimpsed by the au­
thor while chasing a Queen Bee with Georges Reeb, and later was indicated 
in a Harvard Student Mathematics Club talk in 1951 ; thus this struggle 
has something in common with the Thirty Years* War. 
This research was partially supported by the NSF Grant MCS 79 - 01998. 
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LIE DYNAMICAL SYSTEMS 

Our principal theorems will constitute natural generalizations of the 
theorems of Poincare-Bendixson and of Denjoy for Lie dynamical systems 
of co-dimension 1 on compact n-manifolds. In order to relate these ge­
neralizations to the classical theory of ordinary differential equa­
tions, we shall briefly review some of the definitions and concepts of 
Lie transformation groups, and then present a few interesting examples. 

In our theory of Lie dynamical systems the "phase space", that is, the 
ambient space containing the dynamical orbits, will be an n-dimensional  
differentiable manifold M without boundary (that is, M is a separable 
metrizable connected space with a maximal atlas of local charts or co­
ordinate systems that are inter-related by C -differentiable transfor­
mations ). For instance M could be the real number space R n, the stan­
dard n-sphere S n, or the n-torus T n . The "generalized time" or dynami­ 
cal group G will be a Lie group (that is, G is a topological group 
whose identity component is open in G, and this component has the struc­
ture of a differentiable manifold on which all group operations are C°°-
differentiable). For instance G could be the real line R, the vector 

,m ,, , _ rn ^m /r_m ,, . , ,, , group R , the toral group T = R /Z , the special orthogonal group 

SO(m,R), or perhaps some product of these. The action $ of G on M, 

* : GxM M 

will be C -differentiable- a phrase that we shall usually abbreviate 
as "differentiable" or "smooth". 

We recall that a differentiable transformation group {G,M,*} (that is, 
M is a G-space in the terminology we usually follow |6|) consists of a 
smooth action of the Lie group G on the differentiable manifold M ; 
that is, 

* ; GxM - M (g,x) - *(g,x) 

and the related map 

$ g ; M + M x $(g,x) = * g(x) 

are differentiable. Furthermore *^ is required to be a diffeomorphism 
of M onto M, for each given element g e G, and the usual group homomor-
phism axioms hold : 

G Diffeom (M) g $ g 

can be viewed as a group homomorphism. 
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L. MARKUS 

If the action * is defined only on some neighborhood of (e,M) in GxM, 
wherein the required axioms hold, then we obtain a local transforma­ 
tion group |6,30|. 

Definition - A Lie dynamical system is a differentiable transformation 
group (G,M,$} with the additional requirement that G = KxR where K is 
a connected compact Lie group. 

Example 
1. Take G = S0(1,R) x R acting on any differentiable manifold M. The 
trivial factor S0(1,R), which is merely a single point, has no geome­
tric significance and so the Lie dynamical system {G,M,$} reduces to 
an action of R on M. In this way every action of R on M can be inter­
preted as a Lie dynamical system. Thus, the theory of Lie dynamical 
systems includes the classical theory of flows of ordinary differen­
tial systems. 

2. Consider the Newtonian gravitational problem in astronomy with m 
mutually attracting stars or planets interacting as point masses in 
the physical 3 - dimensional inertial space. The dynamical flow, accor­
ding to the corresponding first-order differential system in the posi­
tion - velocity phase space of 6m-dimensions , is specified by the for­
ce vector field (after fixing the center of mass at the origin so the 
6 position-velocity coordinates of this centroid are held at zero). 
Then the determination of the system energy and the angular momentum 
3-vector complete the specification of the 10 classical integrals, and 
the dynamical flow is thus described by an action of the time line R 
on the phase space M (which is, in general, a (6m-10) - manifold). 

In astronomical literature there is a further simplification known as 
the "elimination of the nodes", which takes into account the circular 
symmetry of the physical problem under rotations about the axis through 
the centroid, as designated by the angular momentum vector. That is, 
if the entire astronomical configuration were revolved through any 
specified angle about this axis in Euclidean 3-space, then the geome­
try of the orbit configuration would remain unchanged. In this manner 
the circle group S 1 yields an additional symmetry of the dynamical pro­
blem (that is, acts equivariantly on the dynamical system) and this 
is customarily incorporated into the astronomical analysis in various 
ways. In particular, we could describe the problem as a Lie dynamical 
system with G = S 1 x R acting on the phase space M. 

6 



LIE DYNAMICAL SYSTEMS 

This approach can be illustrated in more detail with reference to the 
basic Kepler problem of a single planet orbiting a fixed force center 

4 
in the plane. In this case the position-velocity phase space is R 
(excising the singularity at the force center) and a determination of 
the energy E of the planet specifies a 3-manifold M £ on which the dy­
namical flow of the time R acts. Then the elimination of the nodes de­
fines a Lie dynamical system with group G = S^xR acting on M^. Here 
the orbits are of co-dimension 1 and generally consist of 2-tori in 
(excepting some singular orbits corresponding to circular orbits in 
the physical plane). Then further specification of the angular momen­
tum provides a selection of certain of these 2-tori which are moreover 
filled by periodic trajectories under the action of R. 
3. Consider the oscillations of a particle attracted to a fixed center 
in Euclidean 3-space, by an attractive force that varies linearly with 
the radial distance to the center and is independent of the direction 
from the center. If we fix the mechanical energy, the resulting dynami-

5 
cal system is described by a flow of R on the phase space S . 
Since the physical system has rotational symmetry, the special ortho­
gonal group S0(3,R) acts equivariantly on this dynamical flow. Keeping 
in mind such symmetries, we can study the physical oscillator as a Lie 

5 
dynamical system with group G = S0(3,R)xR acting on S . Since each 
oscillation has the same period (independent of the energy level), the 
orbits of the Lie dynamical system are generically 3-manifolds, al-

2 
though some singular orbits that are diffeomorphs of S also arise 
(corresponding to circular orbits in the physical Euclidean space). 
4. Let M be a sympletic 2n-manifold with canonical charts (x 1, ,x n, 
y 1 , . . . , y n ) , see |1,23,24|. Let H be a real differentiable function on 
M ; traditionally, H is called a Hamiltonian function with correspon-
ding gradient dH and Hamiltonian vector field dH whose components in 
each canonical chart describe the Hamiltonian differential system 

dx _ aH dy _ aH 
dt ~ ay ' dt ax 

Then dH generates a dynamical flow of R acting on M (say M is com­
pact-otherwise we must deal with local flows). 
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L. MARKUS 

A real differentiable function F on M is an integral for dH in case 

dH^(F) = (F )x + (F )y = (F )(H ) + (F ) (-H ) = 0 , 
X y X y y A 

JL 
so F is constant along each trajectory of dH . Each such integral F 

JL 4 

specifies a Hamiltonian vector field dF that commutes with dH .rela­
tive to the Lie bracket product of vector fields on M. In this manner 
the Hamiltonian vector fields dF that commute with dH are conside­
red to be symmetries or "vector integrals" of H. 

JL 

The set of all such vector integrals dF of H constitute a Lie alge­
bra 3(H), which is a subalgebra of<£(M), the Lie algebra of all diffe-
rentable vector fields on M with the Lie bracket product, as usual. 
Each finite dimensional subalgebra 3 (H) then generates a unique 
effective transformation group {G(o^),M,*}, according to the defini­
tions and concepts indicated later. 
It is plausible that a study of the Lie dynamical system with group 
G = G(c^)xR (generated by 5 and dH 5^) may well be of interest in such 
Hamiltonian dynamical problems. In the particular case where G(cJ^) is 
the n-toral group T n acting freely on a region of M, it is known that 

JL 

dH is then completely integrable in the sense of classical analyti­

cal dynamics |l,23|. 
5. On a given differentiable n—manifold M consider a control dynamical 
system specified by r tangent vector fields f^, f f ^ and r scalar 
controllers u„(t), u^(t), u (t) that can be chosen as arbitrary 1 2 r 
piecewise continuous control functions. Then the control dynamics are 
defined on M by the collection of all time - varying vector fields of 
the form u„(t)f„ + ... + u (t)f , or the ordinary differential system 1 . 1 r r 

d 1 

^j jr = u 1(t)f 1
1(x) + ... + u r(t)f r

1(x) for i = l,...,n, 

as indicated in each local chart (x\x^,... , x n ) . 

If the vector fields f^,...,^ generate a finite dimensional Lie sub­
algebra o f X ( M ) , then the corresponding Lie group G acts on M (tech­
nically, as a local transformation group) to produce orbits that are 
precisely the accessibility sets for the control problem, see |7,19|. 
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2. Generalities of Differentiable Transformation Groups 

In order to make this presentation more in accord with the methods and 
concepts of classical dynamical systems, and to make this investiga­
tion more readily accessible to researchers in the qualitative theory 
of differential systems, we review in this section some general pro­
perties of transformation groups, in particular, the foliations by 
orbits of tubular neighborhoods, see |6,34,36|. 

Let (G,M,*} be a differentiable transformation group with the Lie 
group G having the action * on the differentiable n-manifold M. For 
each point x e M we define the orbit of x to be the set 

G(x) = {• (x)|g e G>, 

and we somotimes refer to the map 

G - G(x) g - * g(x) 

as a trajectory tracing the orbit G(x). The stability or isotropy sub­ 
group G^ of x is the closed subgroup of G leaving x fixed, 

G = {g e G|« (x) = x}. 
x g 

It is easy to see that each point y on the orbit G(x) has a stability 
subgroup G conjugate to G in G ; and every such conjugate subgroup y x 
so arises - for this reason we denote the G-isotropy type of G(x) by 
the conjugacy class ( G

x)« 

The homogeneous space of left cosets G/G^ is diffeomorphic with the or­
bit G(x), which is thereby recognized as an embedded (not necessarily 
as a topological subspace) submanifold of M. Moreover the natural ac­
tion of G on G/G x is equivariantly diffeomorphic with the action of G 
on G(x). Furthermore the action of G on some orbit G(z) projects equi­
variantly onto the orbit G(x) if and only if 

«V « <G X) , 

that is, G is conjugate to a subgroup of G ; and we also denote this z X 
relation by 

orbit type G(z) >, orbit type G(x). 
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If O G = G is discrete in G, then the transformation group is 
xeM 

locally (or almost) effective on M ; and if G M = e then the action is 
effective on M. Otherwise, G M is necessarily a closed normal subgroup 

M 
and we can define an effective action of the quotient group G/G M on M. 

M 
For this reason we frequently study transformation groups that are 
effective ; or possible only locally effective so G M is discrete and 
each element in some deleted neighborhood of e in G moves some point 
of M . 

The orbit G(x) for x e M is nonsingular (or regular) in case G^ is 
discrete, in which case each isotropy group of the conjugacy class 
(G x) is also discrete, and hence dim G(x) = dim G. Otherwise, when 
dim G(x) < dim G the orbit G(x) is called singular. In the extreme ca­
se where G^ = G the orbit G(x) consists of a single point x e M, which 
is called a singular or stationary point for the transformation group. 
In other terminology {G,M,*} is free at x when G^ = e and is locally 
free at x when G is discrete in G. In such cases the same condition 

x 
holds at each point of the orbit G(x). Hence the group G acts locally 
freely on G(x) if and only if the orbit G(x) is nonsingular. Of cour­
se, nonsingular orbits can exist only when dim G ^ dim M. 
Example - In the case of a classical dynamical flow of the group R on 
a differentiable manifold M, the map 

R + M t *^(x), for each point x e M, 

describes the trajectory initiating at the point x e M, when t = 0. The 
tangent vectors to all such trajectories in M constitute a vector field 

f(x) = 
a»t(x) I 

8t t=0 * which defines the infinitesimal generator of the 

dynamical flow on M. On the other hand each diffoentiable tangent vec­
tor field on M generates, by means of its integral curves, a unique 
(local) flow on M-in fact, a flow for all t e R provided each trajec­
tory is complete for all times, which is certainly the case when M is 
compact. 

We now interpret the prior concepts for transformation groups as applied 
to this example of a classical flow. The flow * t on M is locally effec­
tive just in case f(x) is somewhere nonzero. In addition is then 
effective on M, unless each trajectory is periodic with the same common 
period -in which case the circle group S 1 = R/Z acts effectively on M. 
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The flow is locally free at a point X q e M in case f(x Q) ¿ 0 . In the 

contrary case where f ( x

Q ) = 0» the point X q constitutes a singular or­

bit. In addition is free at X q, unless the trajectory through X q is 

periodic and thus traces an orbit that is a diffeomorph of a circle. 

We next recall the concept of the infinitesimal generator A of a (local) 

transformation group {G,M,*}, and we note how A consists of a collec­

tion of vector fields whose flows generate the action of G on M. We ha­

ve previously mentioned that the set of all differentiable tangent vec­

tor fields on M form an infinite dimensional Lie algebra #( M ) . That is, 

o£(M) is a real linear space under pointwise operations, and an algebra 

under the usual Lie bracket product on vector fields 

r -\ l 3v j 3w j 
|v,wl = r w - r v 

3x J 3x J 

for tangent vector fields v and w as expressed in terms of components 

in any local chart (x\...,x n) on M. In the same manner the right-

invariant vector fields on G form a finite dimensional Lie algebra g, 

which can also be described as the tangent space at e with the appro­

priate product introduced. The infinitesimal generator A of {G,M,$} 

will be defined by a Lie algebra homomorphism of g into ò&M). 

Let {G,M,*} be a local transformation group on the differentiable ma­

nifold M. For each vector u at the identity e of G there is a corres­

ponding 1-parameter subgroup, namely exp(tu), at least for t near the 

zero of R. Thus {R,M,*^ U^}, with *^ U^(t,x) = *(exp(t u),x), is a local 

flow of R on M. We denote the infinitesimal generator of the flow 

corresponding to u by A(u) ; so A(u) is a differentiate tangent vector 

field on M. Then the correspondence 

g -^C(M) u A(u) 

is known to be a Lie algebra homomorphism of g into¿£(M). The image 

ACáf(M) is called the infinitesimal generator of {G,M,$}. 

Clearly two local transformation groups {G,M,$} and {G^,M p*^} which 

are equivariantly differentiably isomorphic (allowing a diffeomorphism 

¥ of M onto M ^ ) , must have infinitesimal generators that are isomor­

phic (induced by the diffeomorphism ¥ ) . On the other hand, the recove­

ry of the local transformation group {G,M,*} from its infinitesimal 

generator A is also possible. 
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Let A be a finite dimensional Lie subalgebra ofof(M) on a differen­
tiable manifold M. Then there exists a local transformation group 
{G,M,$} having the given infinitesimal generator A. Moreover this lo­
cal transformation group is unique, up to differentiable equivariant 
isomorphism, provided we require that {G,M,*} is locally effective 
|6,30|. Furthermore if M is compact (or if each trajectory of the vec­
tor fields of A is complete for all times t e R ) , then A generates a 
global transformation group {G,M,*} which is locally effective. If we 
further demand that G is simply-connected, or else that G acts effec­
tively on M, then {G,M,$} exists as the unique locally effective trans­
formation group with the infinitesimal generator A on M, see |6,29, 
301 . 

In terms of this infinitesimal generator A for a given transformation 
group {G,M,*} we can assert that the action is locally effective just 
in case the homomorphism g •* A is an isomorphic injection into the 
Lie algebra of(M). In the same spirit let A x be the set of tangent vec­
tors at a point X q, belonging to the various vector fields of A. Then 
there is a linear map g -»» A C T M into the tangent space at x , and 

o o 
we can assert that the action is locally free at X q just in case this 
map is an isomorphic injection onto A 

o 
Let {G,M,*} be a differentiable transformation group acting on the 
n-manifold M. Let G(x) be the orbit of a point x e M. Then the limit  
set X for x is the intersection of the closure of "orbit tails", that 
is 

X(x) = r\ci {* (x)|g i C}, 
C g 

where C runs over the collection of all compact subsets of G. Clearly 
X(x) is a closed invariant set in M, under the action of the transfor­
mation group. Also X(x) = X(y) for each point y on the same orbit 
G(x), and so X(x) is called the limit set of the orbit G(x). 

The point x e M, and also the orbit G(x), is called recurrent in case 
x e X(x), (so then G ( x ) C X(x)). 

A compact invariant set E C M is called minimal in case £ contains no 
compact invariant proper subset ; hence each orbit in Z must be recur­
rent. Clearly each compact invariant set in M must contain a minimal 
set for the transformation group. If Z has a nonempty interior in M, 
then Z = M. 
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Finally let us turn to some special, but nevertheless fundamental, pro­
perties of the orbits for {G,M,*}, under the assumption that G is a  
compact Lie group acting on the n-manifold M |6|. In this case each or­
bit G(x) is a compact submanifold of M, and the action of G near G(x) 
in M can be understood in terms of the structure of tubular neighbor­ 
hoods . To explain this concept, we consider the normal bundle N (with 
respect to some auxiliary Riemann metric on M) over G(x), and we note 
the natural G-action on N with the corresponding action of the compact 
isotropy group G^ on the slice of normal vectors at the point 
x e G(x) (in fact, we can take a Euclidean metric on N so G acts as ' x x 
linear isometries), for details see |6,25,26|. Then a disk-bundle 
neighborhood of G(x) in N (with G acting by fiber-preserving transfor­
mations on the bundle) is equivariantly diffeomorphic with an invariant 
tubular neighborhood U of G(x) in M. As is proved in |6, p. 46, 82, 
306-308|, the action of the compact group G on a tubular neighborhood 
U of the orbit G(x) is entirely determined (up to G-equivariant diffe-
morphism) by i) the group G and stability subgroup G^, and ii) the 
slice representation of G^ in the group of Euclidean isometries of the 
vector space N x . 

As a consequence of this construction of a tubular neighborhood around 
any selected orbit, we can conclude that the isotropy subgroup (and 
hence the orbit-type) varies in a semi-continuous manner on M. That 
is, for each point z near x in M we find that (G»z) » a n c * o n l y 
a finite number of distinct orbit types can meet a prescribed compact 
subset of M when G is compact. 

From these considerations it follows that there exists a unique lar­
gest orbit-type (smallest G-isotropy type), denoted as the principal  
orbit-type, and the principal orbits fill an open dense subset in M. 
If M is orientable, then it is known that each principal orbit is also 
orientable. For a principal orbit G(x) the isotropy subgroup G^ acts 
trivially on the slice N x > defined by the normal vectors to G(x) at 
the point x. Hence the invariant tubular neighborhood of a principal 
orbit G(x) is just the product manifold G(x)xN x (or rather some disk 
neighborhood of G(x)x0 therein). 

13 
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Example 1 - For each integer 1 < l ^ n - 1 we define an effective action 
of the compact Lie group = SO(«,,R) x SO(n-fc,R) on the sphere S n , 
and such that the principal orbits have codimension 2. 

Consider R n + ^ with the usual Euclidean metric so that the unit vectors 
comprise the sphere S n . Let SO(i,R) act as usual on the first jt-coordi-
nate of R n + 1 (that is, as the rotation group on the subspace R A ) , and 
let SO(n-H,R) act as rotations on the Euclidean subspace R spanned 
in R n + ^ by the next (n-fc)-coordinates - and let the last coordinate of 
R n + ^ remain constant. Note that acts on Rn+^" so as to preserve the 
Euclidean norm (and with the final coordinate fixed), and thus K acts 
on S (and with the poles fixed at (0 ,0 , . . .0 ,±1)). This action of K 
on S is effective, and the principal orbits each have dimension 
(£-1) + (n-fc-1) = n -2 . 

Moreover the point (0 ,0 , . . . ,0 ,1) in S n is left fixed under K , and so 
n £ 

we can delete this point to obtain the space R on which acts effec­
tively, with principal orbits of codimension 2. 

Example 2 - Each compact connected Lie group K acts effectively, in a 
n 2 2 trivial way, on the product M = KxT (where T is the 2-torus group). 

Here each orbit K(x) is diffeomorphic to K and has codimension 2 in 
the n-manifold M". 

3. Generalities of Lie Dynamical Systems 

In the preceeding two sections we reviewed aspects of the general theo­
ry of transformation groups, as appropriate for our theory of Lie dy­
namical systems ; and now we turn to the development proper for this 
new approach to dynamical theory. Let us examine the general concepts 
of the prior section as related to a differentiable transformation 
group {G,M,$} that forms a Lie dynamical system on a given n-manifold 
M. That is, in this section we hereafter assume that G = KxR, where K 
is a connected compact Lie group, acts on M. Since the group G then 
has two topological ends, namely the past and the future according 
to the time coordinate t e R, we can examine the particular behavior 
of an orbit G(x) at each end individually. 

For the Lie dynamical system with G = KxR each point x e M has an 
orbit 

G(x) = {$ k t(x)|(k,t) e KxR}, 

14 
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and also the sub-orbits K(x) and R(x) under the corresponding subgroups 
(K,0) and (e__xR) of G = KxR. The transformation group {K,M,* } refers 

K Iv 

to the actions of the compact group K on M, and accordingly the theo­
ry of the preceeding section dealing with "compact transformation 
groups" is applicable. The transformation group {R,M,*K> is a classi­
cal flow or differential system on M. Of course, each action of K com­
mutes with each action of R within {G,M,*>. Also, the corresponding 
stability subgroups are G^t together with K x and R x« Note that the pro­
duct group K x x R ^ C G x, but the inclusion may be proper. 
The orbit G(x) can be decomposed into a past (when t < 0 ) , a future 
(when t > 0 ) , and a present at t = 0. Note that if 

*k t ( X ) = * k t ( X ) ' 
V l V 2 

then the sections of the orbit G(x) at times t^ and t^ coincide, 

{•.. (x)|k e K> = {• (x)|k e K} . kt^ 2 

If the past and future half-orbits of G(x) meet, then as shown later, 
the orbit G(x) is compact so the past and future half-orbits actually 
coincide. 

As usual, we define the positive or future M-limit set of the orbit 
G(x) by the set 

w(x) = H a {* (x)|k e K, t>x} , 
T>0 

and we note that w(x) is independent of the choice of point x on the 
orbit G(x). It is easy to verify that a point y lies in a>(x) if and 
only if - there exists sequences k^ e K and +» with * k (x) -+ y. 
In the case y e w ( x ) , we remark that G(y) C w(x). 1 1 

The negative or past a-limit set a(x) of the orbit G(x) is defined in 
the same manner for t Both a(x) and u>(x) are closed invariant 
sets ; and, when M is compact they each are necessarily nonempty com­
pact connected invariant sets. 

In accord with the usual terminology of topological dynamics we say 
that x, or the orbit G(x), is future recurrent in case G(x)Cw(x) ; 
past recurrent in case G(x)Cl a(x) ; and recurrent in case G(x) is both 
past and future recurrent. These concepts are developed in the trea­
tise I 12l . Also the point x, or the orbit G(x), is future topologically  
transitive in case u>(x) = M ; past topologically transitive in case 
a( x) = M ; and topologically transitive in case a (x) Hulx) = M. 
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Let Z C M be a minimal set for the Lie dynamical system {G,M,$} where 
G = KxR, as stated earlier. Then each point x e z has an orbit that is 
recurrent, and topologically transitive in z. From this transitivity 
we can conclude that each G-orbit in z has the same dimension and, in 
fact, the same orbit-type as specified by the conjugacy class ( G

x ) . 
Hence if one G-orbit in Z is nonsingular (or even K-principal), then 
so is every G-orbit in Z, and we call Z a nonsingular (or a K-principal 
minimal set. As remarked earlier, if a minimal set z has a nonempty in­
terior in the connected space M, then z = M. 

Theorem 1 - Consider a Lie dynamical system {G,M,$} with group G = Kx#, 
for a connected compact Lie group K, acting on the n-manifold M. Then  
each orbit G(x) must be of exactly one of the following three kinds 

1) stationary orbit G(x) = H, where H = K(x) = K/K x is a compact homo­ 
geneous space ; and G^ projects onto all R so K(x) is stationary as a  
set, for time-actions of R. 

2) periodic orbit G(x) = H X S"̂  is a compact fiber bundle over the 
base circle with the compact homogeneous space H = K/K^ as fiber. If 
K is discrete, then the orbit G(x) is an orientable manifold with x - -
dim G(x) = dim K + 1. 

3) line-manifold orbit G(x) = HxR is a differentiable injective im­ 
mersion (submanifold topology may not coincide with subspace topology)  
of the product HxR into M. 

Proof 
For the point x on the orbit G(x) define the return times by the set 

T = {t e R |3k e K with *kt_U) = x} . 
Note that t e T if and only if the entire K-orbit returns to K(x), 
that is, 

K(* (x)) = K(x). 
e K t l 

From this we easily find that T is a closed subgroup of R. 
Hence there are three distinct cases for analysis 

1) T = R ; so K(x) is stationary (as a set) for all times t e R, 

2) T is a discrete subgroup of R ; and thus T consists of all integral 
multiples of some smallest positive period x, 
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3) T = 0 : so K(i ^(x)) never returns exactly to K(x) for any t ^ 0. 
e K 

Case 1) yields the stationary orbit, and case 3) yields the line-mani­ 
fold orbit. In both these cases the K-stability subgroup K x determines 
the homogeneous space H = K(x) = K/K x ; and for the line-manifold 
G(x) = HxR since the K-actions and R-actions commute with each other. 
We henceforth concentrate attention on case 2) where T = {rrn:|m e Z}, 
for the smallest positive period x for the return times within the or­
bit G(x). Then for each positive e < x for the orbit-segment 

G £(x) = {* k t(x)|k e K, 0 ^ t ^ e> 

is a differentiable product Hx[o,e] that is topologically embedded in 
M. Since K($ (x)) •+ K(x) as e -* x, we conclude that the manifold 

e K e 

G(x) coincides with the compact set that is the orbit-segment for 
o ^ t £ x. 
Thus G(x) is a compact submanifold of M, and further the projection map 

G(x) - S 1 * k t U ) - t 
(where the circle S is recognized as the interval [b,xj with endpoints 
identified), displays G(x) as a fiber bundle over Ŝ " with the fiber 
H = K/K . We designate this fiber dundle by G(x) = H % S 1 , which can 

X 1 
be either the product bundle or a twisted bundle oveT~ the base S , de­
pending on the homotopy type of the identification map of the fiber H 
upon encircling the base S''". I | 

Remark 1. In the case of a periodic orbit G(x) = H % S 1 the compact 
manifold G(x) can be obtained as a projection of the product HxR corres­
ponding to the identification, upon following the R-flow for duration 
x > o, 

(h,0) % (k Th,x) 

for some appropriate element k^ e K. Here h = kK x is an arbitrary left 
coset of the homogeneous space H = K/K^. Moreover the "identification 
multipliers" k^ and k^ yield the same diffeomorphism of H (the fiber 
over t = 0) if and only if, for all k £ K, we have 

k (kK •) = k (kK ) or k ^ e k K k 1 , X X x x x x x ' 
that is k 1 k lies in the intersection of all subgroups of K conjuga-x x 
te to K . In particular, k k must lie in K itself, x * x x x 
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The fiber bundle H )(( is a product manifold just in case the map 
H + k^H is homotopic to the identity map. From this result we note 
that, if the group of homotopy classes of self-homeomorphisms of H 

1 1 is finite, then H ^ S is finitely covered by the product H x S . 
It is for this reason that we call any compact orbit a periodic or­
bit for the Lie dynamical system. 

Remark 2 - Both the case of a periodic orbit and a line-manifold 
orbit are called non-stationary, in contradistinction to the case 
1) of a stationary orbit. The stationary orbit G(x) arises when the 
R-action curve R(x) lies tangential to K(x), that is, G x projects 
onto R — otherwise G(x) is nonstationary. Also G(x) is periodic 
if and only if projects to a proper subgroup of R. 

Let us next examine the behavior of the orbits of a Lie dynamical 
system {G,M,<H , with G = KxR as earlier, in the neighborhood of a 
given orbit G(x) that is assumed stationary in the sense 1) of the 
Theorem 1. Especially, we consider the possibility of the "lineari­
zation of the dynamics" near the orbit G(x) = H. 

Thus we assume that the orbit G(x) = H = K(x) is stationary in the 
sense of Theorem 1. In this case the construction of an invariant 
tubular neighborhood of K(x), with regard to the K—action only, 
provides a sort of linearization. 

In the particular case when K x = K, so K(x) reduces to a single 
point, then the K-action in a neighborhood of x c M is equivariant-
ly equivalent to a linear action of a subgroup of the orthogonal 
group about the origin of R n (in accord with Bochner's theorem 
|3,6|). Hewever if K x ^ K, so K(x) = H is a manifold of dimension 
at least 1, then, if = R the stationary points of the R action 
are not isolated points but constitute all the entire manifold K(x). 
In such a case the classical linearization theorems for R-flows are 
not applicable. We shall not pursue such questions of linearization 
further at this point. 

The case of greatest interest in our theory of a Lie dynamical sys­
tem {G,M,<H, for a G = KxR acting on the n-manifold M, is the situa­
tion where dim K(x) = n-2 and dim G(x) = n-1. In the simplest case 
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dim G = n-1 and the group G acts locally freely at x e M, so the 
orbit G(x) has co-dimension 1 in the n-manifold M. For this case, 
where G acts locally freely at x e M, G(x) is a nonsingular orbit 
since G is discrete ; hence K is discrete and H = K(x) = K/K is 

X X X 
an orientable (n-2)-manifold in G(x). 
As a final question in this section we examine the problem of the 
existence of a Lie dynamical system {G,M,$}, with G = KxR acting 
nontrivally (locally effective) on the n-manifold M. We show that 
this problem can be reduced to the study of locally effective ac­
tions of the compact group K on M. For this latter problem there 
is a considerable literature regarding compact transformation groups 
I15,26,27,28,33|. For instance, it is known that the circle group 
S0(2,R) cannot act in a locally effective manner on the compact 
3-manifold M 3 = (KBxS 1) ̂ ( P ^ S 1 ) , here KB is the Klein Bottle 

2 1 surface, P is the real projective plane, and the products (KBxS ) 
2 1 

and (P xS ) are combined as a connected sum upon the identification 
of the two spherical surfaces resulting from the excision of corres­
ponding compact 3-balls. 
Remark - Let G = KxR act effectively (or locally effectively) on a 
differentiable n-manifold M, as a Lie dynamical system. Then the 
induced K-action on M is obviously also effective (locally effec­
tive) . 
On the other hand an effective (locally effective) K-action on M 
can always be extended to a corresponding action of G = KxR as a 
Lie dynamical system on M. If K acts transitively on M, so that 
there is just one orbit K(x) = M. Then it is trivial to define the 
R-action to be only the identity (generated by the zero vector 
field on M) so as to obtain the desired action of G = KxR on M. 
But in case the principal orbit K(x) ^ M, some further care is nee­
ded in defining the appropriate commuting R-action. This construc­
tion is clarified in the next THeorem 2, and the subsequent remark. 

Theorem 2 - Let K be a connected compact Lie group with an effecti­ 
ve (locally effective) action on a differentiable n-manifold M. 
Then there exists an effective (locally effective) action of G = KxR 
as a Lie dynamical system on M, so the action KxO is the given K-ac­ 
tion on M. 
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Moreover, provided that a principal K-orbit K(P) has dimension less  
than n, we can require that the orbit G(P) is nonstationary with 
dim G(P) = dim K(P)+1. 

Proof 
Let K act in a locaJLy effective manner on the n-manifold M. As men­
tioned in the previous remark we can assume that a principal orbit 
K(x) ^ M, and we seek to construct an appropriate locally effecti­
ve action of G = KxR on M. 

Since K(x) is principal, every K-orbit suitable near K(x) has the 
same orbit-type, corresponding to the conjugacy class (^ x). Then 
there exists an K-invariant tubular neighborhood U of the principal 
orbit K(x) in M ; where U is the product of K(x) and a transverse 
slice N x of the normal bundle - or rather a disk-neighborhood 
U ^ K(x)xB therein. Furthermore the K-action on U leaves fixed the 
coordinates of the Euclidean ball B and acts on K(x), and the other 
"horizontal K-orbits" in U, so as to preserve the product structure 
of U ^ K(x)xB. 

Next we define the action of R on M by means of the flow generated 
by a vector field v on M. Namely, take v = 0 outside the tubular 
neighborhood U in M, but within the tube U we now specify v expli­
citly in terms of the product coordinates (y,r,e). Here y is an ar­
bitrary point in the orbit K(x), and r is a radial distance in B 
(as measured outwards from the center lying on K(x)), and 0 is an 
appropriate angular multi-coordinate in the Euclidean ball B. We se­
lect coordinates in B so 0 ^ r ^ 1, and then define the vector field 
v bv the formulas 

v) f = f(r), 0 = 0 , y = 0 , 

where f(r) ^ 0 is a real C -function on [b,l] which vanishes near 
the endpoints of the unit interval, but which is strictly positive 
at the midpoint r = 1/2. |Various modifications of the vector field 
v could be used - see remarks following the theorem|. 
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Because K acts on the tube U % K(x)xB by "horizontal motions" only-
that is, leaving the coordinates (r, e) fixed, and preserving the 
class of "vertical slices" as coordinatized by y = constant, the 
actions of R along the flow generated by v are seen to commute with 
the actions of K. In this way we obtain an action of G = KxR on the 
entire n-manifold M. Moreover the orbit G(P), for K(P) a K-princi-
pal orbit near K(x), say at radial coordinate r = 1/2 in U, is non-
stationary with dim G(P) = dim K(P)+1. 

In order to show that this action of G = KxR is locally effective 
on M, we need only prove that each nonzero tangent vector u, at the 
identity element of the Lie group G, yields anonzero vector field 
A(u) on M ; where A is the infinitesimal generator of the transfor­
mation group {G,M,$}, as earlier. Certainly if u is tangent to K, 
or if u is tangent to R in G = KxR, then A ( U ) does not vanish iden­
tically on M (because both K and R act in a locally effective manner 
on M ) . Moreover A(u) does not vanish identically within the tube U 
- because K(x) is a principal K-orbit (and each K-isotropy subgroup 
on M contains some K^ for y e K(x)), and because f(^) > 0 in the 
respective two cases. 

But suppose u = u^+u R, for u^ and u^ nonzero vectors tangent to K 
and R respectively in G = KxR. We examine A(u) in the tube U where 
the "radial vector field" A(u ) does not vanish identically. Since 

K 
A(u^) is a "horizontal vector field" in U (that is, tangent to the 
K-orbits), then the sum 

A(u) = A(u R) + A(u R) 

must have a nonzero radial component in the tube U where r = 1/2. 
Hence A(u) does not vanish identically on M, and therefore G = KxR 
acts as a locally effective transformation group on M. 

Finally assume that K acts effectively (and hence locally effecti­
vely) on M, and we shall note that the corresponding stronger pro­
perty also holds for the constructed G-action. Consider the G = KxR 
action, as defined earlier, and take an element g = (k,x) e G that 
acts as the identity transformation on the manifold M. We must pro­
ve that g = (k,x) is, in fact, the identity element g = (e,o) of KxR. 
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Since g = (k, T) yields the identity transformation on that princi­
pal K - orbit K(x), where R acts trivially, we conclude that k e K 
leaves K(x) pointwise fixed. Thus k e (OK^), where the intersec­
tion is over all isotropy subgroups conjugate in K to K^. Since 
K(x) is a K-principal orbit (with minimal isotropy subgroup), k 
must leave each K-orbit on M pointwise-fixed. This means that k = e 
is the identity element of K. 

But now note that g = (e,x) acts on the tube U so as to move some 
K-orbits on to other K-orbits, unless T = 0. Therefore, since g 
acts as the identity transformation on M, we conclude that T = 0 
so g = (e ,0). Hence G acts effectively on M, as required. • 

Remark - As mentioned in the proof of Theorem 2 various choices for 
the vector field v on M can be of particular interest. We next rede­
fine such a vector field v, in the case where K(x) has codimension 
2 in M, to illustrate the construction of a nonstationary periodic 
orbit G ( P q ) which is an example of a "limit cycle" for nearby G -
orbits. 

As in Theorem 2 assume that the connected compact Lie group K acts 
on the n-manifold M as a locally effective transformation group. 
Moreover, assume that the principal orbit K(x) has codimension 2 in 
M. Then, just as in Theorem 2, we seek to define a locally effecti­
ve action of G = KxR as a Lie dynamical system on M ; but now with 
certain special types of G-orbits that are nonstationary with codi­
mension 1 in the tube U around K(x) in M. 

To modify the construction in the proof of Theorem 2 we consider a 
vector field v on M, vanishing outside the tube U, and given within 
U by the formulas 

v) f = (| - r) f(r), e = 1, y = 0. 

Here (y,r,e) are defined in U as earlier - so (r,e) are plane polar 
coordinates in the 2-disk B, and where we select the real non-negative 
C -function f(r) on 0 $ r ^ 1 to vanish near the endpoints and to be 
identically equal to 1 in a subinterval around the midpoint r = 1/2. 
As in Theorem 2 the R-action generated by v commutes with the K-
action on U, and therefore on the entire manifold M. 
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Now note that the G-orbit of the point P = (y = 0, r = 1/2, 8 = 0 ) 
1 

in U is diffeomorphic with the product K(x)xS . Hence G(P^) is a pe­
riodic orbit in the sense of Theorem 1. Furthermore G(P Q) serves as 
an example of a "limit cycle" such as arises in Theorem 3 and its 
subsequent corollaries. 

4. Qualitative Theory of Lie Dynamical Systems of cod imens ion 1  
on Simply-Connected Manifolds, especially Spheres 

In this section we commence our serious investigations of the ac­
tions of a Lie group G = KxR on a differentiable n-manifold, as a 
Lie dynamical system. Assume there exists an orbit G(x) of co-dimen­
sion 1 in M, and then we have the immediate observations 

a) If G(x) is nonsingular, then the compact connected Lie group K 
has dimension (n-2) ; 
b) If G(x) is nonstationary, then dim K(x) = n-2 so we conclude 
only that dim K ^ (n-2). 

However we shall not impose any such hypotheses on dim K unless 
they are explicitly specified. 

Our first goal is to prove some lemmas leading to a generalization 
of the classical Poincare-Bendixson theorem concerning flows on 
spheres, although the next two Lemmas are valid on general manifold 
and will play on important role in a later chapter. 

Lemma 1 - Let G = KxR act on a differentiable n-manifold M as a Lie  
dynamical system, with a nonstationary orbit G(x) of codimension 1. 
Then K(x), and also each K(y) for y sufficiently near to x in M, is 
a compact (n-2)-manifold. 

Moreover, if M and K(x) are orientable manifolds, then all such K(y) 
for y sufficiently near x, are of the same K-orbit type as K(x). 
In this case there exists a K-invariant tubular neighborhood U of 
K(x) in M such that 

i) U is K-equivariantly diffeomorphic with the product K(x) and a  
2-disk B ; 
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ii) K acts trivially on U as a product ; that is, the slice repre­ 
sentation of K x on the normal 2-disk at x is just the identity, and 
K acts on each horizontal section of U just as on K(x), so as to  
preserve the vertical fibers B of the product. 

Proof 
The orbit K(x) is in the nonstationary orbit G(x) that has 
dim G(x) = n-1 ; hence dim K(x) = n-2. Therefore, for y sufficiently 
near to x in M, each K-orbit K(y) is a compact manifold with 
dim K(y) ^ ( n - 2 ) . Certainly K(y) ^ M, for otherwise we would have 
K(x) = K(y) = M, and thus dim K(y) must be either (n-2) or (n-1). We 
next show that dim K(y) = n-2, for all y near to x in M . 

Take a K-invariant tubular neighborhood of K(x), with diffeo-
morphic to a fiber bundle over the base K(x) with a fiber B that is 
an (open) 2-disk normal to K(x) in M. (All goemetric properties like 
orthogonality can be interpreted in terms of a convenient auxiliary 
Riemann metric on M ) . Moreover the K-action on U*̂  is entirely speci­
fied by the action of the stability subgroup K x, acting as an ortho­
gonal subgroup on the Euclidean 2-disk B. We shall show that this 
"slice representation" of on B is, in fact, a finite subgroup of 
0(2,R), which determines that each K-orbit K(y) in is a finite 
covering space of K(x). 

Suppose K^, as a subgroup of 0(2,R), is not finite. In such a case 
there would exist orbits K(y) in whose intersection with the disk 
B are circles arbitrarily near to the center point B r\K(x). But then 
such an orbit K(y) would be an (n-1)-manifold that constitutes the 
boundary of some narrow tubular neighborhood of K(x) in U^. However 
the action of G = KxR yields the orbit G(x) that contains both the 
compact orbit K(x), and its time-translates under the group R. Sin­
ce dim G(x) > dim K(x), we conclude that the curve R(x) is not tan­
gent to K(x) but has a tangent at x with a nonzero component in the 
normal slice. This implies that G(x) would meet the orbit K(y), and 
accordingly that K(x) would be diffeomorphic to K(y). But this con­
tradicts the condition that dim K(y) > dim K(x), and hence we con­
clude that the slice representation of K x on B is necessarily a fi­
nite group. 
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Since the slice representation of on B is a finite group, each 
orbit K(y) near K(x) must meet the normal slice at x in only a fi­
nite number of points. Hence each orbit K(y) near K(x) must cons­
titute a finite covering space of K(x), and thus 
dim K(y) = dim K(x) = n-2. 

Next assume that M and also K(x) are orientable manifolds. In this 
case we shall prove that K x acts on the 2-disk B as the identity 
map. From this it follows that each orbit K(y) in covers K(x) 
exactly once, so the normal projection of K(y) on K(x) is a diffeo­
morphism, and also K(y) and K(x) are of the same orbit-type. 

For this purpose we first construct a foliation of a K-invariant tu­
bular neighborhood U C ^ of K(x), with the leaves formed by segments 
of G-orbits. All the points selected hereafter in this argument will 
lie within U^, or possibly some narrower tubular neighborhood U C ^ 
about K(x) in M. Then consider a time-segment of the orbit G(x), na­
mely for suitably small e > 0 take 

G £(x) = <* k t(x)|k e K, |t| < e}. 

That is, the orbit-segment G
£ ( x ) consists of all time-translates of 

K(x) for |t| < e, and e > 0 is fixed so small that G (x) lies in U^. 
Since the infinitesimal generator of the G-action has the dimension 
(n-1) everywhere on G £(x), it also has the dimension (n-1) every­
where in some neighborhood U C about G (x). Therefore the appro­
priate connected pieces of the G—orbits constitute the leaves of a 
foliation of codimension 1 in the open set U. 

Now take a short open line-segment L in the 2-disk B normal to the 
manifold K(x) at the point x. Restrict the length of L so it lies 
in U, and then each leaf of the given foliation, lying suitably near 
G £(x), meets the transversal L-perhaps in many points. In fact, 
nearby G^(x) the foliation in CJ is just the saturation of L by pie­
ces of G-orbits. Each such leaf of the foliation in U can be ob­
tained as a segment of some G(z), for a point z on the transversal 
L (possibly further restricting e, L, and U as necessary). We seek 
to show that the foliation near G

£ ( x ) has a trivial product struc­
ture in U ; that is, we seek to show that the holonomy group h x 

(defined as a group of germs of diffeomorphisms of L corresponding 
to loops in G^(x) based at x) is just the identity map. 
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Since M and K(x) are orientable manifolds, so is G(x) orientable, 

and the neighborhood U is a topological product U = G^(x)xL. Choose 

one side of L, called L , so that U = G (x)xL is an invariant set 

for the foliation, that is, U is a union of leaves. Within the 
+ 

leaf G £(x) take any loop & x (continuous image of [0,1} in G^(x) with 

^(0) = A

x d ) = x)« L e t A

z » f ° r each z E L +, be the corresponding 

lifted curve on the leaf of G(z) starting at the point z, and lying 

above & x. That is, use the normals to G £(x) at each point on the 

loop & x to lift the loop & x to a continuous curve that lies on 

the covering space G(z) and initiates at z e L + above x. Then the 

map from L into L described by 

z ü (1) = endpoint of I , 
z z 

specifies a (germ of a) diffeomorphism of L + into itself, carrying 

the linear segment [x,z] onto [x,i (l)^. Thus the loop i specifies 

an element h(^ x) °f "the holonomy group h^ of the foliation, with 

base point x. Of course, any loop that is homotopic to in 

G (x), with fixed base point x, must yield the same holonomy ele­

ment hU ) = hU ). 

We next show that h(^ x) is the identity element of h^. Suppose & z 

is not a closed loop in G(z), but instead I (1) < z on the trans-
z 

versal L (otherwise treat the inverse loop to % and the corres-
+ x 

ponding inverse holonomy map). Then h(& x) provides a diffeomorphism 

of the interval [x,z] onto fx,Jt,z(l)] for z sufficiently near to x 

along the transversal L +. In this case the iterations of h(* x) gene­

rate an infinite cyclic subgroup of the holonomy group h^. 

Thus the prior supposition leads to the conclusion that the leaf 

on G(z) covers G £(x) with infinitely many sheets, corresponding to 

the sequence of distinct points on L + that arise as the images of z 

under the successive iterations of h(«, x). Note that each such leaf 

on G(z) can be homotopically retracted within itself onto the com­

pact K-orbit K(z) ; and, in particular, the loop can be so de­

formed back to a loop that lies in K(x). 
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We next construct a collar C around G (x) in M, so that the lift of 
e 

* x lies within C. Namely, let C be the saturation of the line seg­
ment L by K-orbits. Thus C is a K-invariant subset of M ; and more­
over C is an (n-1)-manifold differentiably embedded (with inherited 
subspace topology) in the n-manifold M. This is clear because C has 
the geometry of an (n-1)-manifold locally near each point of L (by 
familiar Lie algebra integrability criteria), and its global mani­
fold structure follows directly from the smoothness of the K-actions 
on M. 
As an aside concerning the geometry of C, we can demand that L be 
orthogonal to the hypersurface G^(x) and define an appropriate Pie-
mann metric on M so that 
i) C is everywhere normal to G (x) along the intersection manifold 
K(x) = C r \ G £ ( s ) , and 
ii) the Riemann metric in the tube U is invariant under R-actions, 
so that * t(C) = remains normal to G (x) along $^_(K(x)). 
In order to satisfy property i) we observe that the compact group K 
acts on the (n-1)-manifold C, so that we can use a K-invariant Rie­
mann metric on C ; and then L and its K-translates (a field of lines 
still denoted by L) are all normal to K(x) within C. Since L is no -
where tangent to G (x) (because U = G (x)xL is an invariant set), e + e + 
we can extend the domain of definition of the Riemann metric so that 
L is everywhere normal to the hypersurface G (x) along K(x). That 

e 
is, pick a vector field N defined at points of K(x) in G (x), so 

e 
that N is everywhere tangent to G (x) but nowhere tangent to K(x). 
Then define N to be a unit vector field that is orthogonal to K(x) 
and also to L. 
The condition ii) can be met by propagating the Riemann metric from 
the hypersurface C throughout the region U so as to be R-invariant. 
After this detour concerning the collar C over K(x) we now can use 
the field of lines L, normal to G^(x), to lift the loop J& XC K(x) 
via the G-foliation of U, or equally well via the K-foliation of C. 
That is, we can study the K-orbit decomposition of the collar C as 
a foliation of codimension 1 in C, and we can consider the holonomy 

C C group h x of this foliation, with base point x e K(x). Again h x can 
be described as a group of (germs of) diffeomorphisms of the segment 
L (over x) into itself. 
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Now we return to the main argument of the proof of the lemma. As 

remarked earlier, the R-actions on U provide a homotopy deformation 

of U back onto the collar C, with each leaf G(z) near G(x) being de­

formed back to K(z). In this way there is induced an isomorphism 

between the fundamental groups 

i i 1(G e(x)) ~ ^(Kíx)) |Ax| -H. 

and accordingly an isomorphism of the holonomy group h x onto h^. 

In this case the supposition that the lifted curves are not closed, 

~ C 

namely ^ z(l) = * z ^ ) < z» implies that h^ contains an infinite cy­

clic subgroup. But thus contradicts the fact that K(z) is compact 

and covers K(x) only finitely many times. Therefore the supposition 

& z(l) ^ z is false, and we conclude that fc^ is a closed loop for 

each z near x (both for z e L + and similarly for z e L ). Thus the 

holonomy group h^ must consist of the identity map only. 

Since the holonomy group h x consists of only the identity map, the 

foliation of U, by the leaves formed by G-orbits, is trivial. Thus 

each closed loop %^ based at x e G

£ (
x ) lifts to a closed loop i in 

each nearby K-orbit K(z) for z e L, and K(z) is a simple covering 

space for K(x). But any K-orbit K(y) near K(x) in U is merely the 

time-translate of one such K(z), and hence K(y) is likewise a sim­

ple cover of K(x) and the normal projection of K(y) on K(x) is a 

diffeomorphism. 

Since each K-orbit K(y), for y suitably near to x in M, covers K(x) 

exactly once, it follows that K(y) meets the normal 2-disk B (sui­

tably restricted) in just a single point. Thus K^ acts on B, in 

the slice representation, by leaving fixed each point of B. That is, 

K^ acts as the identity transformation on B, and the K-invariant 

tubular neighborhood U (suitably restricted around K(x)) has the fo­

liated structure of a product U = K(x)xB. That is, K acts trivially 

on the factor B as the identity and further the K-action on each 

"horizontal section" K(y) is such as to maintain the product struc­

ture of U. In particular we note that K(y) has the same orbit type 

as K(x). • 
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Remarks - Assume that M is an orientable n-manifold. Then the condi­
tion that K(x) be orientable is fulfilled in lemma 1, provided that 
either 
i) K(x) is a principal K-orbit 
or 
ii) K has dimension (n-2) so K x is then finite. 

Further, the nonstationary orbit G(x) is orientable if and only if 
K(x) is orientable. 

In lemma 1 we obtain the product tube U = K(x)xB under the asumption 
that the n-manifold M and the (n-2)-dimensional K-orbit K(x) are 
both orientable. In the next lemma 2 we keep M orientable, but spe­
cify that K(x) is nonorientable and obtain a corresponding tube 
U = K(x) X B which is a fiber bundle over the base K(x), where the 
isotropy group K^ acts on the 2-disk B as the group of two elements, 
the identity I = (Q ^) a n d the reflection R = (̂  ^ ). 

If M itself is nonorientable, then the orientable double cover M can 
be used for further analysis, but we do not investigate this case he­
re ; we instead refer to the constructions in the next chapter. 

Lemma 2 - Let G = KxR act on an orientable differentiable n-manifold 
M as a Lie dynamical system, with a nonstationary orbit G(x) of codi- 
mension 1. 

If K(x) is nonorientable then it is an isolated K-orbit in the follo­ 
wing sense. There exists a K-invariant tubular neighborhood U of K(x) 
in M such that 

i) U is diffeomorphic to a non-trivial fiber bundle K(x) X B with the  
compact orbit K(x) as base, the 2-disk B as fiber ; 
ii) The K-action on U is completely determined (up to K-equivariant  
diffeomorphism) by the group K, the isotropy subgroup K x C K, and  
the slice (surjective) representation K^ + {(* )̂»(Q - 1 ^ ̂ ~ ° ^ 2 , R ^ 
of K^ acting on the disk B ; 
iii) The K-orbits on G(x) in U are all non-orientable compact (n-2) -
manifolds (each of orbit type of K(x)), but every other K-orbit in 
U is an orientable compact (n-2) - manifold (each of the same orbit  
type) covering K(x) twice. 
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Proof 

Take an open line segment L normal to G(x) at the point x e K(x), 
and then the saturation of L by K-orbits is an (n-1)-manifold C dif-
ferentiably embedded (with subspace topology) in the n-manifold M. 
The set C is the collar transverse to G(x) along K(x) = CfAG(x), as 
in Lemma 1. 

Since G(x) is nonstationary, the time-trajectory R(x) is nontangent 
to the orbit K(x), and the same result holds true at each point on 
C near to K(x). Thus the (n-1)-manifold C is an orientable submani-
fold of M. Because each K-orbit K(y) in some neighborhood U of K(x) 
in M must be a time-translate of a K-orbit K(z) in C, with z e L, we 
reduce the analysis of K-orbits to the K-invariant (n-1)-manifold C. 
Note that each such K(z), and accordingly the time-translate K(y), is 
a compact (n-2)-manifold. 

Now we use the slice representation, based at x e K(x) ; first for a 
description of the K-action near K(x), within the invariant (n-1)-
manifold C. Since K(x) has codimension 1 in C, the transversal segment 
L is an appropriate (undirected) normal slice to K(x) in C and the 
stability subgroup K^ acts on L as either the identity S0(1,R), or 
else as the group with two elements 0(1,R). In either case eaoh 
point p e K(z), where K(z) £ K(x) is an orbit near K(x) on C, has a 
unique unit normal directed from p e K(z) towards K(x). Hence K(z) 
has a normal vector field within the orientable manifold C, wherein 
K(z) has codimension 1, and so K(z) must be orientable. Therefore we 
conclude that each K(y) in U, but which is not on G(x), must be orien­
table ; however, evidently, the K-orbits on G(x) are time-translates 
of K(x) and hence nonorientable. 

C 
Following the methods of lemma 1, we consider the holonomy group h 

C x 

of the K-foliation in C, as based at x e K(x). Each element of h x is 
either the identity on L, or is a reflection that reverses the ends 
of L. But if h x were just the identity, then the nearby orbits K(z) 
in C would be diffeomorphic to K(x) and so nonorientable, which con-
tradicts earlier conclusions. Thus h x = 0(1,R) contains two elements, 
and each K(z) £ K(x) must afford a 2-fold covering of K(x). Therefore 
the isotropy subgroup K x must also reverse the vector along L -other­
wise the K-action restricted to C would have a trivial isotropy sub­
group, and accordingly each K(z) would be diffeomorphic with K(x). 
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Now let the K-invariant tubular neighborhood U of K(x) in M have a 
suitably small (open) 2-disk transversal B normal to K(x) at the 
point x. Then the tube U is a fiber bundle over the base K(x) with 
a 2-disk fiber. But the product K(x)xB is a nonorientable n-manifold, 
and so cannot be an open set in M. Therefore U = K(x) B must be a 
nontrivial fiber bundle, with the isotopy group K^ acting on B accor­
ding to the slice representation in 0(2,R). 

But note that K leaves fixed the curve R(x) in G(x), since the R-x 
actions commute with the K-actions. Thus each element of K is either 

x 
the identity (̂  ^ ) , or the orthogonal matrix ( ), so the slice re-

1 0 1 0 
presentation is a surjective homomorphism -> {( Q ^ ) , ( Q _]_)}- A c ~ 
cording to the general theory of compact transformation groups the 
K-action in U is completely determined by the group K, the subgroup 
K^, and the slice representation of K^ in 0(2,R). 
The explicit geometric model of the K-action on the K-invariant tube 
U shows that each K(z) ^ K(x) in C has the same orbit type, and pro­
vides a 2-fold cover of K(x). The conclusion iii) now follows from 
the observation that the R-orbit of the (n-1)-manifold C fills a neigh­
borhood of K(x) in M. • 
The next theorem is a generalization of the classical Poincare-
Bendixson Theorem to the actions of Lie dynamical systems on an n-
sphere S n , for any dimension n 2. 

Theorem 3 - Let G = KxR act on the sphere S n as a Lie dynamical system,  
with a nonstationary orbit G(x) of codimension 1. If G(x) is future  
recurrent, then G(x) is a periodic orbit-that is. G(x) is a compact  
fiber bundle (possibly trivial) 

G(x) = K(x) % S 1 . 

Proof 

In Theorem 1 it was shown that the nonstationary orbit G(x) must be 
either periodic, that is, G(x) is a compact fiber bundle (possibly a 
product) of the fiber K(x) over the base circle S"̂  ; or else G(x) is 
a line-manifold, that is, a differentiable injective immersion of the 
product K(x)xR in S n . From the hypothesis that G(x) is future recurrent, 
we shall show that the second alternative cannot arise. 
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First assume that K(x) is orientable. Then, according to lemma 1, 
K(x) and all nearby K-orbits are compact (n-2)-manifolds. Furthermo­
re, there then exists a K-invariant tubular neighborhood U of K(x) in 
S n , such that U % K(x)xB and the isotropy group K^ acts as the iden­
tity on the 2-disk B. Thus in U we have a very explicit model of the 
K-action - namely K acts on the homogeneous space K(x) = K/K^ as 
usual, and acts trivially on U so as to carry the vertical fibers 
(2-diks like B) onto vertical fibers, thereby preserving the product 
structure of U. 

We next select an open subneighborhood (J^CU about the orbit-segment 

G £(x) = {* k t(x)|k £ K,|t| < e}, small e > 0. 

To specify U £ we take a short open line segment L normal to G^(x) at 
the point x, and let U £ be the union of the corresponding G-orbit-
segments G £(z) for all points z e L. In Lemma 1 it is proved that 
the foliation of by these leaves of G-orbit-segments is trivial, 
that is is diffeomorphic to the product foliation of G^(x)xL. 

As in lemma 1 we construct a collar C around G^(x), by defining C as 
the K-saturation of the segment L. Then C is a K-invariant submani-
fold and is K-equivariantly diffeomorphic with the product C % K(x)xL. 
Accordingly we can coordinatize C by points (a,fc) with a e K(x) and 
% e L. Moreover the R-translates of C yield other segments L ( T ) and 
C ( T ) in U £, for times | T | < e. Therefore we can coordinatize the 
neighborhood by triples (a , fc,T) for ( a , l ) e C and |x| < e (restric­
ting L, e, U £ whenever necessary). 

Now we return to the examination of the geometry of the nonstatio­
nary orbit G(x). Take the suborbit K(x) and consider its time-trans­
lates $ .(K(x)) into the far future until there arises a time T > E 

et 
when the point x T = $ e T(x) returns to the neighborhood and lies 
suitably near to some point of the set K(x). In this case Kfx^) lies 
in and approximates the set K(x). If K(x T) = K(x), then the orbit 
G(x) is periodic - that is, G(x) is a nonstationary compact orbit 
and we shall suppose that this is not the case. 
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Thus we shall suppose that G(x) is a line-manifold orbit, and that 
no future time-translate KCx^) ever returns to meet K(x), but that 
we can find appropriate K(x ) arbitrarily near to K(x) in U . In 

c e 

particular, we selectthe collar C(—) and take the future T > e so 
K(x T) C C(—). Furthermore we can require that the time t = T - is 
the first time after t = G that the R-orbit of K(x) ever returns to 
meet the collar C in U . 

£ 

Next define a subset S C S n to be formed from the orbit-segment 
G (x) in U between 4 £ T ^ ^r> and thereafter G(x) with increasing 
G G 4 ^ A ^ 

t up to the time T - — , together with a certain piece C of the col­
lar C(—). We shall show that this union 

4 s = c UH k t(x) |k G K, I ^ t ̂  T - !> 
is a closed hypersurface in the sphere S , and that S separates the 
two points x and x^ in distinct components of the complement S n - S. 

Note that the orbit-segment (*k^(x)|k c K, ^ £ t < T - ^} is a com­
pact differentiable (n-1) - manifold with boundary in S n . The boun­
dary consists of two K-orbits in the collar C(^), that meet the seg­
ment L(-) at distinct points (—) and &^(T) e L(4)• Define C to be 

4 1 4 2 4 4 
the K-saturation of the closed interval of L(^)» whose endpoints 
are *» (4) and (4) • Then C is also a compact dif ferentiable (n-1) -1 4 2 4 
manifold with the same two K-orbits in C(—) serving as its boundary 
in S n . 

We seek to show that S is a piecewise smooth (n-1)-submanifold, 
without boundary in S n . Clearly the "curved piece" of S, the G-orbit 
segment from G / 4 < t < T - G / 4 , does not meet the "collar piece" 
C C C ( G / 4 ) , since t = T - G/2 is the first return of G(x) (after 
t = G) back to C. Thus S consists of the union of two topologically 
embedded differentiable hypersurfaces, nonintersecting except on 
their two boundary K - orbits in C(^). Hence S is a piecewise smooth 
compact (n-1) - submanifold, without boundary in S n . In fact, since 
the orientable manifold G £(x) has codimension 1 in , and also K(x) 
is an orientable submanifold of codimension 1 in the orientable col­
lar C, it is easy to use the explicit coordinatization of U £ to 
"smooth-off" the junctions of C with G(x) so as the produce a smooth 
hypersurface S that is compact and without boundary in S n - and also 
S uniformly aproximates S. However we shall only need to refer to the 
piecewise smooth hypersurface S. 

33 



L. MARKUS 

By the Alexander Duality Theorem the compact hypersurface S separa­
tes the sphere S n into two components. Using the explicit geometry 
of the constructions in U £, we shall observe that the two points 
x T and x lie in different components of s" - S. In more detail, using 
the coordinatization of it is easy to construct a continuous cur­
ve )§ joining x T to x in U^, such that IS meets the hypersurface S in 
precisely one point, say (?f\S is a single point in C. 

Now we claim that the future trajectory * k t ( x ) of x T can never, for 
t > T, meet the hypersurface S. In more detail, * k t ( x ) f o r t > T can­
not meet the curved piece of S, or in fact any point of * k x ; ( x ) f o r 

t < T. For otherwise G(x) would be a periodic orbit, contrary to our 
supposition. Also the future trajectory of x^ cannot meet the collar 
piece C of S, since each R-trajectory meeting C is passing from the 
"past" to "future" components of S n-S ; that is R(x) can cross C on­
ly when entering the component of S n-S that contains the point x^. 
But since x T and its future trajectory (up to some hypothetical in­
tersection with C) lie within the component of S n-S containing x^, 
the trajectory can never meet the component of S n-S containing x and 
hence the future trajectory of x^ cannot meet C. 

Therefore we are led to the conclusion that * kt-( x) » ^ o r t > T, never 
meets the component of S n-S that contains x. But this conclusion 
contradicts the hypothesis of the theorem that G(x) is future recur­
rent, or that x lies in the future limit set of the orbit G(x). The­
refore the supposition that G(x) is a line-manifold orbit must be 
false, and hence G(x) is necessarily a periodic orbit as asserted 
in the theorem. 

Finally we give the proof of the theorem in the case where K(x) is 
nonorientable in S n . Then K(x) is isolated in the sense of Lemma 2. 
In this case the return of $ e^(K(x)), along G(x) as t increases, 
must produce a suborbit K(x^,) very near to K(x)- say in the collar 
C constructed around G(x) at the point x as in Lemma 2. Now both 
K(x) and K(x T) are nonorientable manifolds, and also they both lie 
in C. Since K(x) is an isolated nonorientable K-orbit in C, we 
conclude that K(x T) = K(x). This means that G(x) must be a periodic 
orbit. Thus the theorem is proved in all cases. Q 

34 



LIE DYNAMICAL SYSTEMS 

The next two remarks give important details on the geometric struc­
ture of the periodic orbit G(x) = K(x) % S 1 , and the structure of 
the other nearby G-orbits. 

Remark 1 - Consider any closed hypersurface S, for instance the pe­
riodic orbit G(x) = K(x) X S 1 of codimension 1, in the n-sphere S n . 
That is, S is a compact submanifold (without boundary) of dimension 
(n-1) in S n . Then the Alexander Duality Theorem(mod 2) asserts 
that the complement S n-S consists of precisely two components. Hen­
ce the closed hypersurface S has two sides in the ambient space S n , 
and therefore S must be orientable. 

Thus the periodic orbit G(x) = K(x) S 1 of codimension 1 in S n 

must be an orientable submanifold. From this it follows that K(x) 
itself is an orientable (n-2)-manifold in S n — for otherwise the 
fiber bundle K(x) % would constitute a closed hypersurface that 
would be nonorientable, which contradicts our previous topological 
conclusions. But the facts that G(x) and K(x) are orientable do not 
force the fiber bundle G(x) = K(x) X S 1 to be a trivial product bun­
dle. 

Remark 2 - The geometrical significance of Lemma 1 is that the K-
orbit quotient space, in some neighborhood U about the orientable 
(n-2)-orbit K(x), is differentiably a 2-disk B. This geometric struc­
ture is exploited in the first part of the proof of Theorem 3 to 
show that the K—orbit space, in some neighborhood U of the periodic 
(n-l)-orbit G(x) = K(x) )f( is a 2-annulus or planar ring A. In 
fact, this neighborhood U can be regarded as a fiber bundle with 
base A and with the K-orbits (all of same orbit type as K(x)) as 
the fibers. 

Then the R-flow acting on the K-orbits in U defines a classical flow 
on the 2-annulus A. The K-orbits lying in G(x) project to the points 
of a central periodic R-orbit in A. Hence if one nearby G-orbit spi­
rals in towards the limit cycle G(x) as t «>, then every G-orbit 
(on the selected side of G^x) in U) must also make a similar spiral 
approach to the periodic G-orbit G(x). This geometric analysis ex­
plains the terminology "limit cycle" that often is used to describe 
such a periodic orbit G(x), as arises in Theorem 3. 
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We shall not rest our analyses of periodic G—orbits on the geometry 

of the R-flow on A, except for a few remarks in the next chapter, 

but shall usually refer directly to the geometry of the G-action on 

S n , or whatever is the ambient n-manifold M. 

The following two remarks deal with problems of generalizing Theorem 

3 by relaxing the hypotheses on smoothness, or on the topology of 

the ambient n-manifold M . 

Remark 3 - Theorem 3 is phrased for a Lie C "-dynamical system, with 

eo Yl 

the Lie group G = KxR acting C -differentiably on S . However the 

constructions in the proof and the conclusions of the theorem are 

clearly valid under the hypotheses of only C"'-differentiability. In 

fact, it seems quite likely that by using more intricate methods and 

more complicated techniques |4,39|, the corresponding theorem could 

be proved for general topological actions of G = KxR on S n . 

Remark 4 - Let S be a closed hypersurface (connected, compact sub-

manifold - without boundary) with codimension 1 in a given compact 

n-manifold M . If M is an integral homology n-sphere then the Alexander 

Duality Theorem shows that S must be orientable, and the two compo­

nents of M-S correspond to the two sides of S in M . The same conclu­

sions hold if we assume only that M is a compact orientable n—mani­

fold with integral homology H

n - 1 (
M ) = °» s e e |H»40|. I n particular, 

if M is a compact n-manifold that is simply-connected, so TT^(M) = 0, 

then M is necessarily orientable and moreover H^(M) = 0 , so ^ ( M ) = 0 

and by Poincaré Duality we find H^ ^ ( M ) = 0. Thus the conclusions 

of Theorem 3, and the subsequent remark on the orientability of the 

periodic orbit G(x), can be demonstrated for the case of a Lie dyna­

mical system acting on any compact simply-connected n-manifold M . 

For simplicity of exposition we shall usually assume that the simply-

connected n-manifold M is the n-sphere S n . However we shall return 

to the more general case of a simply-connected ambient n-manifold 

M, and emphasize the conclusions for such generalizations, in the 

discussion that follows Theorem 5. 

Corollary 1 - Let G = KxR act on the sphere S n as a Lie dynamical  

system, with a G-minimal set £. Assume that an orbit G ( x ) C z has  

codimension 1 in S n . Then E consists of just that one orbit G(x) ; 

in more detail, either 
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i) Z consists of a stationary orbit G(x) = K(x), or 
ii) Z consists of a nonstationary periodic orbit G(x) = K(x) X Ŝ ". 

Proof 

Since each G-oribt, for any initial point in Z, is necessarily dense 
in the minimal set Z, we conclude that each such G-orbit has dimen­
sion equal to dim G(x) = n-1. 

First assume that G(x) = K(x) is a stationary G-orbit in Z. Then, 
since K(x) is a compact homogeneous space for the group K, we find 
that G(x) is itself a G-minimal set. In this case Z = G(x) = K(x). 

Next assume that G(x) is nonstationary, and hence future recurrent— 
since G(x) lies within the minimal set Z. In this case Theorem 3 gua­
rantees that G(x) is a compact set, namely a periodic orbit, so 
that Z = G(x) = K(x) X Ŝ ". Hence the corollary is proved in both 
cases. Q 

Corollary 2 - Let G = KxR act on the sphere S n as a Lie dynamical  
system. Assume that an orbit G(x) has a future limit set o>(x) that  
consists entirely of nonstationary G-orbits of codimension 1 in S n . 
Then u>(x) is just one periodic G-orbit towards which G(x) spirals 
as t + », that is, <D(X) is a limit cycle (allowing the case where 
G(x) = o)(x) is itself a periodic orbit). 

Proof 

Let Z be a G-minimal set contained in the compact G-invariant set 
o>(x). Then each G-orbit in Z is nonstationary and of codimension 1. 
By the previous corollary 1 the minimal set Z consists of a single 
compact periodic G-orbit, say Z = G(x) = K(x) XS 1. 

According to the remarks following Theorem 3, the compact (n-2)-
manifold K(x) must be orientable. By the earlier Lemma 1, each K-
orbit near to K(x) is also a compact orientable (n-2)-manifold of 
the same K-orbit type as K(x). Moreover there exists a K-invariant 
tubular neighborhood U % K(x)xB around K(x) in S n , and the group 
K— acts trivially on the 2-disk B that is normal to K(x) at the 
point x e G(x). 

37 



L. MARKUS 

Since G(x) approaches arbitrarily near to K(x), we conclude that the 
R-flow is nontangential to both K(x) and also to the K-orbits in G(x). 
Thus G(x) is a nonstationary G-orbit of codimension 1 in S n . We 
shall assume that G(x) is a line-manifold orbit, since in the remai­
ning case, where G(x) is a periodic orbit, it is trivial that 
G(x) = w(x). 

As in the proof of Theorem 3 take a G-orbit piece, for some time 
duration e > 0, 

G £(x) = (* t(K(x))| |t| < e} , 

and then take a line segment L normal to G £(x) at the point x. Note 
that the neighborhood U is diffeomorphic to the product G^(x)xL (for 
suitable restrictions of U,e and L ) . Further construct a collar C 
around G £ ( x ) , over the submanifold K ( x ) C G £ ( x ) , S O that C is dif­
feomorphic to K(x)xL. More precisely, C is the K-saturation of the 
line segment L, and thus C forms a differentiable (n-1)-manifold 
transverse to G £(x) and C /^\G£(x) = K(x), just as in the construc­
tions of Theorem 3. 

Following the procedures in the proof of Theorem 3 we take two suc­
cessive times t^ < t 2 for return passes of K(x) to meet C very near 
to K(x). Let fc^ and be the corresponding points of L where these 
successive time-translations of K(x) meet C. Certainly £ 
because we are assuming that G(x) is not a periodic orbit. 

Next construct a piecewise smooth hypersurface S, closed and without 
boundary in S n , consisting of the piece of G(x) that lies between 
the successive intersections with the collar C, and the appropria­
te piece C of C that is generated as the K-saturation of the sub-
interval of L lying between the endpoints and We wish to 
show that 0 < < that is, and £^ lie on the same end, say 
L , of L with l„ closer than to the center point x e L . This + ' 2 1 
will then demonstrate that G(x) spirals towards the limit cycle 
E = K(x) X S 1 as t - » . 

First examine the situation where is supposed to lie on the oppo­
site end of L from J,̂ , that is, suppose x separates and fc^ on the 
segment L. In this case the orbit G(x) crosses the collar C, as t 
increases, at K(x) and thus some points of G(x) lie inside the closed 
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hypersurface S and some points lie outside S. But G(x) always lies 
on just one side, say the inside, of S after its intersection with 
C at the instant t^ ; but this contradicts the fact that all points 
of G(x) belong to the future limit set (D(X). Therefore we conclude 
that & 2 and I both lie on one end L + of the segment L. 

Next suppose 0 < < on L +, so lies farther than ^ from the 
central point x e L. This case is also impossible because then G(x), 
after the instant t^, would be separated away from some points of 
G(x) by the closed hypersurface S. This is clear since it is easy 
to construct a continuous curve IS from x to any point on G(x), af­
ter time t^ ; with the curve S meeting the hypersurface S at just 
a single point, say at e G(x) C\ C. This analysis shows that 

° < %2 K l l a l o n g L+* 

From the recurrence inequality 0 < fc^ < ^ o n ^ + we conclude that 
successive returns of the orbit G(x) back to the collar C must yield 
points on L + that converge monotonically to x e w(x). Now note that 
the time axis R acts with a specific smallest period T > 0 on the 
set K(x) in the periodic orbit G(x) = K(x) % . Therefore the 
time-translate of the K-orbit K(x), namely $^(K(x)), on the duration 
t ^ ^ t ^ t ^ + T + 1 must certainly remain uniformly near to the set 
G(x) — provided ^ > 0 is taken suitably small. Also, when Jt̂  > 0 
is taken suitably small, the return duration I i^-t^J < T+l and du­
ring this duration the points of $^(K(x)) lie uniformly near to the 
compact set G(x) while t^ ^ t ^ t^. 

Since the returns of $^_(K(x)) back to the collar C are know to ari­
se at points on L + that tend monotonically towards x, the prior ar­
gument can be repeated for each successive duration between succes­
sive returns to C. Thus we conclude that the distance (in some 
convenient metric on S n) between the compact sets $^_(K(x)) and G(x) 
tends to zero as t + «. In this sense G(x) spirals towards the li­
mit cycle G(x) as t «. 

Because u>(x)|is a compact set containing G(x), and distance between 
{*(K(x)),G(x))} •> 0 as t «>, we conclude that no points of a)(x) can 
lie off the limit cycle G(x). Therefore oi(x) = G(x) is a single pe­
riodic orbit, and G(x) spirals towards this limit cycle OJ(X). • 
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Remark - If, in Corollary 2, we further assume that every G-orbit in 
the closure G(x) is nonstationary with codimension 1 in S n , then we 
can conclude both a(x) and o>(x) are each periodic G-orbits that ari­
se as limit cycles spirally approached by G(x) as t -«> and t +<», 
respectively. In fact, a(x) and u(x) are each closed hypersurfaces 
that constitute the boundary of an annular region in S n , and moreover 
G(x) spirals from one boundary towards the other. 

Corollary 3 - Let G = KxR act on the sphere S n as a Lie dynamical  
system. Then each orbit G(x) of codimension 1 is topologically em­ 
bedded in S n . 

Proof 

An orbit G(x) is topologically embedded in S n provided either 

i) G(x) is compact—this being the case if G(x) is stationary or 
periodic ; 
or 
ii) G(x) is a line-manifold (a differentiable injection of K(x)xR 
into S n ) which is neither past nor future recurrent. 

Thus G(x) fails to be topologically embedded in S n only under the 
circumstance that G(x) is a line—manifold that meets its own limit 
set a(x) \J a>(x). But if a nonstationary orbit G(x) of codimension 1 
is future recurrent, then Theorem 3 asserts that G(x) is necessari­
ly a compact periodic orbit in S n ; that is, G(x) is not a line-
manifold. 

Therefore we conclude that the orbit G(x) cannot fail to be topolo­
gically embedded in S n . • 

Let G = KxR act on an n-manifold as a Lie dynamical system. Then, 
in analogy to the concept of a critical point of a classical flow, 
we define a critical orbit to be a G-orbit that is either 

i) stationary 
or 
ii) codimension ^ 2 in 
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A classical Theorem of Poincaré asserts that, inside each periodic 
2 

orbit of a classical dynamical system on S , there necessarily 

exists a critical point. The next theorem proves the appropriate 

generalization for Lie dynamical systems on n-spheres, for n 2. 

Theorem 4 - Let G = KxR act on the sphere S n as a Lie dynamical sys­ 

tem. Also let G(x) be a periodic orbit of codimension 1 in S°. Then  

within each component of S n - G(x) there exists at least one criti­ 

cal G-orbit, that is, an orbit which is either 

i) stationary  

or 

ii) codimension ^ 2 in s". 

Proof 

Fix one component of the complement S n-G(x), and call this the in­

side of the periodic orbit G(x). The (nonstationary) periodic G-

orbits of codimension 1 that lie inside G(x) can be partially orde­

red under the relation of set-inclusion for their respective insi­

de regions. Choose a maximal (inextendible) linearly ordered chain 

of periodic G-orbits of codimension 1, so each lies inside the pre­

ceding periodic orbits of the chain. 

Choose a point z on each such periodic orbit G(z ) of the chain. 
Y Y 

Then there is a subset of that converges to some point z lying 

inside (or lying on) each such G(z^). Consider the G-orbit G(z). 

Since each K-orbit K(z^) has dimension (n-2), the K-orbits on G(z) 

must have dim K(z) £ (n-2). But if dim K(z) < (n-2), or if 

dim K(z) = n-2 and G(z) is stationary, then G(z) is a critical or­

bit inside G(x) and the theorem is proved. Hence we assume that 

G(z) is a nonstationary orbit of codimension 1 in S n . 

Consider the future limit set a>(z) for the orbit G(z). Then u>(z) 

contains a G-minimal set Z which consists either of a stationary 

G-orbit, or else consists of nonstationary G-orbits each with co-

dimension £.2 — all critical orbits — or else Z consists of non-

stationary G-orbits of codimension ^ 1. In this latter case such a 

G-orbit G(P)C E must have dim G(P) equal to (n-1) or n ; the value 

dim G(P) = n is impossible because then dim Z = n so Z = S n , which 

contradicts the existence of the given periodic orbit G(x). There­

fore, the only case in which G(P) fails to be a critical orbit is 

that case in which G(P) is a nonstationary orbit of codimension 1 

in S n . But G(P) CL E is future recurrent, and hence G(P) is necessa­

rily a periodic orbit — according to the earlier Theorem 3. 
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Thus we can proceed with the argument of the proof under the assump­
tion that G(P) = o)(z) is a nonstationary periodic orbit of codimen-
sionl in S n . Since the linearly ordered chain (G(z^)} was maximally 
inextendible, we conclude further that G(P) belongto this chain and 
moreover that G(P) lies strictly inside every other one of the pe­
riodic orbits G(z ). 

y 

Next examine the inside region of the closed hypersurface G(P). Ta­
ke a point Q very near to P, but strictly inside the hypersurface 
G(P). Then, since dim K(P) = n-1, we find dim K(Q) = n-1 — accor­
ding to the earlier Lemma 1. Then either G(Q) = K(Q) is stationary, 
in which case G(Q) is the required critical orbit inside G(x), or 
else G(Q) is a nonstationary orbit of codimension 1 in S n . But in 
this second situation the orbit G(Q) has a future minimal set W(Q) 
that contains a G-minimal set Z^. However the argument presented 
earlier in the proof shows that Z^ contains either a critical G-
orbit, or else a periodic G-orbit of codimension 1 — which is impos­
sible since the chain (G(z^)} terminating in G(P) is inextendible. 
Hence G(P) must contain a critical G-orbit within its inside region, 
and the theorem is proved in all cases. Q 

An important conclusion of the Poincare-Bendixson Theorem for clas-
2 2 

sical flows on S is that each vector field tangent to S must pos­
sess a critical point. The next theorem asserts the validity of a 
generalization of this classical result for n-spheres S n , for n 2. 
It is of personal interest to the author that our Theorem 5 is his­
torically related to the famous thesis on foliations by G. Reeb |34|. 

Theorem 5 - Let G = KxR act on the sphere S n as a Lie dynamical sys­ 
tem. Then not every G-orbit can be nonstationary with codimension 1. 
Further, there must exist a critical G-orbit on S n . 

Proof 
Suppose all G-orbits were nonstationary with codimension 1 in S n . 
Then a G-minimal set Z must be a periodic orbit, according to Corol­
lary 1 of Theorem 3. But according to Theorem 4 there must exist a 
critical orbit inside the periodic orbit z, which contradits our 
supposition. 
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Hence our conclusion is that a Lie dynamical system G = KxR acting 
on S n must possess either a critical orbit, or else a nonstationary 
orbit of dimension n. Then let G(y) be a nonstationary orbit of di­
mension n. We shall show that this case also forces the existence 
of a critical G-orbit on S n . First of all note that we can discard 
the possibility that G(y) = S n because this would imply that S n 

is a fiber bundle over the circle S 1 — a known impossibility for 
n > 2 (see subsequent remarks). This holds since the nonstationary 
orbit G(y) = S n either has an isotropy subgroup G^ not entirely within 
Ky — in which case S n = K(y) )K S 1 ; or else G^ = K^ — in which 
case each K-orbit is K-principal and so the K-orbit space is a 1-
dimension compact manifold, and S° is a fibre bundle over S n/K ^ . 

Thus we assume taht the n-dimensional nonstationary orbit G(y) is a 
proper subset of S n . The point-set boundary 3G(y) of the subset 
G(y) C S n is a compact G-invariant set, without interior in S n . 
Let I be a G-minimal set in 3G(y). Then z either contains a critical 
G-orbit, or else E consists of a periodic G-orbit of codimension 1 
in S n . But in this second case z is a closed hypersurface and must 
contain a critical G-orbit within its inside — according to Theorem 
4. 

Hence in every possible case, a Lie dynamical system acting on S n 

must contain a critical orbit. Q 

Remarks - Theorems 3, 4, 5 and their Corollaries are proved for Lie 
dynamical systems consisting of actions of G = KxR on a compact orien­
table differentiable n-manifold M that is specified to be the stan­
dard n-sphere S n , for n 2. However, note that the global topology 
of S n enters the proofs of Theorems 3, 4 and 5 in the requirement 
that a closed hypersurface separate M into two components. As men­
tioned earlier in Remark 4 following Theorem 3, the hypothesis on 
the integral homology group H^ ^(M) = 0 is sufficient to insure this 
topological separation property. 

In Theorem 5 a further requirement is that M cannot be a fiber bun­
dle over the base circle S 1 . But if there were such a bundle projec­
tion map 

p M - S 1 , 

43 



L. MARKUS 

then the 1-cocycle d8 (where 0 is the angular coordinate along the 
circle S 1 ) would lift to a nontrivial 1-cocycle in M. This would 
imply that for M the Betti numbers b^ > 0 and b n_^ > 0 — which is 
impossible for M = S n , or for any compact orientable n-manifold M 
with integral homology ^(M) = 0 (recall that the real and inte­
gral (n-1) homology groups are free and of the same rank for a com­
pact orientable n-manifold M for n £,2). 

Thus the assertions and conclusions of Theorems 3, 4, 5 and all their  
Corollaries ramain valid under the assumption that M is any compact  
orientable differentiable n-manifold with integral homology 
^n = ^" In particular, these results all hold in case M is any 
compact simply-connected differentiable n-manifold, that is, when 
^ ( M ) = 0. 

Furthermore, under these conditions we can conclude that each perio­ 
dic orbit G(x) = K(x) X of codimension 1 in M is an orientable  
closed hypersurface in M. Moreover both K(x) and also G(x) are orien­ 
table submanifolds of the compact orientable n-manifold M. (For fur­
ther details and discussions we refer back to the relevant Remarks 
following Theorem 3 ) . 

In the next set of theorems we state the corresponding results for 
a Lie dynamical system G = KxR acting on the vector space R n for 
n 2, that is, the ambient n-manifold is the noncompact n-dimensional 
real linear space. Here it is evident that a periodic orbit 
G(x) = K(x) X S"*" of codimension 1 in R n must be an orientable clo­
sed hypersurface, and involve the compact orientable (n-2)-manifold 
K(x). But the other results, corresponding to Theorems 3, 4, 5 and 
Corollaries, require some minor modifications and are presented next 
as Theorems 3A, 4A, 5A, etc..., using the obvious parallel notation 
to indicate the close conceptual relations. 

Theorem 3A - Let G = KxR act on the linear space R n as a Lie dynami­ 
cal system, with a nonstationary orbit G(x) of codimension 1. If 
G(x) is future recurrent, then G(x) is a periodic orbit, that is, 
G(x) is a compact fiber bundle 
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G(x) = K(x) X S 1 

where K(x) is a compact orientable (n-2)-manifold and G(x) is a clo­ 
sed orientable hypersurface in R n. 

Proof 

As in the prior Theorem 3 a closed hypersurface S is constructed 
from a "curved piece" of the future orbit of G(x) and a "flat piece" 
of the collar C around G(x) over the submanifold K(x). Then S sepa­
rates R n into two components. 

According to the argument in the proof of Theorem 3, the future re­
current orbit G(x) must enter and remain within one component of 
R n-S, which is a contradiction, unless G(x) is a periodic orbit. 
Thus we conclude that G(x) = K(x) X S 1 is a periodic orbit. 

But then the remarks following Theorem 3 apply to show that the clo­
sed hypersurface G(x) is 2-sided in R n ; and hence both G(x) and also 
K(x) must be orientable submanifolds of R n. Q 

Corollary 1A - Let G = KxR act on the linear space R n as a Lie dyna­ 
mical system, with a compact G-minimal set Z. Assume that an orbit 
G(x) C Z has codimension 1 in R n. Then Z consists of just that one  
orbit G(x) ; in more detal, either 

i) Z consists of a stationary orbit G(x) = K(x), or 
ii) Z consists of a nonstationary periodic orbit G(x) = K(x) X S 1 . 

Proof 

As in the prior Corollary 1 to Theorem 3 the G-minimal set is compact, 
and each G-orbit G(x)C Z is future recurrent. Thus the same argument 
holds to prove that either 

i) G(x) is stationary, so G(x) = K(x) is itself a compact K-homogeneous 
space (then K(x) coincides with Z), or 
ii) G(x) is nonstationary with codimension 1 in R n, and future recur­
rent ; so G(x) = K(x) ^ S 1 is periodic according to Theorem 3A. Then 
G(x) coincides with Z. 

Hence the corollary is proved. Q 
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Corollary 2 A - Let G = KxR act on the linear space R n as a Lie dy­ 
namical system. Assume that an orbit G(x) has a future limit set 
<i)(x) that consists entirely of nonstationary G-orbits of codimension 
1 in R n. Assume further that G(x) is future-bounded in R n, that is,  
the future half-orbit of x lies within some compact subset of R n. 

Then w(x) is just one periodic orbit towards which G(x) spirals as 
t -»• 0 0 , that is, w(x) is a limit cycle (allowing the case where 
G(x) = w(x) is itself a periodic orbit). 

Proof 

As in the proof of the prior Corollary 2 to Theorem 3 we find a com­
pact G-minimal set E within the compact nonempty limit set a>(x) of 
G(x). Then by Corollary 1A the minimal set E consists of a single 
periodic orbit, say E = G(x) = K(x) % S 1 , where K(x) is a compact 
orientable (n-2)-manifold in R n. 

The argument given in Corollary 2 shows that G(x) spirals towards 
the limit cycle G(x) as t + » . An examination or that proof reveals 
that all the geometric constructions occur in a compact neighborhood 
of G(x), say generated by a compact tubular neighborhood U of K(x) 
under time-translation for a specified bounded duration described in 
terms of the period T of G(x). Hence the compact tube U and its time-
translates for 0 < t ^ T + 1, all lie within a compact subset of R n 

that contains the future half-orbit of,G(x) ; and the argument of 
the earlier Corollary 2 applies to prove the conclusion of Corollary 
2A. • 

Corollary 3A - Let G = KxR act on the linear space R n as a Lie dyna­ 
mical system. Then each orbit G(x) of codimension 1 is topologically  
embedded in R n. 

Proof 

As noted in Corollary 3 to Theorem 3 the only situation in which 
G(x) fails to be topologically embedded in the ambient n-manifold, 
here R n, is when G(x) is a line-manifold that meets its own limit 
set a(x) C\ w(x). 
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Suppose that G(x) were a line-manifold of codimension 1 in R n, and 
that G(x) meets <o(x). Then by Theorem 3A we find that G(x) must 
instead be a compact periodic orbit. From this contradiction we 
conclude that G(x) must be topologically embedded in R n. 0 

Theorem 4A - Let G = KxR act on the linear space R n as a Lie dyna­ 
mical system. Also let G(x) be a periodic orbit of codimension 1 
in S n . Then within the bounded component of R n-G(x) there exists at  
least one critical G-orbit, that is, an orbit which is either. 

i) stationary  
or 

ii) codimension ^ 2 in R n. 

Proof 

The periodic orbit G(x) is an orientable closed hypersurface in R n, and* 
hence G(x) separates R n into two components, exactly one of which 
is bounded. Call the bounded component of R n - G(x) the inside region 
bounded by G(x). 

The proof of Theorem 4 now applies directly to the periodic orbit 
G(x), and its inside region in R n, to demonstrate the existence of 
the required critical orbit inside G(x). • 

The results corresponding to the assertions of Theorem 5, as refer­
red to Lie dynamical systems in R n, are rather complicated and are 
developed in our next two Theorems 5A and 6A. 

Recall that Corollary 2A includes the case where the orbit closure 
G(x) consists entirely of nonstationary orbits of codimension 1 and 
in such circumstances concludes that - if G(x) is future-bounded in 
R n then G(x) spirals towards a limit cycle w(x) as t «. The next 
result investigates the case where G(x) may not be future-bounded, 
but the prior condition holds for G(x). The surprising conclusion 
is that then G(x) must spiral towards a limit cycle a(x) as t ^ -t». 

Lemma - Let G = KxR act ori\the linear space R n as a Lie dynamical  
system. Also let G(x) be an orbit whose closure G(x) consists enti r  

rely of nonstationary orbits of codimension 1 in R n. In this case, 
if a (x) U a) (x) is nonempty then either 
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i) OJ(X) is a periodic orbit towards which G(x) spirals as t -+ »(allo­ 
wing the possibility G(x) = o)(x)). 
or 
ii) a(x) is a periodic orbit towards which G(x) spirals as t -« 
(allowing the possibility G(x) = a(x)). 

Proof 

Assume that w(x) £ 0 for definiteness. If G(x) were also future-
bounded as t + «, then the earlier Corollary 2A would yield the 
desired conclusion that G(x) spirals towards the limit cycle a)(x). 
Therefore we need only deal with the case where G(x) is not future-
bounded, yet o)(x) ^ 0 , and we henceforth make these assumptions. 

Just as in the proof of Corollary 2A we take a point x e w(x) and 
consider the orbit G(x) that is nonstationary with codimension 1 in 
R n. Next construct a collar C around G(x) over the (n-2)-manifold 
K(x), where C is the K-saturation of the line segment L normal to 
G(x) at x. Let t^ < t^ be successive times of return of the trajec­
tory along G(x) back to meet the collar C ; and let %^ and %^ be 
corresponding points of intersection of G(x) with L. Note that 
fc^ ̂  I2» unless G(x) is a periodic orbit — in which case the Lemma 
is already proved. 

Just as in the constructions of Corollary 2 and 2A let S be a closed 
hypersurface composed of a "curved piece of G(x)" between the in­
tersection times t^ and tg, and a flat "piece of the collar C" ob­
tained as the K-saturation of the segment of L with endpoints j,̂  and 

First note that and H_ lie on the same end L of L, with in 2 1 2 + 9 2 

nearer than to the point x e L. This assertion, that separates 
x and along L, is evident for otherwise the future half-trajectory 
along G(x) is separated by S away from the point x e a)(x). The details 
of such geometric separation follows the arguments of Corollary 2. 

For times t > t^, G(x) does not lie inside the closed hypersurface 
S, since G(x) is not future-bounded in R n. In such a case, G(x) must 
lie inside S for all times t < t^ and hence G(x) is past-bounded in 
R n. But then the result of Corollary 2A, as applied to times t 
proves that a(x) is a periodic orbit. Furthermore G(x) then spirals 
towards the limit cycle a(x) as t O 
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It may seem difficult to picture the geometric situation arising in 
the previous Lemma. One configuration that might assist the geometric 

1 3 
intuition is that of an action of G = S xR on R where a(x) is a 
torus surface linking around an infinite cylindrical pipe w(x), with 

the S^-orbits in a(x) around the longitude circles and the S^-orbits 
in w(x) around the meridian circumferences of the pipe. The G-orbit 
G(x) then unwinds from around the torus a(x) and tends towards the 
pipe w(x) in longer and longer time durations. 

Corollary - Let G = KxR act on the linear space R n as a Lie dynami­ 
cal system. Also let G(x) be an orbit whose closure G(x) consists  
entirely of nonstationary orbits of codimension 1 in R n. If neither 
G(x) nor a(x) nor u>(x) is a periodic orbit, then G(x) tends to infi­ 
nity in R n, with both ends of G(x) as |t| -»- «. (That is, G(x) lies  
exterior to any prescribed compact subset of R n for all suitably lar­ 
ge times |t|). 

Proof 

Suppose G(x) does not tend to infinity in R n as |t| -* <». Then the 
limit set a(x)^/a)(x) is nonempty, say u>(x) 4 0 . But the previous 
Lemma then asserts that either ot(x) or u>(x) is a periodic orbit (or 
a(x) = a>(x) = G(x) is a periodic orbit). 

This conclusion contradicts the hypothesis given, and hence we con­
clude that G(x) must tend to infinity in R n, with both ends of 
G(x) as 11| - a.. • 

The prior Lemma and Corollary lead immediately to the assertion of 
the next Theorem 5A, and provide the details of the required proof. 

Theorem 5A - Let G = KxR act on the linear space R n as a Lie dynami­ 
cal system. If all G-orbits are nonstationary with codimension 1 in 
R n, then each orbit G(x) tends to infinity in R n, with both ends of 
G(x) as |t| + °o. 

A more refined topological analysis will show that, under plausible 
hypotheses, the circumstances considered in Theorem 5A actually oc­
cur only in the classical case n = 2, where the dynamics reduce to 
flows in the plane. 
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Theorem 6A - Let G = KxR act on the linear space R n as a Lie dynami­ 
cal system. Assume that all G-orbits are nonstationary with codimen­ 
sion 1 in R n, and also that every K-orbit is orientable. 

Then n = 2, each K-orbit reduces to a single point, and each G-orbit 
2 

is a curve in the plane R — each such curve G(x) tends to infinity 
2 

in R , with both ends of G(x) as |t| ». 

Proof 

Since each K-orbit is a compact orientable (n-2)-manifold, each such 
K(x) lies in a K-invariant tubular neighborhood in which all the K-
orbits are diffeomorphic. Hence all the K-orbits in R n are diffeo-
morphic and thus the K-orbit space R n/K is a 2-manifold. Therefore 
R n is a fiber bundle over the base manifold R n/K, with the compact 
fiber type K(x). 
Suppose the dimension n 3. Consider the exact sequence of homotopy 
groups for the fiber bundle R n R n/K, namely 

...^ 1r 0(R n/K ) -K 1r 1(K(x ) ) -7r 1(R n)- 1r i(R 2/K)-ir (K(x))- . . . . 2 1 1 1 o 
Since Tr Q(K(x)) = 1, the map T T ^ R J + i r ^ R /K) is surjective, and thus 
ir^(R n/K) = 1. Hence R n / K is a simply-connected 2-manifold. Also 
R n / K is noncompact since the,time-translates of one K(x) along G(x) 
have no convergent subsequence, since G(x) cannot be future-recurrent. 
Therefore R n / K must be diffeomorphic with the plane R ^ . 

But then R n / K = R^ is contractible and so the fiber bundle R N -+ R ^ 
is diffeomorphic with a product bundle 

R n % K(x)xR 2. 

Clearly this is impossible since some homotopy group of the compact 
manifold is nontrivial, say irg(K(x)) is nontrivial for some 1 ^ s ^ n-2. 
(Because H 0(K(x)) = Z, and the conclusion follows from Hurewicz 1 

n—2 
Theorem on homotopy groups). This contradiction rules out the suppo­
sition that n > 3 , and so we conclude that n = 2. 

2 
For G = KxR acting on the plane R as specified in the hypotheses, it 
is necessary that each K-orbit is a single point, and each G-orbit 

2 
is a curve in R tending to infinity with both ends as |t| •* «. • 
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We do not know whether the assumption that "every K-orbit is orien­

table" is necessary in Theorem 6A. 

It is amusing to consider the related problem of constructing a fi­

ber bundle of S n over S^. I have been assured by two distinguished 
3 

topologists (who wish to remain un-named) that only S can occur as 
2 

a fiber bundle over S . {Hint - Consider appropriate loop spaces and 

the corresponding Pontryagin algebras, and then utilize the funda­

mental combinatorial formula ( n^) £ I K 

5. Qualitative Theory of Lie Dynamical Systems of Codimension 1  

or> Multiply-Connected Manifolds, especially Tori 

In the previous chapter we studied the action of a Lie dynamical 

system {GiMd>} on a simply-connected n-manifold M ; in particular 

the action of a Lie group G = KxR, with compact connected Lie group 

K, on the sphere S n . The main Theorem 3, and its Corollaries, assert 

that a minimal set E that consists of orbits of codimension 1 must 

be a compact (n-1 )-manifold ; in particular E cannot be the entire 

space S n . In this chapter we shall show that a similar result holds 

on any multiply-connected n-manifold M, provided M is not the n to­

rus T n, or certain other n-manifolds that are fiber bundles over T^. 

We begin this chapter with a description of two basic constructions 

of general importance in the theory of Lie dynamical systems. The 

first construction gives the analogue of the Poincaré map around a 

classical periodic orbit, and the second gives the details of the 

lifting of a dynamical system from a nonorientable ambient space to 

an orientable double covering manifold. 

Construction 1 - Poincaré map 

Let G = KxR act on a differentiable n-manifold M as a Lie dynamical 

system, and let G(P) be a nonstationary orbit with codimension 1 in 

M. Assume that G(P) is future recurrent and we shall procede to de­

fine the Poincaré map (or first-return map) 

f L -»- L, 
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where L is a line-segment normal to the (n-l)-submanifold G(P) at 

the point P e M. For simplicity we shall assume that both M and the  

(n-2)-manifold K(P) are orientable, so that the results of Lemma 1 

in chapter 4 are available. In this case each K-orbit K(Q) near K(P) 

is a compact (n-2)-manifold that covers K(P) just once, and G(Q) is 

a nonstationary orbit of codimension 1. 

At a selected point P on the orbit G(P) choose an open line-segment 

L normal to the (n-l)-submanifold G(P). (That is, L is a smooth non-

singular curve that is transverse to G(P), and so L appears as a nor­

mal line-segment in an appropriate local chart on M and for a suita­

ble auxiliary Riemann metric on M ) . Using the constructions of the 

earlier Lemma 1 we place a collar C around G(P) over the base 

K(P) = C A G ( P ) ; with C formed as the K-saturation of the line seg­

ment L. Of course, we restrict the segment L and the collar C to lie 

suitably near to K(P), as is convenient. 

Since G(P) is future recurrent the time-translates of K(P) return to 

meet the collar C at infinitely many future instants. Each future 

recurrence of G(P) to meet C yields an intersection C/"\G(P) that is 

a K-orbit which meets the segment L in precisely one point. We deno­

te the first-return of P to be *(P) e L. Similarly, for each point 

0 e L, sufficiently near to P, there is a first-return time t(Q), 

very near to t(P), with a corresponding first-return point f ( 0 ) near 

to ¥(P). In this way we define a first-return map (classically called) 

the Poincaré map). 

V L + L dorn ( f ) L 

from some open neighborhood d o m ^ ) of P in the segment L, with ran­

ge in L. For definiteness take dom(4f) to consist of all points 

Q e L which have a first-return f(Q) e L. 

In order to make evident the smoothness of the Poincaré map ¥, and 

to investigate its dependence on the selection of P and L, we intro­

duce polar coordinates within the collar C by means of the "radial 

coordinate" l e L and the "directional coordinates" a e K(P), as in 

the previous description of the collar C % K(P)xL in Theorem 3. 

Consider ths first-return map 

F C - C 
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where dom(F) is the K-saturation of dom(ff), so dom(F) is an open 

neighborhood of K(P) in the (n-1)-manifold C. Certainly F is a C a ­

rnap in a neighborhood of K(P), in particular for all small \%\, 

because this is a classical result of R-dynamical systems. We write 

the map F on dom(F) C C in term of the polar coordinates (a.,l) 

(a, «,) - (A(a,J,), L(a,«,)) , 

where A(a,£) and L(a,l) are in class C°°. But L(a,fc) = L(i) since 

the family of K-orbits in C is preserved (as a family) under the 

map F. Thus the map F induces the map ¥ on the segment L, 

J L L I + L U ) 

and hence V can be considered as a real C -function of the real va­

riable il that is the coordinate along L. It is clear that the proper­

ties of the Poincaré map f are independent of the choice of the 

point P, the line-segment (smooth nonsingular curve) L, and the coor­

dinate I along Lj as analyzed next. 

Clearly the Poincaré map ¥, in terms of the coordinate & e dom(y)C L 

satisfies the conditions 

i) ¥ is a C -map from an open set dom(q') C L into the open line-

segment L ; 

ii) <F dom(4r) -+ ranged) is a bijection ; 

— 1 00 —1 

iii) &¥/dl ^ 0 on dom(l'), since ¥ is also a C -map (where f has 

the domain specified as range (?) or codom(y) ). 

Further special properties of the Poincaré map ¥ hold in the impor­

tant case where Z = G(P) is a G-minimal set, especially the case 

when Z = K(P) $ S 1 is a periodic orbit. 

In the case when G(P) lies in a minimal set z , then L O Z belongs to 

the domain of the first-return map ¥ (as usual, we assume that z has 

empty interior in M and that the endpoints of L do not belong to z ) . 

Then we further conclude that 

iv) ¥ maps L C\ Z onto itself, where L C\ Z is a compact, nowhere den­

se, linear subset of L ; hence ¥ induces a discrete dynamical sys­

tem on L A E which is then minimal. 
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and 

v) the s t h iterate 1^ S^ is defined on some open neighborhood (depen­

ding on s = 0,1,2,3,...) of L O E ; and furthermore 

(s) 

V (IQ) = fcQ , for some iterate s ^ 1 and £,Q e L O £» 

holds just in case g ( ^ Q ) = G(P) is a periodic orbit. Thus, unless 

E = G(P), is a periodic orbit, the compact set L r\ Z is perfect. 
2 

It is known 113,381 that no C -function y can satisfy the five pro­

perties i) ii) iii) iv) and v) (with no periodic points). We shall 

return to this conclusion in our investigation of minimal sets in 

Theorem 7. 

In particular, the important case where G(P) is periodic, so 

L f\ Z = P, is of special interest. In such circumstances, provided 

L is suitable short, the Poincaré map can be described by a germ 

of a C -diffeomorphism of (R,0) - and this germ is specified up to 

conjugation in this group. Hence the characteristic multiplier 

d¥ I 

y = — is a geometric invariant and the periodic orbit G(P) is 
d £ , * = 0 

locally asymptotically stable (as t «) whenever |p| < 1. 

This discussion concludes our construction 1, and its analysis. 

Construction 2 _ Lifting to orientable double cover 

Let G = KxR act on a differentiable n-manifold M as a Lie dynamical 

system. We assume that M is nonorientable and we seek to lift the 

Lie dynamical system {G,M,$} to a covering system {G,M,$} on the 

orientable double covering manifold M. That is, we seek a compact 

connected Lie group K, and an action of G = KxR on M, which projects 

equivariantly onto the action of G on M under the given projection 

covering map 
TT M + M. 

For simplicity we assume that G acts locally effective on M, and 

furthermore that the compact group K acts effectively. This is not a 

restrictive hypothesis, since we could otherwise factor K by its iso-

tropy subgroup K„ so K/K„ acts effectively (hence we procede to assu-
M M 

me that K., = e is the identity alone). More to the point, it is ac-
M 

tually only the K-orbits, R-orbits, and G-orbits that are of signifi­

cance in our geometric analyses - and these orbit structures are un­

changed by the appropriated identifications corresponding to the 

collapse of the isotropy subgroups. 
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For the classical case of an R-flow on M it is easy to lift the infinitesimal ge­
nerator of the flow to a vector field on M, by means of the local diffeomorphism 
provided by the covering projection IT. 

In the case of a Lie dynamical system of G = KxR acting on M, it is also easy to 
lift the infinitesimal generator of the Lie dynamical system from M to a corres­
ponding Lie algebra of vector fields on M. But now we must further require that 
the corresponding group K is compact, and that K acts effectively on M. 

We begin with the covering space 

IT M + M, 

where M is an orientable double covering manifold of the given nonorientable n-
manifold M. Let A(G) = A(K)xA(R) be the infinitesimal generator of the G-action 
on M, and using TT, we lift this to a Lie algebra of vector fields A^XA- on M. We 
take the obvious R-action generated by A_ on M, and next find a compact group K 
with action generated by A^. 

There exists a unique simply connected Lie group ft which acts (locally effective­
ly) on M and M according to the infinitesimal generators A(K) and A ^ , respectively. 
We denote the corresponding isotropy groups by N and N, so K = ft/N and K = ft/N. 
Here N is a discrete normal subgroup of ft and clearly N C N. 

Take an element v E N so that the action of v on M yields the identity map, that 
is, v(P) = P for each P e M. Further v acts on M and either yields the identity 
map of M (in which case v e N ) , or else v interchanges two points P^ and that 
lie on M above P e M, that is, v(P^) = P^. But if v interchanges two such points 
on M, then v leaves fixed no point Q e M but v(0 1) = 0«, as earlier. This result 

1 * 
is evident since, by continuity, the set of points of M left fixed by v is open, 
and also the set of those interchanged is open in M. Thus we conclude that either 
i) \> e N acts as the identity on M 
or 
ii) v e N-N reverses the two sheets of M covering M. 

2 -1 In the second case v is the identity, and v = v. 

We conclude that N is a normal subgroup of N ; namely for y e N, v~"\iv e N for 

each v £ N. Also for each pair and v 2 in N-N the product v^Vg""* £ N ( s i nce 

v 1\> 2
 1 twice reverses the two sheets of M over M ) , and therefore v^ and v 2 belong 

to the same coset of the quotient group N/N. Hence N/N contains only one nontri­

vial coset, and so N/N = z
2 » o r e^- s e N = N. 

Now standard group theory specifies the isomorphisms 
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K * K/N = (K/N)/(N/N) = K/(N/N). 

Therefore we conclude that K is a two-fold cover of K, or else that K = K. In ei­
ther case the connected Lie group K is compact, and acts effectively on M with the 
given infinitesimal generator A^. 

Finally define the action of G = KxR on M, as generated by the Lie algebra 
A xA . Then G acts locally effectively on M, since the isotropy subgroup is lo-K R 
cally isomorphic to a subgroup of the isotropy group of G acting on M. Furthermo­
re the G-action on M projects, via ir, equivariantly onto the given G-action on M -
because ir carries A xA onto A(G) and the required equivariance need only be ve-

K R 
rified locally near each point P e M above each P z M. 
Our construction is completed for lifting the Lie dynamical system G = KxR on M 
to the Lie dynamical system G = KxR that acts on the orientable double cover M 
over M. But we shall briefly analyze this lifting procedure as it applies to G-
periodic orbits on M, and more generally to G-minimal sets on M. 
Let Z be a G-minimal set in the n-manifold M. Again assume that M is nonorientable 
with an orientable double covering space M, with the given projection map 

ir M M, 

and we seek to lift Z to a G-minimal set z in M. The plausible choice z ^ = ir "'"(z) 

is compact but may not be connected, as so we must investigate further to find 
the required G-minimal set Z above Z . 

Take any point P e Z and choose a point P e Z ^ above P. Since z is minimal, the 
orbit closure G(P) = Z . Since the G-action on M projects equivariantly to the G-
action on M, the orbit G(P) projects onto G(P). Hence the closure G(P) projects 
onto Z . Thus G(P) is a compact G-invariant set, and this must contain a G-minimal 
set which we call Z . 

Certainly the G-minimal set Z is contained in Z ^ , and so TT(Z) £ Z . But take a 
point Q e Z with Q =ir(Q) e E. Then G(Q) = E projects onto G(Q) = z , that is, 
ir(Z) = Z . Therefore Z is a G-minimal set that covers the given G-minimal set z -

Note particularly that if Z has an interior in M (so z = M ) , then z must have an 
interior in M (so Z = M ) . 

In the important special case where Z is the single periodic orbit G(P) = K ( P ) ^ 1 , 
so G(P) is a compact submanifold of M, then G(P) is also a nonstationary compact 
orbit in M. That is, G(P) is also a periodic G-orbit. In this case G(P) must be a 
minimal set Z = K(P) ^ S 1 that projects onto Z . Because the G-action projects 
equivariantly onto the G-action, we conclude that 

ir Z + Z , 
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restricts to yield a covering (at most double) of the manifold Z over Z. From this 

geometric configuration we conclude that 

dim 2 = dim Z, 

and 

dim K(P) = dim K(P) = dimZ - 1. 

Furthermore, the G-minimal set Z = G(P) = K(P) X S 1 must be a fiber bundle, with 

fiber type K(P), over a base circle S"'". 

The two basic constructions, the "Poincaré map" and the "lifting to the orienta­

ble double cover", will be used in our later theorems concerning minimal manifolds. 

Before presenting our major theorems in these topics, we first give a few examples 

of minimal manifolds based on the classical construction of Kronecker that deals 
2 

with an irrational slope flow of R on the torus surface T . 

2 

Example 1 - Let R act on the torus surface T as a classical flow, say a "Krone­

cker flow of irrational slope", where each trajectory is almost periodic and den-
2 2 

se in T . Hence T is an R-minimal set. 

Next take G = KxR, where K is the abelian toral group acting as a Lie dyna­

mical system on the n-manifold M = "xT . That is, we let K = T n * act on 
2 

itself by the usual group translation, and then let R act on T , as described 

earlier. In this manner we define the required Lie dynamical system with the ob­

vious product action of G = T n 2XR on M = T n ~ 2 x T 2 . 

Each G-orbit is then nonstationary with codimension 1 in M. Moreover each G-orbit 

is a line-manifold that is dense in M. Hence M is the unique G-minimal set for this 

Lie dynamical system. 

In the next example the ambient n-manifold M will be a nontrivial fiber bundle 
2 

over the base torus surface T . Our later Theorem 8 will show that this example 

is typical of the general case of a minimal manifold, for a Lie dynamical system 

with nonstationary G-orbits of codimension 1 in M. 

Example 2 - We shall define a Lie dynamical system with G = KxR = SO(n-l,R)xR 

n—2 2 

acting on a nontrivial fiber bundle M = S , such that each G-orbit is 

nonstationary of codimension 1 and dense in M - so M is a G-minimal set. 

First we define the ambient n-manifold M = ( S n ~ 2 % S 1)xS 1. Here ( S n ~ 1 > ^ S 1 ) is 

the fiber bundle (nontrivial when n is even) constructed over the base S 1 , treated 

as [o,l] (mod 1), using the antipodal map of the fiber S n~~ 2 for the identification 

at the endpoints of the segment £o,lJ. Next treat the meridian circle of the to­
rus surface T 2 as the base circle of ( S n ~ 2 XS 1)» and use the longitude circle of 

T as the other factor S 1. Thus we obtain the n-manifold M = ( S n ~ 2 XS^xS 1. 
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Equally well, we can regard M = S n 2 $ T 2 , where the bundle over T 2 is nontrivial 
when n is even. 

Next we define the required action of G = KxR, where K = S0(n-1,R), on the n-
manifold M. Use the standard action of K = S0(n-1,R) on the fiber S n 2 over each 
point of the base Ŝ " ; since the antipodal map of the sphere commutes with all 
rotations, K acts on the fiber bundle S n 2 % S 1 . Now use the given irrational flow 

2 n-2 of R on the base T , with the specified action of K on the fibers S , to define 
the required action of G = SO(n-l,R)xR on the n-manifold M = S n ~ 2 X T 2 . 

In this Lie dynamical system of G = SO(n-l,R)xR acting on M = S n 2 X T 2 we note 
that each G-orbit is nonstationary with codimension 1, and each G-orbit is dense 
in M. Therefore M is a minimal set. 

We observe further that M is nonorientable, when n is even, but that each G-orbit 
is an orientable (n-1)-manifold, in fact a line-manifold diffeomorphic to S n 2xR. 
It is also interesting to note that if we modify the R-action to be strictly pe­
riodic on the base T 2 , then each G-orbit on M = S n~~ 2 X T 2 becomes a periodic orbit 
of codimension 1 in M - but in this case M would no longer be a minimal set for G. 

In closing this discussion we remark that a slight modification of the construc­
tion in this example could replace the fiber S n 2 by a nonorientable projective 
space, and then each G-orbit would be nonorientable ; yet still dense in the ambient 
minimal n—manifold. 

The final two theorems of this investigation show that the nature of a G-minimal 
set E, consisting of nonstationary and codimension 1 G-orbits, is either like tho­
se on the sphere - that is, Z is a periodic orbit ; or else like those in the abo­
ve examples - that is, Z = M is a fiber bundle over a torus surface. 

Theorem 7- Let G = KxR act on the differentiable n-manifold M as a Lie dynamical  
system. Let Z be a G-minimal set consisting of nonstationary orbits of codimension 
1 in M. Then either 

i) Z consists of one periodic orbit, say Z = G(P) = K(P) X S 1 , 

or 

ii) Z = M. 

Proof 

First, consider the case where M is orientable ; the nonorientable case will be 
treated later using an orientable double cover M and an appropriate lifting of G 
to G, as in our earlier construction. 

Take a point P e Z and consider the corresponding orbits K(P) and G(P) in z. By 
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the Lemmas before Theorem 3 we note that K(P) is a compact (n-2)-manifold that 

lies within a tubular neighborhood U in which every K-orbit is of the same orbit 

type as K(P) - if K(P) is known to be orientable ; or else every K-orbit (other 

than R-translates of K(P) in U) is an orientable double covering of K(P). Unless 

E = G(P) = K(P) XS^ is a compact periodic orbit as in conclusion i), we can assu­

me that G(P) is future recurrent back to any arbitrary neighborhood of K(P). 

Thus, excepting the case i) where G(P) = Z is a periodic orbit, we conclude that 

all K-orbits in U are of the same orbit type, and hence K(P) must itself be orien­

table. In summary, assuming M is orientable, we find that either 

i) Z = G(P) = K(P) X S 1 is a periodic orbit, 

or that each K-orbit in Z is necessarily an orientable (n-2)-manifold- all of the 

same orbit type 

We next recall the construction 1) for the Poincaré map 

«P L + L dom(f) L 

for a selected line segment L normal to G(P) at the point P. As usual we suppose 

that Z contains no interior in M (otherwise Z = M and the theorem is proved) and 

L is an open segment through P, with endpoints not in z. 

The pertinent information for the Poincaré map ¥, when G(P) lies in a minimal set 

Z , which we suppose is not a periodic G-orbit, is expressed in conditions i) - v) 

of the earlier construction 1. In essence, L A Z is a perfect set, without perio­

dic points and without interior, invariant under the map y. But the famous analy­

ses of A. Schwartz |10,38| (following the methods of A. Denjoy) show that these 

2 CO 

five conditions are impossible when ¥ E C , in particular for a Lie dynamical C -

system. Thus the supposition of the existence of the G-minimal set Z, that is nei­

ther a periodic G-orbit, nor fills all M, must be rejected. Therefore the theo­

rem is proved in the case where M is orientable. 

Now consider the remaining case where M is a nonorientable n-manifold. In this case 

let the nonorientable manifold M have the orientable double covering manifold M, 

and lift the G-action on M to the G-action on M, as in the prior construction 2 ) . 

Further let Z c M be a G-minimal set that projects onto the G-minimal set Z CL M. 

Clearly Z consists of nonstationary G-orbits of codimension 1 in M. 

Suppose that the G-minimal set Z contains no periodic G-orbit, nor does Z contain 

any interior in M. We shall find a contradiction to these suppositions by conside­

ring the lifted G-minimal set Z. As remarked in the earlier construction 2 ) , z 

cannot then be a compact periodic G-orbit ; and our supposition demands that z 

have empty interior in M. But these conditions contradict the first part of our 
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proof that deals with the G-minimal set Z in the orientable n-manifold M. Thus we 
conclude that E must be either 

i) E=G(p) = K(P) X S 1 , a periodic orbit 
or 
ii) E = M, since E has interior in M. 

Therefore the Theorem is proved in all cases. D 

Remark - As in the theorem let E be a G-minimal set, consisting of nonstationary 
orbits of codimension 1, in the n-manifold M. If M is assumed orientable, then we 
have noted that each K-orbit K(x) C E is also orientable, and all such K-orbits 
are diffeomorphic. 

But if M is nonorientable, then Lie dynamical systems, like those discussed in 
2 

example 2 ) , show that M = K(x) )j( T can be a minimal manifold with K-orbits that 
are nonorientable. 
Corollary - Let G = KxR act on the differentiable ri-manifold M as a Lie dynamical  
system. Let an orbit G(x) have a nonempty compact future limit set u)(x) that  
consists entirely of nonstationary orbits of codimension 1 in M. Then either 

i) w(x) = K ( x ) S 1 is a periodic orbit toward which G(x) spirals as a limit cy­ 
cle as t 0 0 (for some x e w(x), and allowing the possibility G(x) = o>(x) ) 

or 

ii) w(x) = M, so M is a G-minimal set. 

Proof 

The compact G-invariant set (o(x) must contain a compact G-minimal set z C M, and 
E consists of nonstationary orbits of codimension 1. By Theorem 7 either 

i) Z is a periodic orbit G(x) = K(x) X S 1 (some x e z ) 

or 
ii)Z = M. 

In the second case ii) Z = M implies that M is a G-minimal manifold so u)(x) = M 
and the Corollary is proved. 

Thus consider only the case i) where Z = G(x) = K(x) S 1 is a periodic orbit 
contained i n w ( x ) . We must then show thatca(x) = z is a limit cycle towards which 
G(x) spirals as t + •» (allowing G(x) = u> (x) ). 

We consider first the case where M is orientable, and deal later with nonorienta­
ble manifolds by the technique of orientable double coverings as in the prior 
construction 2 ) . Hence assume that M is an orientable n-manifold, and begin with 
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the hypothesis that Z = G(x) = K(x) ^ S 1 ; and first assume that K(x) is also 
orientable. 

Since K(x) is a compact orientable (n-2)-manifold, Theorem 3 and the subsequent re­
marks assert that there exists a neighborhood V about the periodic orbit 
G(x) = K(x) X S 1 in which each K-orbit is diffeomorphic to K(x). Moreover, the K-
orbit space V/K can be classified, up to diffeomorphism, in terms of the line seg­
ment L normal to G(x) at x, and the self-diffeomorphism of L upon encircling the 
base circle S 1 of the periodic orbit G(x). If G(x) is itself orientable, then V/K 
is a planar 2-ring or annulus, but if G(x) is nonorientable then V/K is a Mobius 
band. In either case V is a fiber bundle over the base 2-manifold A = V/K, with 
the fiber type K(x). 

Under the projection map of the fiber bundle V onto the base surface A, the central 
orbit G(x) is carried to the central circle S 1 of A. and the G- action on V is pro­
jected equivariantly onto a classical R-flow on the surface A. 

Since G(x) has the future limit set o»(x), which contains G(x) = K(x) ̂ S 1 , the pro­
jection of V onto A must carry the future half-orbit of G(x) onto a spiral trajec­
tory in A approaching the central circle Ŝ ". But the classical geometry concerning 
flows on surfaces shows that this spiral trajectory in A has a future limit set 
consisting entirely of S 1 . Furthermore this spiral in A approaches its limit cycle 

with monotonically decreasing intercepts along the transversal L - from just one 
side of L if A is an orientable ring surface, otherwise alternately from opposite 
sides of L. 

Thus in the case where M and K(x) are assumed orientable, we reduce the study of 
the approach of G(x) towards its limit set u>(x) to a study of a curve in the sur­
face A that spirals towards its limit cycle S"*". Hence we find that G(x) in V 
spirals towards the limit cycle G(x) = K(x) % ;and so w(x) consists of G(x) only. 
Furthermore , G(x) spirals towards its limit cycle G(x) = K(x) with monotoni­
cally decreasing intercepts along the transversal L - from just one side of L if 
G(x) is an orientable hypersurface, otherwise alternately from opposite sides of L. 

Next we assume that the n-manifold M is orientable, but that the K-orbit K(x) is 
nonorientable. In this situation the Lemma 2 before Theorem 3 describes the geome­
try of the K-orbits in a tubular neighborhood V about the periodic orbit 
G(x) = K(x) in M. Namely, the K-orbit space V/K is classified, up to diffeomor­
phism, in terms of the half-closed line segment L + (coordinatized by 0 ^ I < 1) in 
L normal to G(x) at x, and the self-diffeomorphism of L upon encircling the base 
circle S^ of the periodic orbit G(x). 

Look first at the case when the diffeomorphism around s\ attaching L onto itself, 
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preserves the orientation of L. Then V/K is the product L+xS"^. Then the G-action 
in V projects equivariantly onto a classical R-flow in the half-closed annular ring 
A + = L + x S 1 - with the boundary circle S 1 of A + corresponding to the periodic orbit 
G(x). Since G(x) has the future limit set w(x) that contains G(x), the projected 
trajectory in A + must spiral towards the boundary circle s\ monotonically, with 
each encircling of the longitude around' A +. Hence G(x) must spiral towards to limit 
cycle G(x) = K(x) % S 1 which thereby comprises all u)(x). 

Next look at the case where the diffeomorphism around s\ attaching L onto itself, 
reverses the orientation of L. In this case we can consider an appropriate double 
cover V of V, corresponding to a double encirclement of s\ and then trivially lift 
the K-action and induced R-flow to V/K. Then V/K is diffeomorphic to A +, with the 
trajectory corresponding to $^(K(x)) reducing to a spiral approaching the boundary 
circle of A . From this geometric picture we again conclude that G(x) must spiral 

+ — — 1 towards the limit cycle u>(x) = G(x) = K(x) )K S . 

Our theorem has now been demonstrated in all the subcases in an orientable n-mani­
fold M. Finally we now make the hypothesis that M is a nonorientable n-manifold. 
As in the earlier construction 2) we let M, with the projection 

ir M * M, 

be an orientable double covering manifold of M ; and we lift the G-action on M to 
the G-action on M . That is, G = KxR acts as a Lie dynamical system on the orientable 
n-manifold M, and this G-action projects equivariantly onto the specified action 
of G = KxR on M. 

Consider the orbit G(x) in M with future limit set co(x), and then consider the G-
orbit G(x) in M ; where x is a point of M that projects to x e M. Let u>(x) be the 
future limit set of G(x) in M. 

Since the G-system on M and the G-system on M have infinitesimal generators that 
are locally isomorphic under the projection map IT, it is evident that G(x) projects 
onto G(x), and by continuity arguments T T ( W ( X ) ) C O>(X). In fact, for each pair of 
points Q and Q above Q e a>(x) at least one of them belongs to w(x) ; and hence 
ir(o>(x)) =u)(x). Moreover, since u ( x ) C if (a>(x)) we find that w(x) must consist of 
nonstationary G-orbits of codimension 1 in M. 

But G = KxR acts on the orientable n-manifold M as a Lie dynamical system, and 
G(x) has the nonempty compact future limit set w(x) ^ M, that consists entirely of 
nonstationary G-orbits of codimension 1 in M. By the first section of this proof, 
dealing with the case of an orientable ambient manifold M, we conclude that 
o)(x) = G(x) = K(x) /JCS1 is a periodic G-orbit, towards which G(x) spirals as a limit 
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set when t -*• «>. 

Since w(x) = G(x) (for a point x e <u(x) C M above ir(x) = x e w(x)c.M), we conclude 
that ir(G(x)) = G(x) is a single periodic G-orbit. Therefore the future limit set 
w(x) of G(x) is the periodic orbit G(x) = K ( x ) S 1 in M. Hence the theorem has now 
been proved in the last remaining case where M is nonorientable. • 

Remark - The nature of the spiral approach of G(x) towards its limit cycle 
G(x) = K(x) X S 1 is somewhat different in the various subcases of the given proof. 
At any rate we can assert that in every subcase the distance (in some convenient 
metric) from the time-translates *^_(K(x)) to the compact limit cycle G(x) decreases 
towards zero ; 

lim dist {$ t(K(x)), G(x)} = 0 . 
t-»-°° 

For the final theorem of this paper we shall prove an analogue of the famous re­
sult of Denjoy concerning classical irrational (or ergodic) flows on the torus 

2 2 surface T - that is, classical flows on T that are each topologically conjugate 
to a "linear flow with irrational slope" on the usual representation of the torus 
T 2 = R 2 / Z 2 . 

Theorem 8 - Let G = KxR act on a compact orientable n-manifold M, as a Lie dynamical 
system. Assume that each G-orbit is nonstationary, codimension 1, and also dense 

2 
in M - so that M is a G-minimal space. Then the K-orbit space M/K is a torus T , 
and the quotient projection map 

M •+ M/K = T 2 

2 

defines M as a fiber bundle over T ; that is 

M = K X T 2 . 
2 

Moreover, the G-action on M projects equivariantly onto an R-action on T that is  
an ergodic minimal flow. 
Proof 
Since each G-orbit G(x) is future recurrent, but not periodic, K(x) must be an 
orientable (n-2)-manifold in the orientable n-manifold M. Also, since M is a G-
minimal manifold, all K-orbits are diffeomorphic. Thus M/K is a compact 2-manifold, 
and 

M + M/K 

is a fiber bundle. 
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But each K-orbit K(x) has ä trajectory under the time-flow *^(K(x)) that fills 

a dense subset of M. Accordingly, this R-flow projects equivariantly onto a classi­

cal flow on the compact surface M/K. Moreover, each trajectory of this R-flow is 

dense in M/K, that is, M/K is a minimal set. The classical theory of flows on sur-

2 2 
faces guarantees that M/K = T , and that the induced R-flow on T is topologically 

2 
conjugate to a "linear irrational flow" or an ergodic minimal flow on T . Q 

If M is a nonorientable n-manifold, then M/K might not be a manifold (without 

boundary). In this case we can lift the minimal G-action on M to a minimal G-action 

on the orientable double cover M, as in the prior construction 2 ) , and then apply 

the analysis of Theorem 8 to the orientable n-manifold M. Therefore M must be a fi­

ber bundle over a base torus surface. 

REFERENCES 

1. Abraham, R. and Marsden, J. Foundations of mechanics, 2nd edit., Ben­
jamin, NY, 1978. 

?.. Aeppli, A. and Markus, L. Sur l'équivalence des systèmes différentiels, 
Ann. Inst. Fourier, Grenoble, 14, 83-86 (1964). 

3. Bochner, S. Compact groups of differentiable transformations. 
Ann. of Math. 46, 372-381 (1945). 

4. Bohr, H. and Fenchel, W. Ein Satz über stabile Bewegungen in der Ebene. 
Collected Math. Works of H. Bohr, vol. 2, Danish Math. Soc. Kobenhavn, 
1952. 

5. Borel, A. Seminar on Transformation Groups, Annals of Math. Studies, 
No. 46, Princeton Univ. Press, 1960. 

6. Bredon, G. Introduction to Compact Transformation Groups, Acad. Press, 
NY 1972. 

7. Brockett, R. Lie algebras and Lie groups in control theory, Symp. on 
Geometric Methods in Systems Theory, London, Reidel Press, 1973. 

8. Coddington, E. and Levinson, N. Theory of ordinary differential equa­
tions, McGraw-Hill, NY 1955. 

2 

9. Camacho, C. Morse-Smale R -actions on 2-manifolds, Internat. Symp. Dyn. 
Systems, Salvador, Acad. Press NY 1973. 

10. Denjoy, A. Sur les courbes définies par les équations différentielles 

à la surface du tore, J. Analyse Math. 11, 333-375 (1932). 

11. Dold, A. Lectures on algebraic topology, (2nd edition) Springer-Verlag 
NY 1980. 

12. Gottschalk, W. and Hedlund, G. Topological dynamics, Am. Math. Soc. 

Colloq. Publ. vol. 36, A.M.S. Providence, 1955. 

13. Hartman, P. Ordinary differential equations, Wiley, NY 1964. 

14. Hector, G. Quelques examples de feuilletages espèces rares. Ann. Ins­
titute Fourier 26, 239-269 (1976). 

15. Hsiang, Wu-chung and Hsiang, Wu-yi, Some problems in differentiable 
transformation groups. Proc. Conf. Transf. groups, Springer-Verlag, NY 
1968. 

64 



LIE DYNAMICAL SYSTEMS 

16. Kneser, H. Kurvenscharen auf den Ringflächen, Math. Ann. 91, 133-154 
(1924). 

17. Kosniowski, C. (editor). Conference on transformation groups, Newcastle, 
Cambridge Univ. Press. NY 1977. 

18. Lima, E. Commuting vector fields on S 2, Proc. Am. Math. Soc. 15, 
138-141 (1964). 

19. Lobry, C. Dynamic polysystems and control theory, Symp. on geometric 
methods in system theory, London, Reidel Press 1973. 

20. Markus, L. Lie Dynamical Systems, AMS 1972 also Symposium Lectures at 
Oberwolfach May 1971 and NRL-MRC in Washington D.C. in June 1971. 

21. Markus, L. Parallel dynamical systems, Topology, 8, 47-57 (1969). 
22. Markus, L. Lectures in differentiable dynamics (Revised edition), CBMS 

published by AMS, Providence 1980. 
23. Markus, L. and Meyer, K. Generic Hamiltonian systems are neither inte­

grable nor ergodic, Memoir 144 AMS 1974. 
24. Markus, L. and Meyer, K. Periodic orbits and solenoids in generic Hamil­

tonian dynamical systems, Am. J. Math. 102, 25-92 (1980). 
25. Montgomery, D. and Yang, C. Free differentiable actions on homotopy 

spheres, Proc. Conf. on transformation groups, New Orleans, 175-192, 
Springer-Verlag, NY (1968). 

26. Montgomery, D. and Zippin, L. Topological transformation groups, Wiley, 
NY 1955. 

27. Mostert, P. (editor) Proc. conf. on transformation groups, New Orleans, 
Springer-Verlag, NY 1968. 

28. Orlik, P. and Raymond, F. Actions of S0(2) on 3-manifolds, Proc. conf. 
transf. groups. Springer-Verlag, NY 297-318 (1968). 

29. Palais, R. A global formulation of the Lie Theory of transformation 
groups, Memoir 22, Am. Math. Soc. 1957. 

30. Pontryagin, L. Topological groups, Princeton Univ. Press 1946. 
31. Pugh, C. and Schub, M. Axiom A Actions, Inventiones Math. 29, 7-38, (1975). 
32. Raymond, B. Poincaré-Bendixson Theorem does not hold for foliated 3-

manifolds, Symposium at Oberwolfach, May 1971. 
33. Raymond, F. Classification of the actions of the circle on 3-manifolds, 

Trans. AMS 131, 51-78 (1968). 
34. Reeb, G. (and Wu, W.) Sur les espaces fibres et les variétés feuilletées, 

Hermann, Paris 1952). 
35. Rosenberg, H. and Sondow, J. Foliations by planes, Topology 6, 131-

138 (1967). 
36. Sacksteder, R. Foliations and pseudogroups, Am. J. Math. 87, 79-102 

(1965). 
37. Schneider, C. SL(2,R) actions on sufaces, Am. J. Math 96, 511-528 (1974). 
38. Schwartz, A. A generalization of Poincaré-Bendixson Theorem to closed 

two-dimensional manifolds, Am. J. Math. 85, 453-458 (1963). 
39. Siebenmann, L. (et al) Foundational essays on topological manifolds, 

smoothings, and triangulations. Ann. of Math Studies 88, Princeton 
Univ. Press 1977. 

65 



L. MARKUS 

40. Spanier, E. Algebraic Topology, McGraw-Hill, NY 1966. 
41. Zeeman, E.C. (et al) Symposium on diffeomorphisms and foliations 

University of Warwick. Report 1979. 
42. Zeeman, E.C. (et al) Symposium on dynamical systems, chaos, and turbu­

lence, University of Warwick, Report 1980. 

Laurence NARKUS 
University of Minnesota 
Institut of Technology 
MINNEAPOLIS , MN 55455 (USA) 

66 


