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HODGE THEORY AND ARITHMETIC GROUPS 

Steven Zucker* 

I have been asked (with no objection on my part!) to give a unified 

account of the research program that began with [Z1], and which has 

continued with [Z2] and [Z3]. Here is a skeletal description. The objects 

of study in [Z1] are cohomology groups attached to a variation of Hodge 

structure; those of [Z3] are cohomology groups attached to a representation 

of a semi-simple Lie group (see [MM]). That there is a large common 

ground is the main point in [Z2]. A theme which has emerged throughout 

is the identification of L2-cohomology groups on certain non-compact 

manifolds as some sheaf cohomology on suitable compactifications, where 

either of the two objects may be considered to be of primary interest. This 

sheaf cohomology is, in fact, intersection homology in our cases. Cheeger 

has obtained corresponding results for the L2-cohomology of spaces with 

(iterated) conical singularities (see [Ch], [CGM]). 

Without further ado, we begin the more detailed exposition. 

1. Hodge theory with degenerating coefficients (HTDC). The results in 

[Z1] arose out of the need for a Hodge decomposition on the E2 term of the 

Leray spectral sequence of certain morphisms of projective varieties. More 

precisely, we were interested, for application to a problem in algebraic 

geometry, in computing with the Hodge structure of the cohomology groups 
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1 ~™ ill"111 ~— — H (S, R f^C), where f : X —* S is a morphism of the non-singular projective 

variety X onto the smooth complete curve S. Although f C ) may 

be identified as a sub-quotient of Hm+*(X, C), and inherits a Hodge structure 

thereby, it became apparent that a construction of the Hodge structure from 

a complex of sheaves on S was needed. 

Let f : X —* S denote the mapping obtained by deleting the (finitely 

many) singular fibers from X and their images from S. With the help of 

the "local invariant cycle theorem" (see [Ci, (3, 7)]), we can identify 

(1) H^S, R ^ C ) ~ H^S, j^V), 

where j : S — S is the inclusion, and V = R ^ ^ C The essential property 

of Hi is that it is a local system on S underlying a polarizable variation of  

Hodge structure of weight m. 

We should recall here what this last statement means. The sheaf W 

is the sheaf of germs of horizontal sections of a flat complex vector bundle 

V on S. The fiber Vg at the point s € S has a Hodge decomposition 

(2) V = e VP'q . s . s p+q=m 

These decompositions are subject to certain axioms, namely, 

(3) a) The union of the VP' q forms a C00 sub-bundle Vp' q of V : 
s 

b) One defines the Hodge filtration by 

Fr= e vp'q. s ^ s p>r 
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The union of the Fr forms a holomorphic sub-bundle $T of V . s 
c) The flat differentiation of any local section of 3T with respect to 

to a holomorphic vector field gives a local section of j^"1 . 

d) There is a flat non-degenerate pairing on W which is alternately 

positive- and negative-definite on the successive terms of (2). (By correcting 

for these signs, one puts an Hermitian metric on V .) 

In the case where S = S (which, in the geometric situation from the 

beginning of this section, is the case where there are no singular fibers), 

but where S may be of arbitrary dimension, the desired construction had 

been carried out by Deligne, and it goes as follows. We have the usual 

de Rham quasi-isomorphism 

(4) W *S2'S ® C V = : ^ ( V ) , 

The right-hand side has a decreasing filtration F* defined by 

(5) Fr«£(v)) =ag ®a 5^r"p, 
s 

nrf r—D 

where we identify, as usual, the bundle \f * with its sheaf of holomorphic 

sections. By (3c), each Fr(GgOW)) is a sub-complex of QgfWh Then 

HX(S, W) has a natural Hodge structure of weight m + i, in which the Hodge 

filtration is induced by F*. In other words, the filtered complex 8gOW) is 

a cohomological Hodge complex, in the sense of [D2, (8.1. 2)]. Formula (5) 

is notable for its "mixing11 of the Hodge filtration of with that of If. 

This mixing is forced if one wants the resulting Hodge structure to be induced 

from H- (X, C) in the geometric situation. 
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In the general case, with dim S = 1, we have extended (4) to provide 

a resolution of jJW by locally free 0_-modules, such that (5) extends 
S 

as well. The proof that F* induces a Hodge structure of weight m + i 

on j^V) uses the L^-cohomology on S with respect to a Poincare 

metric. The term "degenerating coefficients" was used because the 

dimension of the stalk of j^V can drop at the points of S - S. With a 

little hindsight, we note that 

i*w * T<0 Ri*v • 

the middle intersection homology complex of S with coefficients in W. Thus, 

our construction provides a complete description of a Hodge structure on 

some intersection homology, beyond the classical Hodge theory of compact 

K&hler manifolds. Also, we deduce as a corollary the existence of a natural 

mixed Hodge structure on H* (S, W), a result conjectured by Deligne (D2,p. 7]. 

The proof that the L^-cohomology above coincides with intersection 

homology depends heavily on the asymptotics of the Hodge metric (3d) that 

follow from Schmid's SL2»orbit theorem in one variable [Sc]. Since there 

is still no generalization of this result to several variables, we are unable 

at the present time to even attempt to generalize our theory to higher 

dimensional S (except in cases where S - S is smooth). 

For an exposition on L^-cohomology, the reader is referred to [CGM], [Z3J, 
or [Z4]. 
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In the preceding paragraphs, there is a hint that there might be a 

relation between HTDC and automorphic forms. In [Zl, §12], we show 

that one can give an interpretation of the Eichler-Shimura isomorphism 

[Sh, p. 302], which relates the so-called parabolic cohomology and cusp 

forms for Fuchsian groups, as an example of the Hodge structure on some 

H^S, j^V). In some cases, these groups come from a geometric situation 

(elliptic modular surfaces); we have generalized the Eichler-Shimura 

isomorphism to general elliptic surfaces in [CZ, § 3]. 

2. The L^-cohomology of arithmetic groups* Several years ago, 

David DeGeorge encouraged me to read [MM] after I described HTDC to 

him. We begin with a description of the relevant part of [MM]. 

Let G be a semi-simple real algebraic group, K a maximal compact 

subgroup of G, and r a discrete subgroup of G that acts freely on the 

symmetric space M = G/K. We put S = r\M. Let V be a finite dimensional 

representation of G. One defines a local system W on S by 

W = r\(MXV) 

(where V is given the discrete tppology). Since M is contractible, one 

obtains an isomorphism between cohomology groups: 

(6) H*(S, W) -H#(r, V) . 

For certain G, there is on M a G-invariant (hence Kahlerian) complex 

structure, which therefore descends to S (the Hermitian cases). For such 

S, we have the holomorphic de Rham complex, Q* (W), as before. One 
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defines a second filtration (la filtration bête): 

BrnP(W) = 
QP(W) if p > r 

0 if p < r, 

i .e. , 

Brß- (V) = (FrQg) <8> V. 

It is shown, in effect, in [MM] that if S is compact, B' induces a Hodge 

structure on H^S, W) for all i. 

The preceding does not hold in the context of HTDC, and [Z2] was the 

result of an attempt to understand how such a result could be true for 

Hermitian locally symmetric spaces. What we discovered was that V 

underlies a (locally) homogeneous variation of Hodge structure, and thus 

H^S, ̂ W) has two Hodge structures: one induced by F*, the other by B". 

Moreover, the two are mutually compatible, so we get a double Hodge 

decomposition. The use of F* enabled us to begin a generalization of the 

Eichler-Shimura isomorphism to higher dimensions, but we postpone the 

discussion of this until later. 

The cohomology groups (6) are of especial interest when G is defined 

over <Q> and r is an arithmetic subgroup, because of applications in topology 

and number theory. The space S is then non-compact in general, and one gets Hodge 

decompositions only for the L2-cohomology, Hj2j(S, "¥), which we take with 

respect to natural metrics. The spaces of harmonic forms are finite 

Hodge decompositions are induced from decompositions of spaces of L2 harmonic 
forms. A priori, one must take reduced L2-cohomology, in case the range of d 
is not closed. It seems that this is never an issue for the class of spaces S that 
is being considered here. 
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dimensional, and are " computable" in terms of the representation theory of 

L2(r\G) (see [BW], [B2]). For this to have any bearing on the cohomology 

groups (6), one must understand the mapping 

(7) H'2)(S, V) -IT(S,V) 

(see [Bl] for an earlier treatment of this question), or better, know exactly 

what it is that L^-cohomology computes from, say, a topological viewpoint. 

When r is an arithmetic group, there is a normal projective variety 

S , the Baily-Borel-Satake compactification [BB], which contains S as 

a Zariski-open subset. Let « £ ( 2 ) ^ ' ^ denote the complex of 

sheaves on S with coefficients in W (see [Z3, (1.16)] or [Z4]). We have 

shown in [Z3, § 3], for examples where S has only isolated singularities, 

that 

(8) H'2)(S,V) ~IH'(S* W), 

where EET denotes intersection homology with middle perversity [GM], This 

is achieved by proving that 

(9) £(2)(S** V> * T<n-lRj*V' 

where n is the complex dimension of S, and j : S — S is the inclusion. 

We have conjectured that (8) is true in general (and will be proved by showing 

the appropriate generalization of (9); see [GM]). 

According to Barry Mazur, the following consequence of (8) was not 

previously known. Let S be a Hilbert modular variety of dimension n. 
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Here, M is the product of n copies of the upper half-plane. Then above 

dimension n, the homology H, (S ,• C) is in 11 Poincare duality" with the 

algebra generated by the Poincare' metric volume forms of the factors of M [Z4]. 

It is time for a discussion of the (locally) homogeneous variations of 

Hodge structures of [Z2]. Because the construction is homogeneous, we 

may ignore r. For simplicity, we assume that M is irreducible as a 

symmetric space. We decompose V into weight spaces with respect to 

the (one-dimensional) center Z of K: 

V = e V . 
X 

Without specifying the indexing, which is a bit artificial anyway, we define 

the bundles V^' ^ of (3a) to be the equivariant sub-bundles of If determined 

by the V «s. 
X 

In [Zl, § 12], the Eichler-Shimura isomorphism is deduced from the 

determination of the cohomology sheaves of the successive quotients of the 

F* filtration: 
(10) ^kGr^g(V) . 

It is this much that we have been able to generalize. We observe that the 

terms of the complex Gr^g("W) are equivariant bundles determined by 

representations of K, and that Z acts on all of them with a single weight, 

which we denote by Xj. • Moreover, if r f r1 , then xr 4 Xri • From this, 

it is not hard to deduce that (10) is the equivariant bundle determined by the 
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Xr weight space of the Lie algebra cohomology group H (̂£ , V). 

In the cases where it is known (and, of course, conjecturally in general), 

the isomorphism (8) imparts a Hodge structure to IH^S*, V). For applications, 

it would be useful to have a cohomological Hodge complex that restricts to 

(£2gCW), F# ) on S, preferably one that admits a description that does not 

mention L (cf. [Zl, (4.1), (9.1)]). This has not yet been constructed 

beyond the case G = SL(2, JR), though it is clearly the next order of business. 

3. Some calculations. I have found the following calculations instructive, 

and I hope the reader can benefit from them. (The number lfln or "2" before 

each paragraph selects the context and notation as those of one of the preceding 

sections. ) 

1A. It is an interesting and elementary exercise to see why HTDC 

works for HI = C when one takes S =f S, i. e., how one recovers the 

classical Hodge theory of S from L^-cohomology on S with respect to a 

Poincaré metric. This is left to the reader. 

2A. The non-fineness of «£(2)^S'^ on the Borei-Serre compactification 

S of S. In the case that M is the upper half-plane {(x, y) e C : y > 0} , the 

corner [BS, § 5] associated to the standard parabolic subgroup P of upper-

triangular matrices is obtained by adjoining a line y = oo, which we denote 

by L. Distinguished neighborhoods of L are just sets of the form 

Uc = {(x,y) € C : y > c} . 
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There is a corresponding circle (rH P)\L, which forms a component of 

the boundary of S, with collars (rH P)\U for c sufficiently large. Let 

z e L represent a point of the boundary. We will show that the differential 

of any cut-off function f for a small neighborhood of z in M is of 

unbounded Riemannian norm, and therefore ^ *s not ŝee 

[Z4, (6)]). 

The Poincaré metric of the upper half-plane has the formula 

(11) (dy/y)2 + y"2(dx)2. 

Suppose that f is equal to zero outside the set 

{(x, y) : a < x < b, y> c} , 

and suppose that f extends smoothly to L. Then 

|df|2> |<H>dx|2. 

We see from (11) that |dx| = y, so |df | blows up along part of L like y. 

That any f must have unbounded differential follows by a standard smoothing 

argument, which we omit here. 

2B. The L^-cohomology of a warped product. Let M and N be 

Riemannian manifolds, with metric tensors g^ and g^ respectively. By 

definition, a warped product metric on M X N is a metric of the form 

The point is that the definition of ^2 ) *mPoses 311 ^ conĉ ^Gn on both a 
form and its exterior derivative. 

374 



HODGE THEORY AND ARITHMETIC GROUPS 

(12) gM + w gN , 

where w is a positive function on M,. e. g. (11). We let MX^N denote 

the resulting Riemannian manifold. Under suitable hypotheses, one can 

compute the L2-cohomology of MX^N in terms of the L2-cohomology of 

N and weighted L^-cohomology on M by a generalized Kttnneth formula. 

The proof of this is a simplified version of the argument used to arrive at 

(8). See [Z3, § 2] for details. 

2C/1B. L^-cohomology with respect to different metrics. Let M be 

the ball in Cn, an example of an Hermitian symmetric space, with 

G = SU(n, 1). Let S be a quotient of M by an arithmetic subgroup, and S 

its Baily-Borel-Satake compactification. Let W be a local system on S 

underlying a locally homogeneous variation of Hodge structure, equipped 

with its Hodge metric. 

There is a non-singular model S of S , in which each point of 

S - S is replaced by an Abelian variety (see [He]; this is a trivial instance 

of the compactifications introduced in [AMRT]). We have considered two 

metrics on S: 

i) The G-invariant Bergman metric. We have in this case by (8) 

H(2)(S, V) ~ nr (S*, V) = ff - (S* r<n-1Rj9jev). 

ii) A Poincaré metric relative to S (see [Zl, § 3]). We then have, 

by a mild generalization of HTDC, 
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H* (S, V) ~ HT (S, W) = H' (S, i^W) , 

where i : S — S is the inclusion. 

In local coordinates on S, S is given as A X A n-1 and the two 

metrics can be compared as follows: (ii) presents S as being locally quasi-

isometric to the Riemannian product of A (with the Poincare metric of a 

larger punctured disc, so that the only singularity is at the origin) and An * 

(with the Euclidean metric), whereas (i) presents S locally as a warped 

product of these two spaces, with w = (-log |u|) -1/2 in (12) for u € A 

2D. Examples of Hodge norm asymptotics. The locally homogeneous 

variations of Hodge structure are so explicit that it should be possible to 

use them to generate, without much difficulty, examples of Hodge norm 

asymptotics. These examples should shed some light on the nature of the 

general situation. 

We carry out this calculation here in a case that is perhaps too simple, 

but which illustrates the method clearly. Let S be a Hilbert modular surface 

associated to the real quadratic number field IF. In [Hi], a resolution of 
$ _ 

singularities S of S is constructed such that S - S is a union of smooth 

curves crossing transversally. (This also fits into the general framework of 

[AMRT].) 

Explicitly, let C+ denote the upper half-plane. The symmetric space 
+ + + + M is, in this case, just C X C ; let <p : C X C — S be the canonical 

mapping. One embeds the product of punctured discs, A X A , in S by 
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projecting via <p multi-valued mappings of the form 

(13) 
z = AM^) + BX(t2) 

U2 = A'M^) + B'X(t2) 

(for sufficiently small t̂  and t^), where X(t) = (2iri) Hog t, A and B are 

suitable totally positive elements of IF, and "prime" denotes the Galois 

conjugation of IF (see [Hi, p. 207]). Put x. = Re z. and y. = Im z. for 
3 3 3 3 1/4 -11/4 j = 1, 2, and let a = (y13r2> and b = ) . We have from (13) 

(14) 
y = A 1̂ (11̂ 1) J +B |M | t2|) | 

Ly2 - A'lMl^DI + B ' |M |t2|)| 

The group G is the product of two copies of SL(2, H). Let 

V = SymmV2) ® Symmm(C2) , 

an irreducible representation of G in the usual way. The local system W 

is trivial on sets represented by subsets of M defined by inequalities 

a > c » 0 and b, x̂ , x^ are restricted to lie in sufficiently small intervals. 

From (14), one sees that products of sectors in A X A are contained in 

such sets. The flat section determined by the element 

e, , = ИГЧГГ J®[ ff Г 1 

of V has length asymptotic to a2;i"i+2k"m (cf. [Zl, p. 460], [Z3, (3.7)]). 

Using (14), we see that this is equivalent to 
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k . ) k l ~ <|MV| + |Mt2)|)j+k-(i+m)/2. 

Similar calculations can be carried out for bigger symmetric spaces, 

by using the compactifications constructed in [AMRT], 
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