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Supplement to "Gauss-Manin system and mixed Hodge structure" 

by Morihiko Saito 

This note is a supplement to "Gauss-Manin system and mixed 
Hodge structure"(cited as [Sa]), which is submitted for publication 
in Proceedings of the Japan Academy. In this supplement, we 
discuss the following questions, which we could not discuss in 
full detail in the paper: 

1) the necessity of a unipotent base change in the formulation 
of the result of Scherk and Steenbrink (e.g., counter-
examples to thej formulation of Scherk, Steenbrink and Pham, 
cf.[Ph]), 

2) the diffference between the limit Hodge filtration of 
Schmid (which is obtained using a unipotent basejchange) 
and the limit of Hodge filtration which is obtained without 
a base change. 

&1. The main point of the paper [Sa] is the following: in the 
formulation of the result of Scherk and Steenbrink, it is necessary 
to take a unipotent base change. We give two examples in which ^first, 
the ̂ formulation of Scherk, Steenbrink and Pham as stated in]f[Ph] 

does not apply, (the first version of 1 

(1.1) First we review the notations in [Sa],[SS] and [Ph]. 
Let f:Cn+ ô->- €,o be a holomorphic function with an isolated 

singularity, and let f:X •> S be a Milnor fibration so that 
Hx:= R^a^x's* ls a loca3^ystem on S*= S-{0}. There is a natural 
extension U of Hx to the origin as a locally free (^-Module 
with a regular singular connection V, such that the eigenvalues 
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GAUSS-MANIN SYSTEM AND MIXED HODGE STRUCTURE 

of res(tVd/dt^ are in ( d is denoted by iC x . in 

[Sa,(1.3)].) There is another extention which we call the 

Brieskorn lattice. ^x°^ is a locallv free $s~Module with a 

a regular singular connection such that fCi°^ = v̂+̂  / df̂ dft̂ "1 • 

It is known that there is a natural inclusion ^x°o ^ ^ 
Malgrange), which is (9-^-linear, preserves the connection and 
induces an isomorphism on S . is also a free (HO"1}}-
module of rank u, where CHa"1}} = { I1>0 a^"1 : I air1/i! < «> 

r>0 } and dt = Vd/dt (Malgrange, Pham). 
The Gauss-Manin system jfĈ . is defined as an integration 

of system (cf. [Ph],[Sa]). |f &̂  contains J and X ^ o 
naturally, and it is a holonomic system on S such that 
DR(jf&x) = Rnf*€x ^{f̂ C ls denoted bv #x in [Sa]') 

Let XQQ̂  X xg#U be a base change of X by the universal 
covering p:U + S*. We set Hoo:= HN(X00,C) (̂ T(U,p*Hx) ) , i .e . , 
Ho, is the set of multivalued horizontal sections of Hx . 

We have an isomorphism Ĥ, + ^q / t^/Q , by u + exp 
(-log t log M / 2TT/̂ T) U, where M is the monodromy of Hx and 
the eigenvalues of log M are in [o,l). Here we regard *P as 
a subsheaf of j ̂  ( Hx̂ 5 wnere J-*S* S is an inclusion. 
(1.2) The formulation of Scherk, Steenbrink and Pham (cf.[Ph] ) 

A 
asserts the following. 

Let {*̂ t} t>e the Hodge filtration of Steenbrink on Ĥ  , 
then we have 
(1.2.1) p§t = ^K{0)r\ *#0 / ^~p<K(o)ntJo (C JQ / tj0 -He) 

for any p , where we set := and take intersections 
ro A , O 

m jf(9-x . 
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M. SAITO 

By a result of Steenbrink, F̂st ^ is comPatll:)le with the 
monodromy decomposition = ^ , where = {u € 
(M-X)n+1 u = 0} . First we give an example for n = p = 1 
that tf^0^ / t $0 is n°t compatible with the decomposition 
(hence (1.2.1) does not hold.) 

(1.3) Example 1. f = x5/5 + y5/5 +^x3y3/3 • 
This is the first example in which b-function changes under 

G 
a y-constant deformation ( i .e . , b(s) = (s+1) IL=2(s + i/5) for 
a=0, and b(s) = (s+1) nj=2(s + i/5) for â O (by T. Miwa).) 

We assume now â O. 
We have a C { {9"1} }-basis (w., = x1_1yj_1dx~dy} . . . . . h 

of #(o) . Let <#(o) = lj=0(3tt)1^(o) be the saturation of 
Then we have 
^ ( 0 ) = 2(i.J>,KM>*i{a;1}h,iJ + C{{9t1}>V44 

Set 
V°:= lJ=1C{{3-1}}Wjj + «{0^1}}3tw44 , 

Vk;= £i-j5k(mod5) C{{3t1}}wij for k=1.---'J* ' 

We can verify that for k=o,#'*,4 , Vk is an £(o)-submodule of 
#(o). ( £(0) = CUHO"1}}) For there is a decomposition 

C{x,y}dx-dy = ©J=0( I i-1 j-ld d . 
* 0 i-j=k(mod5) ij y ax-QV> 

of which induces the one on such that the action X,o 
of t and d^.1 are compatible with i t . 

Hence there is a decomposition 4$ = ®̂=g 4$^ (resp. Hx -
(B , resp. = © ) as locally free (^-Modules with connection 
(resp. as local systems, resp. as vector spaces with monodromy 
action) such that V1 = >P 1 (resp. j$ 1 is an extension of 
4 3 resp. = r(U>P*H*)). 
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The action of on V° / tV° is given by the following 

matrix, 
wll 3tw44 w22 w33 

VX 2/5 0 0 0 
3tw44 _a/15 3/5 0 0 
w22 * * 4/5 0 

w33 * * * 6/5 

This implies 
w33 5 0 (mod ttf ) 

W22 = t ' в Ub (mod t 4? ) 
Villi » f2/5 e u. (mod t $ + (Cw22) 

w11 s t"3/5 0 u2 -(a/3)t"2/5 0u3 (mod t>f + (Cw22) 

where (u.K . . . . . . . is a basis of H° such that M u. = 
I i=l, ,4 00 I 

exp(-27r/3T i/5) u± . 
Thus we have ( g{o)/ ji{o)pi txfQ)AH° = (Fû  + <C(u2-(a/3)u3>, 

hence # ^ ° V < # ^ ° V * ^A?Q ŝ not compatible with the monodromy 
decomposition, because we have = ft^°^{\ J$ ^ • 
Remark. We have ^ H° = Cu2 + Cû , because we have 

3̂tt*W11 = 1 ® u2 (mod Z *X 
where 7r:S-* S is a 5-fold covering such that TT t = ZJ and 

( = £x in CSa]) is an extention of TT*Hx as in (1.1) (cf. [Sa(3 - 2) ]) . 

(1.4) Example 2. 
2 

Let f:C ,o (!,o be a holomorphic function such that 
{f=0} is an irreducible and reduced curve. We show that 
FSt * #(0)/ T/FQ lf f is not quasi-homogeneous. 
Proof) By a result of Le and A'Campo, the local monodromy is semi-
simple and x = {o} . Suppose Fgt = 7{ (o)/<#(o)/"\ t̂ fQ holds. 
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There is a basis {u, }, . . . . of H such that F L = TV^ 
(Cuj and M Uj = exp(-2TTi/̂ T a j ) u j , for F^ is compatible with 
the monodromy decomposition. We may assume that -1 < aj < 0 
(l<j<u/2), 0 < aj < 1 (y/2<j<y) and otj + o t ^ ^ = 0 by the 
duality of exponents. 

We set v:= taJ 8 Uj ^ J for j = l , ' " , y and V:= ££=1 

(C{t>Vj C ^/ , V is a free Og-Module containing <#x°\ because 
of pjt = # ( o V y(o)A t / 0 . 

Let (Ŷ  (t)}._-, be a multivalued horizontal basis of 
LL^Q* H..(X. ,C) and (w.K , . . . 1( be a #c-basis of 

Then (det( yi(t) vj )) and (det(Jy•(t) wj)) are both nowhere 
vanishing holomorphic functions on S, due to the duality of 
exponents and a lemma of Kyoji Saito. 

Then we have V = for there is a basis {ê } of V 
such that {tmiei} is a basis of (m±>0) . 

It is clear that = V is saturated ( i .e . , t3 V C V). 
Hence f is quasihomogeneous by a result of Kyoji Saito. Q.E.D. 

Remark. In general, we can show the following. 
Let f:(U ,o-> (C,o be a holomorphic function with an isolated 
singularity. We assume that the local monodromy of f is semi-
simple. Then is compatible with the monodromy 
decomposition, if and only if f is quasihomogeneous. 

Problem. For n=l, does the subspace # ^ ° V t it of 
determine the local moduli of f in the family of y-constant 
deformation? In general, does determine the local 
moduli of f in the y-constant family? 
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§2. The examples in §1 mean that the proof of the formulation 
vthe first version of, of Scherk, Steenbrink and Pham such as stated in^LPh] is not 

complete. This contradiction comes from the following. 

(2.1) Let (H ,̂ Jr' ) be a polarizable variation of Hodge 
structure of weight n on S*: i .e . , Hg is a local system on 
S*, 7*' are holomorphic subbundles of O^* ® Ĥ  such that 
3t yp C ?P-1» and there is a bilinear form 8 Ĥ  -> Z such 
that they induce a polarized Hodge structure on Ĥ  t for t £ S . 
Here = Rnf 5,eCy | g* and f : Y -* S is a compactification of a 
Milnor fibration f : X S , cf. [sa,(l.lf| . 

Then can be extended to the origin as subbundles 7" 
of T , where J" is an extension of Ĥ  => C ® Ĥ  as in (1.1). 
But the limit filtration 7* lt = 0 of HC «> " ^ t 7 is different 
from the filtration of Schmid, which is obtained using a 
unipotent base change by Steenbrink.(H^ m:= r(U,p*Hc), cf.(l . l)) 

(2.2) First we show the existence of the extension 3»" • 

We fix the coordinates t and z of S and U such 
that S = {|t|<l}, U = {Im z>0} and p*t = exp(27r/=T z). 

A natural isomorphism Hc m = r(U,p*H(C) + (p*H )̂z induces 
a Hodge filtration F̂  on Ĥ  a>9 which depends holomorphically 

—1 v on z. As we have F" = M F" for z^U, exp(z log M) F* are Z T x z z 
filtrations on H« M which depend only on t = exp(2Tr/̂ T z). 

Let M = Mg Mu be the Jordan decomposition of M and set 
N: = log M (N is nilpotent). As M has a finite order e (cf. u s 
[Sc_(6.1)]), exp(z N) F; depends on exp (2TT/̂ T z/e) . * z 

The Theorem of Schmid [Sc 6.16] assures that there exists 
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a limit = limIm ẑ €0 exp(zN) F̂  in the flag manifold of m, 
such that the Hodge filtration {F̂ } and the monodromy^filtration 
{W. } determine a mixed Hodge structure on Ĥ  oo. 

Using this theorem we show the existence of 
If we choose an C^ -̂basis of C7" 9 the subbundles f determine 

a holomorphic map $:S* + Flag(Cm), and the existence of is 
equivalent to the extension of $ on S. 

Let { u i j } i = l , j * 0 , - ' - , r i - l be a basis of HC,~ such 
that -N/(2TT/=T) U. . = u. . , (u. -. :=0), M u. . = exp(27r/=T a./e) 1J J. 1,—± s ij 1 
uij (ai<= C0,e-1]). 

Then (vij = exp(-log t log M/2fr/̂ T) (resp. (v^j = 

exp(-log t eN/2iT/TT) u } ) j_s a ^-(resp. £?g-) basis of 7 
(resp. 7 ), where the eigenvalues of log M are in [0,1). We 
remark that in general we have 7 7* 1**7 * i .e . , there is a natural 
Inclusion 7 C 7T* 7 such that 7r*vj_j = ^~ai vj_j • 

Using these basis, 5>*(resp. j^" := 77*3̂ ") can be identified 
with a holomorphic map $:S* -> Flag(H(C w) (resp. i:S* Flag(H(C №) 
such that $(t) = exp(z log M) F'z (resp. $(£) = exp(zN) F ,̂), 
for t = exp(27T/̂ T z) (resp. Z - exp(2TT/̂ T z/e)). 

Using Pliicker coordinates, we can regard $(resp. $) as 
* = (•0(t):---:*k(t)):S* + Pk (resp. $ = ($Q(€) : • . . :$k(€)) :S* - Pk 
where (resp. $̂ ) are holomorphic functions on S* (resp. S*). 
Moreover, there are holomorphic functions ĝ  on S such that 
^(^(tS)) = 6i(£) $i(E), because we have IT V̂ J = € 1 v^. and 
vectoo^budles on S* are trivial. 

By the result of Schmid, $ can be extended to the origin 
holomorphically. Hence there is a nowhere vanishing holomorphic 
function h on S such that h'cp̂  and h.ir (J)̂  are holomorphic 
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at the origin. Let h(€) = JjlJ (TT(£) ) • €J* be a decomposition 
of h such that hj are holomorphic functions on S*. Then 
hj• 4̂  are extended to the origin, and also is $. Q.E.D. 

(2.3) The reason why ?* Î -q ^ F°° is obvlous fr°m tne proof. 
If $ = $07̂  they coincide, but this does not hold in general. 

Example 3- Let be a local system on S*, having a multi

valued basis {€-̂ ,€2} such that 1̂ 6̂  = 62 » M e2 - - e-j_ - e2 5 
where M is the monodromy of ,(M3=1) We define a skew symmetric 
bilinear form <,> on by <e ,̂e2> = 1 , n̂d a Hodge subbundle 
F1:* ^3* v C ^0 Hz by v:= g(t) ® ex + h(t) 8 e2 , where 

g(t):= - a + c t - 2 ^ , h(t):= a C f 1 ^ - t~2/^ , c3 - 1, 
Im C > 0 , a€(C , a ¿ 0 and | a | « 1 . 

It is easy to see that they form a polarized variation of 
Hodge structure of weight 1 . (We set ^°:= (98 Hg , ^2:= {o}.) 
For example, /̂ T <v,v> = - 2 I m g h > 0 comes from Im C > 0 
and |a| « 1 . 

We define another basis {u1,u2> of ^ = r(U,p*Hg) by 
u-^: = - e1 + £ e2 3 u2:= C e-ĵ  - e2 such that M u-ĵ  = £ u-^ , 
M u2 = c"1 u2 and v = a t"1/3 ® u1 + t"2/3 0 u2 . ' 

Then we have 
$(t) = C ( a ux + u2 ) ( C Hc ) for Vt * S* , 
5(t) = C ( a t U;L + u2 ) ( C Hc ) for Vt « S* . 

Hence $(0) = C ( a + u2 ) 7* $(0) = C u2 (Va ^ 0). 
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§3. Some remarks. 
(3.1) The use of the Gauss-Manin system J &^ in the formulation 
of the result of Scherk-Steenbrink was first claimed by P. Pham 
(cf. [Ph]). One might think that J &x and j #x ^ ^[t"*1] * j / a ^ f 1 
would produce the same filtration, because we are considering the 
limit of the filtration on S* = S-{0}. But this is not true, 
because the fundamental short exact sequence 

0 -> Q&S > j 0Y > j 6>x » 0 

does not split as (̂ -Modules in general, and we have an inclusion 
J#Y C J ®Y ®% ^[t^1] (cf. [Sa (2.5),(3-5)]). (The above exact 
sequence was found independetly by F. Pham (cf.[Ph 4.1]).) 
(3.2) The rest of the proof of Theorem (3-2) in [Sa] is almost 
the same as Lemma 2 in [Va]. It is possible to prove the 
theorem without using i t . For we can show the following. Let 
Y •+ Y be a modification which is isomorphic on S*.(Y is smooth) 

Then j (9y is a direct factor of j &^ as a filtered complex (cf.[Sa] 

(3.3) Let R be the residue of t3t: #*o) + - Then 
exp(-2Tr/̂ T R) and the monodromy M are conjugate to each other 
as matrices for n = 1 ( i .e . , {f=0} is a plane curve). 
Combined with the result of Malgrange (Springer Lect. Note, 
^59, p. 115, Theorem (5.4)), we have the following. Let 
b(s) = (s+1) n1(s+a1)mi be the b-function of f , and let 
a(s) = IIj(s-Aj) J be the minimal polynomial of the monodromy. 
Then we have r̂  = max{ nu: exp(-27r/̂ T 0̂ ) = Xj } for n = 1 . 
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In fact, let {u. . } . . be a basis of H such that 
{U±J}J=]L Ai is a basis of Gr̂  for i = 0,1,2 , 
where W is the weight filtration [St]. Since F and W are 
compatible with the monodromy decomposition, we may assume that 
u±J e F1H0Q for i=l, j>Ai/2 or i=2 , and Msu±J = exp(-2ir/?T 
ctij ) u1j with a i j ^ ( - l ,0 ] , where M = Mg Mu is the Jordan 
decomposition. Since N = log Mu acts on as the morphism 
of type (-1,-1), we have N u^ = 0 for i<l , and we may 
assume that - N/(27r/Ti) U2j = uQj for jf£0 and N u2j = 0 
(hence = 0) for j>^0 • 

We set v1j = exp(-log t log M u±j 
t 1J u for i<l or i=2, 

b*2i U2j + t *J(log t)uQj for 1=2, j<£0 , 

so that {v±2 } is a C { { 3t-1} }-basis of . 
By [Sa,(3-2)]> there is an element w..£<7C °̂̂ , such th 

—ecx 
t ij TT*(V . - w ) 6 t^f for u, 4 «• F V 

and -ea. . 
t 1J w*(v±1 - 3tw± ) 6 t/f 

for U . ^ P V , 

where ir: S » t t=iE6 S is a unipotent base change and 
is the canonical extension for ""^x ' Hence 

{9twij}i = 0 or i - l .J iVS W {wij}i = l , j>V2 or i=2 13 a C{{3t1}}-
basis of ^/ , and we have a"1^ C Then by the induction 
on the eigenvalue a±j. , we can show that vQj , (j>Ai/2) 
and v2j are contained in (°K 
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For example, let v = J be an element of such 
that (tat - ai)2 vi = 0 and a± ^ a for i ^ j • We may 
assume that ( t ^ - ô ) = 0N for i >_ 2 by the induction 
hypothesis, where v = I is the expansion of ŵ^ (j< &Q) 
modulo ^1J<f + Ia2j r >a2j c v2j » • Then v± and (t9t - aj[) v± 
are contained in because we have the following identity: 

1 , 0 
a15 1 , a2, . . . > ak 
ala 2ax , a2, . . . , aR det 

k , k-1 k k a±> ka1 , a2, . . . , ak 

= + n±<J (a± - H±>1 (a± - with m<£i/2 
Thus $C^QS) has a basis {vQj. } 1̂  {v .̂ }̂ >m(J {v a± - H±>1 (a ee m 

(by changing ^uij^ if necessary), which gives the desired result. 
In general, we have that \U>f C > which implies that 

fn+1 ^ I &Zf/dx± . But I do not know whether exp(-27r/ir R) 
is conjugate to M for n >_ 2 . 
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