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Singularities, character formulas, and a q-analog of weight multiplicities 

George Lusztig 

Department of Mathematics 
M.I.T. 

Cambridge, MA 02139 

1. The purpose of this paper is to discuss examples in which the intersection coho-

mology theory of Deligne-Goresky-MacPherson [4] enters in an essential way in the 

çharacter formula for some irreducible représentation of a semisimple group or Lie 

algebra. Thus, sections 3-5 are an exposition of the connection between singularities 

of Schubert varieties and multiplicities in Verma modules. In sections 6-11 we give 

an interprétation in tenus of intersection cohomology for the multiplicities of 

weights in a finite dimensional représentation of a simple Lie algebra. I wish to 

thank J. Bernstein for allowing me to use his unpublished results on the center of 

a Hecke algebra. (I learned about his results from D. Kazhdan.) Thèse are used in 

the proof of Theorem 6.1 ; the original proof of that Theorem was based on [10] and 

on Macdonald's formulas for spherical functions. 

2. Notations. For an irreducible complex algebraic variety X , we dénote by 

H 1(X) the i-th cohomology sheaf of the intersection cohomology complex of X . 

Let g be a simple complex Lie algebra, b <z g a Borel subalgebra, h c b 

a Cartan subalgebra, h its dual space. Let W c Aut(h ) be the Weyl group, and 

let S c W be the set of simple reflections (with respect to b^). Q c h is the 

subgroup generated by the roots. 

P <z h is the subgroup consisting of those éléments of h which take inté

gral values on any coroot. Then Q has finite index in P . 

Supported in part by the National Science Foundation. 
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SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITIES 

W <= {affine transformations of h } is the semidirect of W and of P 
a — 

^ * 
Cacting by translations). We shall regard W & as acting on the right on h . The 

transform of X € h under w € W will be denoted (X)w . 
— a 

W is the subgroup of W generated by W and Q . This is the affine Weyl 
a a 

group. It is a Coxeter group whose set sa of simple reflections is S together 

r * | V i 

with the reflection in W & whose fixed point set is ix € h. I < x ' a

0

> = 1^ > here 

a € h is the highest coroot. Let Q be the normalizer of S in W . Then W 
o — a a a 

is a semi-direct product ^"^ a * 

For A G P , we dénote by p. the same élément, regarded in W . Since 

À a 
the group law in W a is written multiplicatively, we have P A + A t = P x ' ^ x 1 f o r 

A,A1 G P . I is the length function on the Coxeter group W & . We extend it to 

W by J I (YW) » £(wy) « £(w) , w € W , y G ft . For s £ S , let a G Q be the 
a a s 

v . 
corresponding simple root and let a g G h_ be the correspondmg simple coroot. 

Let P + + - {p G P | < p ; a g > > 0, Vs G S} . Then P + + parametrizes the dou

ble cosets WvW /W : A+*Wp.W . For A G P + + , W, 

a A À 

dénotes the stabilizer of A 

in W , m is the élément of minimal length of 
À 

Wp xW , n x is the élément of 

maximal length of Wp xW , v x is the number of reflections in w x • p x = s = s 

(q is an indeterminate). For A = 0 , we set v = v , P = P ; p G P 
o ' o 

dénotes 

half the sum of ail positive roots ; p G h dénotes half the sum of ail positive 

coroots. 

The fundamental alcove A Q is the open simplex in ?®1R (embôdded in h ) bounded 

by the fixed hyperplanes of the various reflections in sa. An alcove is an open 

simplex in P ® ] R of the f orm (A Q ) W , w G W ^ (which is unique) . Def ine a new 

(left) action of W on the set of alcôves (dénotes A + yA) by the rule y((Ao)w) 

= (A )yw . For each X € P , we dénote 
A A = ( Ao>PA > A~A = ( " A o ) p A 

. Let <• be 

the standard partial order on the Coxeter group W^ . It is generated by the rela

tions s-s 0.. .s s < s-s0...s 
1 2 î n — 1 2 n 

for any reduced expression s,...s (s. G S ) , 
1 n i a ' 

1 _< i < n . We extend it to a partial order _< on W 
a 

by y w y Tw W y = y ' and 

w _< w 1 

(yt y' € fi , w,wT G W a) . Let 
= s be the partial order on P defined by 
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\ < x f
 X1 - X is a linear combination of positive roots, with 1 0 intégral 

coefficients. If X, X» G P + + 

, we have X < X1 if and only if n x l V (in W ). 
a 

For X € h , M x 
dénotes the Verma module for _g with highest weight X (with 

respect to b) and L1 dénotes the unique irreducible quotient g-module of 

3. We will restrict our attention to the Verma modules M 
-pw-p 

(w G W) . In the 

Grothendieck group of ^-modules, L 
-pw-p 

is a linear combination with intégral 

coefficients of the g-modules M 
-py-p 

(y < w) . The g-module M 
-pw-p 

Mfgg 

appears with 

coefficient 1, but the other coefficients were rather mysterious. A study of repré

sentations of Hecke algebras has led Kazhdan and the author [7] to give a (conjec

tural) algorithm for thèse coefficients and to interpret them in terms of singula

rities of Schubert varieties. Let us define the Schubert varieties. Consider the 

adjoint group G of g , and let B be the Borel subgroup corresponding to b , 

G 
w 

the B-B double coset of G containing a représentative of w € W , 0 = G /B c 
w w 

G/B . The Zariski closure 
w 

of 0 
w 

in G/B is said to be a Schubert variety. 

It is the union of the various 0 
y 

for y _< w . 

The following resuit was conjectured by D. Kazhdan and the author [7],[8] and 

was proved by J.L. Brylinski and M. Kashiwara [3] and independently by A,A. Beilinson 

and J.N. Bernstein [l], using the theory of holonomic Systems. 

Theorem 3.1. In the Grothendieck group of g-modules, we have, for any w G W : 

(3.2) L 
-pw-p 

= I 
y<w 

(_ 1 )^(w)-A(y) (S (-l)1dim 
i 

4 
y 

(V ))M 
w -py-p 

where dim H 1 

0 
y 

(0" ) 
W 

is the dimension of the stalk of 
= s 

at a point in 0 • 
y 

4. We shall now describe the integers dim 4 
V 

( 7 ) 
w 

following [7] ,[8]. Let us re-

call the définition of the Hecke algebra H associated to (W,S) . It consists of 

ail formai linear combinations 
wGW 

a T 
w w 

with a G 
w ^ 1 / 2 , q " 1 / 2 ] with multipli

cation defined by the rules T T t w w 
= T , 

ww 
if £(ww f) - £(w> +*,(wf) and 

(T 8+D(T g-q) 0 if s G S ; here 
1/2 

q is an indeterminate. There is a unique 

ring involution h -v h of H which takes ,1/2 
to 

q-
1/2 

and T 
w 

to (w G W). 
= sW 
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It is semilinear with respect to the ring involution q 1 / 2 

gh 
- 1 / 2 

of 2[q ,
1 / 2 n " 1 / 2 l 

i »q J« 
According to [7,1.1] , for each w € W , there is a unique élément C f G H 

w 
of the 

f orm C = q 
- A ( w ) / 2 

y<w 
P T 
y,w y 

, where P 
y,w 

are polynomials in q satisfying 

P 
w,w 

- 1 and deg P 
y,w 

< l / 2U(w ) - j t(y)-l) for y < w , and such that C* = C 1 . 
w w 

The uniqueness of C 
w holds also if P 

y,w 
for y < w is only assumed to be a po-

lynomial in q and 
-1 

q in which only powers 
i 

q 
with i j< i /2(jt(w)-A(y)-D are 

allowed to occur. It follows automatically that the P 
y,w 

are polynomials in q . 

The proof in L7J applies without change. (The discussion so far in this section, 

applies to an arbitrary Coxeter group and in particular to <VSa> . It also applies 

word by word to Mfggf which although is not a Coxeter group, possesses the length 

function and the partial order < which give a sensé to the previous définitions 

and results.) 

We can now state 

Theorem 4.1. Let y _< w be two éléments in the Weyl group W Then 

(4.2) dim 4 
y 

= {L € = o if i is odd 

(4.3) 
i 

dim w 2 i 

y 

= {L 
= p 

y ,w 

Besides the original proof in [8], there is another proof in [12] which has the 

advantage that it also applies in the case where 0^ is replaced by the closure of 

a K-orbit on G/B , where K is the centralizer of an involution in G . (This 

plays a rôle in a character formula for real semisimple Lie groups.) Both proofs 

make use of réduction to characteristic > 1 and of a form of Weil's conjectures. 

Combining Theorems 3.1, 4.1, we can rewrite (3.2) in the form 

(4.4 ) L 
-pw-p 

= Z 
y<w 

(_1)£(w)-£(y) P 
y,w 

(1)M 
-py-p 

where P (1) 
y,w v is the value of P 

y,w 
at q = 1 . Using the inversion formula [7 

3.1] for the matrix P ) , this can be also written as 

(4.5) M 
pw-p w<y 

P 
w,y 

(1)L 
py-p 

2 1 1 
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5. Remarks. (a) In the case where y,w e w a , the polynomials P 
y,w 

bave been inter

prétée! in [7] in terms analogous to (4.3), as intersection cohomblogy of certain 

generalized Schubert varieties. (In particular, they have > 0 coefficients). 

(b) There is a (conjectural) formula analogous to (3.2) for the characters of irre-

ducible rational représentations of a semisimple group over an algebraically closed 

field of characteristic > 1 . It involves the polynomials P for y,w in an 
y y,w 

affine Weyl group. (See [9] for a précise statement). 

6. If A € P + + , the g-module Mf is finite dimensional. With respect to the 

action of h , it décomposes into direct sum of weight spaces parametrized by élé

ments u € p . For V € P + + , we dénote d (L.) 
u A 

the dimension of the p-weight 

space in Mfg . It is well known that MfgG = 0 unless u _< A . The remainder 

of this paper is mainly concerned with the proof of the following resuit. 

Théo em -6.1.y If Mùfg ++ 
€ P Mùf < A , then d Mùf = P 

n ' n A 
(D 

Here, P 
ny' nA 

is defined in terms of the Hecke algebra of W 
a 

, see section Mùf 

(This Hecke algebra will be denoted m ; from now on, we shall reserve the letter 
H to dénote the Hecke algebra of W 

a 
. It is a subaleebra of H .) Note that 

P 
Yy,Yw 

= P 
y,w 

( Y Mùf y,w e Mùf so that the polynomials P 
y' Mùf 

, for y',w' Mùf w 
a 

have > 0 coefficients. For type A, Theorem 6.1 follows from the results of [11], 

where P 
V n A 

are interpreted as Green-Foulkes polynomials. In gênerai, 6.1 would 

be a conséquence of the conjecture 5(b) together with the Steinberg tensor product 

theorem. The integers Mùf Mùf are given by Weyl s character formula. To state the 

formula, we consider the éléments 

( 6 . 2 ) Mùf SB 
1 
W w€ 

Mùf 
Wp AW 

Mùf (X € P + + ) Mùf 
w€W 
Mùf (-1) 

Mùf 
w 
-1 

Mùf 
w€W 

( Z w) ,(A€ 
++ 

P +p) 

of the group algebra Mùf . Then Mùf a e p " ) form a Z-basis for the subgroup 

K 1 
= {x € Mùf1 Mùf :w ] 

a 
: ( E w)x 

w€W 
= x ( 2 w) -

w€W 
|W|*x} c Q[W ] 

a 
and jA 

(A € P +p) 

form a Z-basis for the subgroup 

J 1 

Mùf {y € 7L [ W ] 
a : ( I 

239 
(-D 

Mùf 
w 
-1 

)y = y ( 2 w) 
w€ W 

Mùf | w | - y } 

212 



SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITES 

It follows that K1 is a subring of Mùf with unit élément Mùf Mùf 
w€W 

w 

and that, with respect to the product in Mùf we have Mùf <= j 1 , i.e. J 1 

is a right K 1 -module. Moreover, the map Mùf J 1 given by k Mùf 'k is an 

isomorphism of right Mùf -modules. (This is a reformulation of [2, Ch. VI, 3.3, 

Prop. 2(iii)] . We can now stat Weyl 1s character formula as follows 

(6.3) For MùfMùf , let Mùf Mùf E 
u€P 

++ MùfMùf Mùf . Then C'1 

L x 
is the unique 

élément in K1 such that 
JP 
C'1 

c x 
Mùf ^ X + p ' 

(This is équivalent to the usual formulation in which the character of Mùf appears 

as a quotient of two alternating expressions.) 

We wish to consider a q-analog of the multiplicity Mùf . The q-analogs 

of the éléments (6.2) are the following éléments of the Hecke algebra H : 

(6.4) 
K X 

_ 1 
P 

E. 

w€Wp xW 
T 
w 

-v+v. 
q a 
Mùf 

( E 
w€W 

T ) T 
P X 

( £ 
w€W 

T ) 
w 

(X € p ) 

(6.5) J X = ( E 
w€W 

(-q) 
A(w) Mùf - H n h > / 2 

T ( E 
w€W 

T ) 
W 

and therefore 

J X = q 
-v/2 

( Z 
w€W 

(-q) 
Mùf 

T" )q w n 

Mùf / 2 T 
Mùf 

( S 

w€W 
T ) 
w 

for -t--t" 
X € P + p . 

Then K x (x e P + + ) form m TL [q 
1/2 

>q 
-1/2 

]-basis for 

K = {x Mùf Mùf 
Mùf ( z 

w€W 
T )x 
w 

= x( E 
w€W 

T ) 
w 

= P-x} c H © CQ(q 
1/2, 

and J X (x e p +p) form a Z[q 1/2 ,q 
-1/2 

]-basis for 

J = {y € H : ( Z 
w€W 

(-q) 
JKW) T 

w 
- 1 . 

Mùf Mùf y( E 
w€W 

T ) 
w - P-y} . 

Note that K is a subring of H 0 Mùf 1/2. with unit élément I E 
w€W 

T 
w 

and that, 

with respect to the product in H © Mùf 
1/2 

, we have J-K c J , i.e. H is a right 

/(-module. 

In the statement of the following theorem, we shall give a meaning to J x 
e J 

for arbitrary X € P : if (X)w * X for ail w € W , w ï e , we set 

J x Mùf (-1) 
U w ) 

J ( X ) w 
where w is the unique élément of W such that (X)w € P + p . 
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For the remaining X € P , we set J 
X 

= 0 . 

Theorem 6.6. For any x e P + + , we have 

( 6 . 7 ) Mùf (q 
Mùf 12 

Mùf 
1 

P X 

Z 

I 
(-q) 

I I 
J x + p - a I 

(sum over ail subsets I of the set of positive roots) ; here a I 
dénotes the sum 

of the roots m I . 

The proof wil 1 be given in Section 7 . 

If I is as in the previous sum and if w € W is such that X + p - a - J . = 

( X f + p ) w , X 1 € P + + 

, then X - X T = X - ( X ) w 
-1 

" ( p ) w 
- 1 + p + ( a I ) w 

-1 
= X - ( X ) w 

-1 
Mùf where J 

is the set of positive roots $ such that (8)w € I or such that ~($)w is posi

tive, Mùf . Since X >_ (X)w 
-1 

(X <E P + + ) and «J > 0 , it follows that X >_ X ' . 

Thus, the right hand side of (6.7) is a linear combination of éléments 
V + p Mùf 

with formai power séries in 
-1 
q 

without terms of form Mùf 
(i > 0) as coefficients : 

moreover for X T < X , the coefficient doesn't have a constant terni. On the other 

hand, since the left hand side of (6.7) is in J , thèse coefficients must be poly

nomials in q 
1/2 

q 
-1/2 

. It follows that they are polynomials in 
-1 
q 

(without 

constant terra if X r < x ) . The coefficient of J X + p 
is equal to 1 ; this follows 

from the identity 1 

Mùf I 
Mùf " I = 1 . 

w€W, 

aI 
= p - (p)w 

Since a triangular matrix with l's on diagonal has an inverse of the same 

form, we see that for any X € P + + , the élément J X + p 
is a linear combination of 

éléments J 
P 
(q 

- U P A ' ) / 2 K 
X w 

, X 1 _< X , with coefficients polynomials in 
-1 
q 

(with

out constant term, if X 1 < X and = 1 , if X T = X ) . Hence we have 

Corollary 6.8. For any 
++ 

X € P Mùfconstant termfhgfhhhhfjj Cl € K 
A 

such that 

(6.9) J 
P •

c x 
= J 

X + p 

It is of the form 
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(6.10) Mgh = Q 
-*(px)/2 

Z 

Mu<X 

d (L :q)K 
y X ^ u 

where d 
y 
(L.;q) are polynomials in q and 

-1 
q 

with integer coefficients ; more-

over, the powers 
i 

q 
appearing in d (L ;q) 

y x 
satisfy i 1 

K 2 (*(PX) -*<P ) ) 
y 

if y < X 

and d x (L x;q) s 1 . In particular, the map h + J h 
P 

defines an isomorphism of 

right K-modules of K onto J . 

Note that, if U < X , then 
1 
2 Mgh -t(p )) 

U 

is an integer. Indeed, it is 

known Mgh that, for X € P + + . 

(6.11) *(P X) = <X,2^> 

Hence 
l 
2 ( H P , ) - £ ( P ) ) 

u 

_ l 
~ 2 

(<X,2p>-<u ,2p>) 
_ . v 
- <X"u>P> and this is an integer since 

X - m € Q . 

We shall now show that d (L ;q) 
y X 

are actually polynomials in q with >Mgh 0 

coefficients. 

We have 

Theorem 6.12. c x = q 
v/2 -1 

nX 
(x e P + + ) . In particular, for y < X in 

++ 

we have 

(6.13) d ( L x ; q ) = P 
n ,n 
y X 

hence d 
y 
(lK;q) is a polynomial in q with >_ 0 coefficients. 

For the proof of 6.12, we need the following resuit. 

Lemma 6.14. If X € P ES3 J 
X+p 

= J 
X+p 

In the case where X G Q n P , this is just Lemma 11.7 of [10] The gênerai case 

is proved in the same way. 

The définition of K shows that K is stable under h + h (which is ex-

tended to a ring involution of Mgh * ( q 1 / 2 > (Note that P" 1 Z 
w£W 

T 
w 

Mgh Z 
wew 

T .) 
w 

From (6.9) it then follows that J C' 
P X 

= J 
p + A 

. Thus J Mgh = U and, since 

Mgh e K , we have L X Mgh , by the last sentence in Corollary 6.8. 

The élément q 
-v/2 

Mgh is also fixed by h—y h. , since q - / 2 P = q Mgh 2p . This ele-
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ment is equal to 

qMgh 
- K n X > / 2 

M g h * 2 \ 
dv(y) 

( L x ; q ) T y 

where y (y) € P is defined by y € W 
*ii (v) 

We now use the bounds on the powers of q appearing in d (Lx;q) given in 

Corollary 6.8. If follows that q 
-v/2 

PC' satisfies the defining property of 
n x 

hence is equal to it. Thus Theorem 6.12 follows from Theorem 6.6. On the other hand, 

it implies Theorem 6.1. Indeed, under the specialization 7L [q 
1/2 

,q 
-1/2-

-> 7L , given 

by q 1 / 2 + 1 H becorne s the group ring 7L [W ] 
a Mgh b écornes Mgh € P + + ) , J x 

becomes Mgh (X e p +p) and (6.9) becomes (6.3). It follows that for y,X Mgh 

y < X Mghch is the value of VV«> at q - 1 and theorem 6.1 follows. 

7. For the proof of Theorem 6.6 we shall need several preliminary steps. We shall 

begin with a définition (due to J. Bernstein) of a large commutative subalgebra of 

ff , which is a q-analogue of the subring Z [P] of ZÏW ] 
a 

To each X € P , 

Bernstein associâtes an élément Mgh 
p x 

e H defined by Mgh 
p x 

= (q 

-*<P X l)/2 
T 
PX 

( q 
-a. 

( P X 2 

)/2 
T 

x 2 

r 1 where 
^1 ' ̂ 2 are éléments 

of P such that X = Î 

A l 
- x 2 

. This 

is mdependent of the choice of A ̂  , X 2 , since for X\X" Mgh 
++ 

p we have the iden

tité T 
PX 

T 
' PX" 

= T 
PX 

T = T 
PX • P X . . 

= T 
PX'+X" 

(Indeed, we have Mgh + Jl(p.i.> = 

U P , , - P V , ) , by (6.11).) It follows also that if X \ X " £ P , we have 
P X 

T 

• P X " 

T T 
p x - PX" 

= T 
V + X " 

and 
~-I 
T L 

Mgh 
= T 

P-X< 
. We shall prove the following 

Lemma 7.1. (J. Bernstein) Let X e P and let s € S . We have 

T (T +T 
S P X P ( X ) s 

) = (T +ï 
P A P ( X ) s 

Mgh 

Proof : We may clearly assume that < X 
Y 

' as > >. 0 . Assume first that < X v 
' as 

> = 0 . 

We can write X = x x - x 2 
with 

1 ' ̂  2 

++ 

e P > < X l ' a s > = < x 2 

v 
' as 

> = 0 . To prove 

the identity T J 
s PX 

= T 
P X 

•T 
s 

, we are thus reduced to the case where 
++ 

X G P 

<X^x. > = 0 . But then i(sp ) - £(p.s) 
MghMghA 

hence T T 
8 p x 

= T 
s p x 

= T = T T 
p x s p x s 

as required. 
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Next, we consider the case where < X 
v 
> as 

> = 1 , i. e. Mgh = X-a s 
. In this 

case, the resuit follows from Lemma 4.4. (b) in (G. Lusztig, Some examples of square 

integrable représentations of semisimple p-adic groups, preprint IHES, 1982). 

Next, we assume that < X 
v 
' as 

> = d > 2 and that the resuit is already known 

when d is replaced by dT , 0 < d1 < d We can write X - x i + x

2 

where Mgh >k> = 

d-1 . < x 2 

V 

' as 
> - 1 Then < x 1 + ( x 2 ) 

v 
s,ag 

> = d-2 . The induction hypothesis is appli

cable to 
1 2 

and to A 1+(X 2)s . Hence T 
s 

commutes with A = 3 
Mgh 

+T 

Mgh 
B = T 

PX 2 

+T 
P(X 2)s 

. C =T 
ï>X1+(X2)s 

Mgh 
(Xt)s+ X2 

.But .*R 

V X 2 
* P (X 1+X 2)s 

= A - B - C hence T 
s 

commutes with T 
P 

Si 
p(X)s 

. The lemma is proved. 

We now define, for any X € P an élément Mgh G J by the formula 

Mgh = q 
-v/2 e * T e 

p x 

where 0 = E 
w€W 

Mgh 0 x = E 
w£W 

Mgh £(w) T" 1 

W 
. When X G P +p , we have clearly 

Mgh 
= J X . In gênerai, we have 

Lemma 7.3. J 
(X)w - (-D 

£(w) 
3 x for any X € P , w G W : hence, J 

X " J x 
for ail 

X G P . 

Proof : We may assume that w = s G S Note that T s e = qe e'T^ 1 

s 
= - e ' , hence 

Mgh + J 
(X)s = q 

-v/2 
e » /T +T 

x u;s 
)e 

=• a 
-v/2 , T - i 

s <*X 
+ \x )s>V 

= -q*q 
-v/2 
i 1 e ' ^ X ^ ( X ) s ) e by lemma (7.1) 

MghMgh +J 
(X)s' 

Thus, J +J 
A (X)s 

= 0 , as required. 

Lemma 7.4. There is a unique function f : Q+p 2[q,q ] with finite support 

satisfying properties (i), (ii), (iii) below : 

(i) ffc) - qV 

(ii) f(X) f 0 -» x i P 
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(iii) Let X c Q+p be an I -string : X = {x+not , n € 71} , where x is any fixed 

élément of Q+p and "s is any fixed simple root. Let a > 0 be an integer such 

that < X, V as > s a (mod 2) for ail X € X . Then 

E 
XGX 

Mgh v a >>a 

f(X) Mgh 
-U-l) E f(X) 

X€X 
Mgh v 

'"s ><-a 

This function is given by the formula 

(7.5) f(X) = (-1)V 

I 
a].=X+p 

(-q) Mgh - <X-p, p> 

where I runs through the subsets of the set of positive roots, and a is defined 

as in 6.6. 

Proof : The function f defined by (7.5) clearly satisfies (i) and (ii). We now 

verify that it satisfies (iii). We shall set a s 
Mgh v a s 

v 
= a We have, with the no

tations of (iii) : 

E 
X€X 

Mgh à>_>0 

f (X) = (-i)v E 
xex 
i 

Mgh 
<À, a>>a 

(-q) Mgh -<X-p, p> 

= (-l)v E 
xex 

Mgh 
Mgh 
<A, a>_>a 

(-q) Mgh , V 
•<X-p, p> + E

T 

where 

E T - ("1)V E 
xex 
I3a 

aT=X+p Iv * 
<X, a>>a 

(-q) ^ q -<X-p,p> = (-l)v E 
xex 

Mgh 
a t=X-a+p 
<X,a>>a 

(-q) 
|l|+l -<X-p,p> q 

= (-DV E 
x f ex 

Mgh 
CL.,*>, + p 

<Xt+a, a>>a 

(-q) | r | + i q -̂ X' + a-p, p> = (-DV 
xex 

Mgh 
a,=X+ p 

<X, a » a - 2 

(-q) 
|l| -<X-p,p> 
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Hence 

(7.6) E 

V6X 
. v 

<X ,a>>a 

f (X) = -(-1) V 

E 

x e x 
Mgh 
OL =X+P 

< X 3 > = a - 2 

(-q) 
|l|q-<X-p,p> 

A similar computation shows that 

E 

xex 
<X>a>£-a 

f(X) = (-i)v E 

xex 
13a 

aT=X+p 
<X ,ct>=-a 

(. q )î
Il q-<^-p.p> 

Now the simple reflection smapsthe set of positive roots £ a onto itself. Hence 

the last sum is equal to 

( - D V 
E 

xex 
I 3 l a 

U)s =(X+p)s 

<X,a>=-a 

(_ q )|l|-<X-p,P> = ( - D V 
E 

xex 
Via 

a v 
=X+(a-l)a+p 
MghMgh 

(-q) 
Mgh - < A - p , p > 

= ("1)V E 

x ' e x 

ctT,=X
T+p 

<X T-(a-l)a,a>=-a 

(-q) 
|I T| -xXf-(a-l)a-p,^> 

MghMgh 
v a-1 
q E 

x f e x 
Via 

otT,=X +p 

- T V « 

<X ,a>=a-2 

(-q) 
Mgh q<X T-p,p> 

Comparing with the right hand side of (7.6), we conclude that f satisfies (iii). 

To prove the converse it is enough to show that if a function g : Q+P-* Mgh 

with finite support satisfies g(p) - 0 , K(X) * 0 => A _< p and the identity (iii) 

with f replaced by g , then g s 0 . Assume that g i 0 , and let x € Q+p be 

an élément of maximal possible length (with respect to some positive définite, W -

invariant scalar product on P<X> H ) such that g(x) * 0 Let X be the string 

through x corresponding to the simple root 
as 

Then x T = (x)s is also in X . 

Let a be the absolute value of Mgh 
V 

as Mgh 
V 

> as > . If y e X satisfies 
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|<y,ag>| > a then clearly the length of y is strictly bigger than that of x 

hence g ( y ) = o . Hence the identity (iii) for g , and X , a , as above, reduces 

TE g(x) = 
±a-l , T N 

-q g(x T). It follows that g(x') + 0 . Note also that x,x' have the 

same length. Iteratmg this, we see that g((x)w) r 0 for ail w G W ; moreover, 

(x)w has the same length as x . For suitable w G W , we have <(x)w 
V 

' as > _> 0 
for 

ail simple roots a 
s 

. Replacing x by (x)w , we may thus assume that <x 
V 

' as 
> >_ 0 

for ail simple roots a 
s 

. If we had <x-o Mgh 1 0 for ail simple roots a 
s 

then 

it would follow that < x -p 
v 
,p > _> 0 

; since g(x) * 0 , we would have p-x _> 0 , hence 

p-x = E n a 
s s Mgh Mgh n > 0 

s — 
integers), hence < -E n a 

s s 
v 
,P> 1 0 . Thus 

- E n = 0 
s 

, hence n = 0 
s 

for ail simple roots a 
s 

, hence x = p . But g(p) = 0 

and this is a contradiction with g(x) * 0 . Thus, there exists a simple root a 
s 

such that < x-p 
V 

' as > < 0 ; since 
< x Mgh 

> 1 ° , it follows that < x 
V 

s 
> = 0 . Con-

sider the string X through x corresponding to the simple root a 
s 

. The equality 

<x 
v 

= o shows that among the éléments of X MghMghMghMgh x has minimal length. 

It follows that g(y) = 0 for ail y e X , y ï x . Let us now write the identity 

(iii) for g , this X , and a = 0 . We get g(x) = -q - 1g(x) hence g(x) = 0 . 

This contradiction shows that g = 0 and the Lemma is proved. 

We shall now introduce as in [10] an H-module M as follows. M is the 

f ree 7L [q 
1/2 

Mgh 
-1/2, 

module with basis (A) where A are the various alcôves in 

P (G> H . For each s G S 
a 

, we define an endomorphism T 
s 

of this ZZ[Q 
1/2 

>q 
-1/2 

]-

module by 

T ( A ) sA , if 3 positive coroot 
v 
a 

\ith <x Mgh > n for 

x G sA v 
, <x,a> 

< n for x G A 

q* sA+ (q-DA , otherwise. 

Thèse endomorphisms make M into an H-module. 

Let W' be the subgroup of W 
a 

generated by those s G S 
a 

for which 

»(A ) co rtains P in its closure. (This is a parabolic subgroup of W 
a 

conjugate 

to W under an élément in Q .) 
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Lemma 7.7. Let y € W 
a 

We define a function f : Q+p Mgh 
1 / 2 

>q 
- 1 / 2 , 

as follows: 

f ( X ) is the coefficient with which Mgh appears m 

( 2 
w€W* 

(-q) 
U W ) 

T 
w 

T 
y 
( E 
w€W 

T ' 
w A" 6 M 

o 

Then 

(i) If y ( A ) Mgh X € P * % , X € Q+p , then f(X) = q V ; moreover 

X' € Q+p , f ( X ' ) * 0 implies X F <_ X . 

(ii) In gênerai, let X c Q+p be an q^-string Mgh a simple root) and let a _> 0 

be an integer such that < X Mgh > sa(mod 2) for ail X € X . Then 

E 

xex 
<x 

V 
,a >>a 
' s — 

f ( X ) = -q 
~(a-l) 

E 

xex 
<x v 

' as 
><-a 

f ( X ) 

Proof : (i) Follows from [ 1 0 , 4.2 (a)] and (ii) is a conséquence of [ 1 0 , 9.2] 

applied to the élément T 
y 
( E 
WEW 

T ) 
w 

A ~ 

o 

Corollary 7.8. If y in the previous lemma is such that y(A^) = A~ 
D 

, then 

(7.9) • ( E 

w€W 
(-q) 

*(w) T " 1 

W 
)T 
y 
( E 
WEW 

T ) 
w 

A 
o 

Mgh q" V( Z 

Mgh 
(-q) 

Mgh 
T" 1) 

W 

E 

xeQ+p 
f ( x ) h, A" 

X o 

where, for X e Q+p f ( X ) is given by (7.5) and 
H X 

is an élément of H such 

that h, A 
X o 

Mgh 

Proof : In our case, the function f of Lemma 7.7 satisfies the conditions (i), 

(ii), (iii) of Lemma 7.4, hence is given by (7.5). It follows that for any X e Q+p, 

A appears with the same coefficient in the two sides of (7.9) and the corollary 

follows. 

Since the H-module M is faithful, we can erase A 
o 

from the two sides of 

(7.9) and we obtain an identity in H . We can rewrite this identity as follows. Let 

Y e çi be such that yW'y 
-1 

= W . We multiply both sides of our identity on the 

left by T 
Y 

. Note that T T 
Y y 

= T 
Yy 

= T 
m 
P 

. Moreover T h. 
Y A 

= q 
H P X ) Mgh 

Px 
. Thus, 

we have 
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E ' I m P 
0 = ( E 

w€W 
Mgh Mgh T w m 

P 
E 

wGW 
T 
w 

= q T E 
wGW 

(-q) fc(w) T w 
-1 

XGQ+p 
E f(X)q HPX) /2~ T 

PX 

We can now compute for X € P + + : 

J 
P 
(q 

Mgh /2v = q Mgh / 2 e 'T 
m P 

0 1 
P-Px 

6-q -i(p x) / 2 q -v+vx 

PX 
0 

= _1_ 
= p x 

q <V'2.a -2v+vx. E 
u€Q+P 

f(p)q 
V 

<y ,p> 'T -T 
p x p P 

Mgh 

1 

T̂1 
-<p,p>+v/2 

•q -2v ( - D V E 
I 

Mgh 
I •q 

V 
<p ,p> q 

v/2 T 

X+d-rp 

= _1_ 
= p x 

E 
I 

(-q) |l| Mgh 
X+a-p 

Here I runs through the subsetsof the set of positive roots. We make a change of 

variable I • V = complément of I . Then W - 2p MghMgh = V hence 

?X I 
(-q) |l|-v J 

X+a -p 
= _l_ z 

I' 
(-q) MghMg 

J 
X+p-a i 

and Theorem 6.6 is proved. 

8. The following resuit describes the centre Z of H . 

Theorem 8.1. (J. Bernstein). Let x e P + + and let (X)W be its W-orbit in P . 

Then ZX E 
X 1 € (X)W 

TP is in Z . Moreover, Z is the free 7L [q 1/2 ,q 
-1/2 

module with basis z x (x e P " ) .Mgh 

Proof : Let s € S . Then s X = z.T X s by 7.1. It follows that w X = z.T X w 
for 

ail w G W . It is obvious that, for any U € 
++ 

P T 
P 

commutes with z x . But 

the éléments T 
w 

(w € W) and T 
Pu 

(u e p + + ) generate H as an algebra. Hence 

z x G Z . 

Let 1 
z x 

be the specializations of z x under the homomorphism H S [ W A ] 

given by q 
1/2 Mgh1 Then clearly 1 

z x 
form a set of 2Z -generators for the centre 

of 7L [W ] a : the éléments of P are the only éléments of W 
a 

whose conjugacy class 

is finite. Using a version ofNakayama's lemma it follows that any élément z of Z 
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is a linear combination of the éléments z x with coefficients being allowed to be 

in the localization of 7L [ c Mgh 
>q 

- 1 / 2 
at the idéal generated by q 

1 / 2 - i . Since 

z € H , thèse coefficients must automatically be in 2Z [q 
1 / 2 

>q 
- 1 / 2 , 

. The fact that 

the éléments Mgh are linearly mdependent is obvious. The Theorem is proved. 

Let us now define, foi X € P + + , an élément 

( 8 . 2 ) 
SX 

= E 

_ TT 
y < X 

d (L.)z 

y X y 

€ Z 

It is clear that for X , X T Mgh , we have 

( 8 . 3 ) S X V Mgh I 
X " G P + + 

m ( X , X , ; X " ) S A l ï 

where the 1 0 integers m ( X , X f ; X " ) are the multiplicities in the tensor product 

of ^-modules : 

( 8 . 4 ) L X @ L X , Mgh E 
X " € P " 

m ( X , X î ; X M ) L A „ 

By Weyl's character formula ( 6 . 3 ) we have 

( 2 
w€W 

( - 1 ) 
*(v)~ 

( p ) w ) S X = E 
wew 

(-D 
£(w)~ 

( X + p ) w 

It follows that 

J S. 
P X Mgh |w| -1Mgh E 

wew 
( -D 

£ ( w ) 
( p ) ( w ) b X 

- 1*1 
- 1 

E 
wew 

q 
- v / 2 

( -D 
U W ) 

e'T 
( p ) w X 

by lemma ( 7 . 3 ) 

= |w| VMgh E 
wew 

Mgh 
- v / 2 

( - 1 ) 
H W ) ~ 

(p)w X 

- Iwl 1 e 1 E 

wew 

- v / 2 
(-l) U w )T 

(X+P)w9 

= iwr 1 
Mgh 
w€W 

( - 1 ) 

Mgh 
J ( A + p ) w 

= J X + p 

The identity 

( 8 . 5 ) J -S, = J X + p (X € P + + ) 
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shows that the map Z * J given by x • J z 
P 

is an isomorphism of zf q m 
>4 

Mgh 

modules. From this we shall deduce 

Proposition o.b : The map Z • K given by z — — > 4 Mgh 
w€W 

T )z w MghMgh is 

an isomorphism of 2Z [q 1/2 >q 
-1/2 J-algebras preservmg the unit élément. Under this 

isomorphism Mgh e z correspond to Mgh e k MghMgh c x = P"1esx . 

Indeed, we have a commutative diagram 

J 
D 

Z 

F 

Mgh K 

J 
P 

(since P 1J 6 = J ) 
P P 

and the maps Z y 3 , K • J given by multiplication 

by J 
P 

are known to be isomorphisms (see 6.8). Our map Z >K préserves multi

plication : p Wp-W = P 2 e 2 z z , = P 16zz t . Finally SX € Z corresponds to 

Mgh € K , since both correspond to JX+p Mgh J (see (6.9), (8.5)) . The isomor-

phsim Z y K is a version of the Satake isomorphism. It shows in particular that 

K is a commutative algebra. 

Corollary 8.7. If X,Xf e P + ^ , we have 

MghMgh y 
X"€P + + 

m(X,X,;X")C^„ 

where m(X,XT;X") are defined by (8.4). 

(The remarquable fact in (8.7) is that the coefficients with which V appears in 

the décomposition of Mgh Mgh are independent of q •) 

Corollary 8.8. For any X € P + + , we have ZX = z x 

Indeed, the isormophism given in 8.6 is compatible with h • h (since 
=P"10). 

=P"10). 

Since Mgh Mgh the isormophism s x = s x . But z x is a TL -linear combination 

of élément s x - (X' < X) hence z x = z x 

Corollary 8.9. If X € P + * , we have 

224 



SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITIES 

(8.10) E 
kjl 

\ i < \ 

++ 
P 

y 
q 
<y,2p>-v+v Ud 

y 
( L . ; q ) 

n 
a>0 

(q 
<X+p ,ct> - D 

n 
a>0 

(Q 

- V 
<p ,a> - D 

(product over ail positive roots à ) 

Proof : The left hand side of (8.10) is x ( q M P X ) /2s> (see 6.10) where 

X : H 7L [q 1/2 . q 
- 1 / 2 . is the algebra homomorphism defined by fghvcs = q 

A(w) 

Vw € W 
a 

. Note that X(T 
dfg 

) = q 
v 

< U , P > for any y € P , (see (6.11)). We have 

x ( q 
UPX) / 2 c;» = x ( q *(px> y

1 ,PGFG 

= q 
i ( p ^ ) / 2 x ( s x ) 

= q 
<X,p> 

E 
uGP 
y<X 

, v 
<y1 ,P> 

E 
y f€(y)W 

q 
, v 

<y1 , P > 

and this is known to be equal to the right hand side of (8.10). (See the proof of 

Weyl Ts character formula in [6]) . 

9. Let y _< X be two éléments of P . According to [10] if x E P is such that 

<x,a > »0 ' s for ail s € S (so that, in particular, y+x E P++ , X+T E P ) , 
the polynomial P 

n J + T s € S 
is independent of the choice of T . In particular, it 

only dépends on the différence X - Y . Using now (6.13), we see that there exists a 

well defined function 

P : { K G Q K _> 0} 7L 
s € S 

such that for any y _< X in P , with X -y = K , we have 

(9.1) q 
-<K,p> d . y+T ( L X + x ^ > = P(K) 

for any T € P such that <T,a > » 0 , for ail s € S . 

Proposition 9.2. 

(9.3) P(K) = E 
nn,...,n >0 
1 v— nna,+...+n a -K 

1 1 v v 

q 
-<n +...+n ) 
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Here 
1 v 

is the list of ail positive roots and n r.,.,n v 
are required 

to be integers. In particular for q - 1 , P(K) reduces to the Kostant partition 

function . 

Proof : The formulas (6.7), (6.9), (6.10) show that P(K) satisfies the récurrence 

relation 

E 
I 

s € S -M PGc-a-r) 
1 if K — 0 

0 if K > 0 

(sum over ail subsets I of the set of positive roots), with the convention that 

P(K) = 0 if K i 0 . From this, the required formula for P(K) follows immediately. 

It may be conjectured that, for any y £ X in 
++ 

P , we have 

(9.4) q 
- < X ~ y v 

, P > d 

y 
(Lx;q) s € S E 

wew 
( -D 

s € S 
P((X+p) w - (y+p)) 

For q = 1 this reduces to a well knwon formula of Kostant. 

(Note added May 1982 : Conjecture (9.4) has been recently proved by S. Kato, to 

appear m Inventiones Math.) 

For type A, formula (9.4) follows from a statement in [13, p. 131]; indeed, 

in that case, the left hand side of (9.4) is a Green-Foulkes polynomial (cf. [11]). 

The right hand side of (9.4), in the spécial case y = 0 , appears also in 

the work of D. Peterson, in connection with the g-module structure of the (graded) 

coordinate ring of the nilpotent variety of g . 

10. If X is the highest root, we have à (L :q) 
y x 

= i for any 
++ 

y e P , 0 < y _< X . 

Indeed, the multiplicity D ( L ) 

y X 
is 1 in this case (it is a dimension of a root 

space in the adjoint représentation of g). Since d (L :q) 
y X 

has > 0 coefficients 

and constant tenu 1, it must be identically 1. If we write the formula (8.10) for 

X , the only unknown term is, therefore, s € S . We can compute it from (8.10) 

and we find d 0(L x;q) = E 
e i - l 

q x where e. 
I 

(i = l,...,rk(g)) are the exponents of 

s € S 

226 



SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITES 

11. We shall now describe the (generalized) Schubert varieties 
°x 

(X € P ) with 

the following properties : 

a) 
* X 

is an irreducible, projective complex variety of dimension <X,2p > 

b) If u ,x e P + + , are such that y <_ X then (7 
v 

(U < X) 

c) Let x € °X 
be such that x € (U < X) (U < X ) but x ? 0 

y 
, for any y 1 < y Then 

the stalks H 1 

X 

Œ[[t]]-are zéro if i is odd and 
i 
dim H 2 i 

X 

(U < X) 

- V L A ; < > 
= F 

n ,n. 

y x 
Let g' be a simple complex Lie algebra which is dual to g in the follow

ing sensé. There is a Cartan subalgebra h'(U < X) with a given isomorphism onto h* 

which carries the set of coroots of IŒ[[t]]-' with respect to h* onto the set of roots 

of _gf with respect to h . Let g' = g' Q Œ((t)) . For each coroot m e h of g 

we dénote by X 
a 

a non-zero vector in the corresnondine root snace of g' . For 

each X G 
++ 

P , we dénote by Lx 
the C[[t]] nondine root 

(U < X) generated by the 

vectors 
Œ[[t]]-

Œ[[t]]-
X 
a 

and by h ® Œ[[t]] . This is a lattice in g' (i.e. a Œ[[t]]-

submodule of maximal rank.) It is moreover an order in 
Œ[[t]]-

(i.e. a lattice closed 

under the Lie bracket). Let ( , ) be the Killing form on s.' ; we extend it to 

a symmetric bilinear form on Î ' with values in Œ((t)) . Then 
Œ[[t]]-

where for 

any lattice L we dénote by 
Œ[[t]]-

the dual lattice {x 
Œ[[t]]-

I ( x , y ) e Œ [ [ t ] ] for ail 

y € L} . It is easy to check that if L is any order in 
Œ[[t]]-

, then Œ[[t]]- . It 

follows that any self dual order is a maximal order, hence, by a theorem of Bruhat-

Tits, it is a "maximal parahoric" order. It moreover, must correspond to a spécial 

vertex of the extended diagram of ĝ  . Indeed, if L is a maximal parahoric order 

corresponding to a non-special vertex v , then dim 
Œ[[t]]-

is equal to the number 

of roots of Œ[[t]]-minus the number of roots in a proper semisimpie subalgebra of Œ[[t]]-

(whose Coxeter diagram is obtained by removing v from the extended diagram of g/)î 

hence L is not self-dual. It follows that the group G* of automorphisms of the 

Lie algebra 
Œ[[t]]-

inducing identity on the Weyl group, acts transitively on the set 

X of ail self dual orders in 
Œ[[t]]-

. Let G 1 

o 
be the stabilizer of L 

o 
in G T . It 

is known that the sets 
°x 

Œ[[t]]-= G' 
o 

- orbit of Œ[[t]]-in X) ( X eP++)Œ[[t]]-are dis

joint and cover the whole of X . For any integer n > 0 , we consider the subset 
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X 
n 

cz X defined by X 
n 

= {L € X s in a natural way a p . Then 
* o C X l 

<= X 2 c = {L € X 

and their union is X : indeed for any lattice L we can find n >_ 0 such that 

O e L and we then have by duality 
= {L € Xo 

We will show that X 
n 

is in a natural way a projective algebraic variety. To 

give a self-dual lattice = {L € X 
O 
= {L € X = {L € X , is the same as to give a subspace 

L of t"nL /t nL 
o o 

which is t-stable and is maximal isotropic for the symmetric Œ-

bilinear form on t _ nL = {L € X defined by Res(x,y) . Moreover, L gives rise to a 

subspace L c t _ nL /t Z nL 
o o 

of codimension = dim 
o o 

Now t"nL /t 2 nL 

O O 

carries 

a canonical alternating 3-form with values in Œ , defined by Res([x,y],z) The 

condition that L is an order (if we assume that L is already known to be a self-

dual lattice) is that this 3-form is identically zéro on 
= {L € X 

Thus, we have a 1-1 correspondent L L between X 
n 

and the set of 

maximal isotropic subspaces of CnL /tnL 
o o 

, stable under the nilpotent endomorphism 

t , and whose inverse image m t~nL = {L € X 
2n L 

O 
is such that the canonical alternating 

3-form vanishes identically on it. 

This is a subset of a Grassmannian, defined by algebraic équations, hence is 

a projective algebraic variety. Thus X can be regarded as an increasing union of 

projective varieties. If X € P + + satisfies v 
< À,a > 

< n for ail roots then 

= {L € X ci X 
n 

It is then a locally closed subset of X 
n 

, since it can be regarded as 

an orbit of the algebraic group G V 
o 

= {L € € G 1 

o 
I g' - 1 on L ltnL } 

O o 
acting on X . 

n 

We then define °x 
to be the Zariski closure of = {L € X in X 

n 
. One could de-

fine similarly the varieties 
0A 

over a finite field F 
= {L € X 

(instead of over Œ). 

The number of rational points (over F 

P S 

) of 
°X 

(in the sensé of intersection co-

homology) i.e., with each rational point x counted with a multiplicity equal to 

the trace of the Frobenius map on E(-l) x 
= {L € X is the left hand side of (8.10), 

hence it is given by the right hand side of (8.10), with q replaced by 
s 

P • 

In particular, the Euler characteristic of 
°x 

(in the sensé of intersection 

cohomology) is equal to dim(L^) . 
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