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BACKWARD PARABOLIC EQUATIONS

by P. LOUSBERG (University of Liége)

I. INTRODUCTION

This paper is devoted to the study of the singularities of the solutions of
backward parabolic pseudo-differential equations.
Let Rn denote the n-dimensional euclidean space and write x = (x',xn) e mn B
n-1

-1 .
x' € R . Let §£' be an open subset of r" and S a positive constant.

T ) of D*('xJo,sl)

>
Suppose that the extendible distribution T = (Tl""' N

satisfies

(I.1) T +[(O, +Q(x,0,)) 1€ Col@" XLO,SD)
n

where Q(x,Dx,) is a first order properly supported (N X N) pseudo-differential
operator in §' depending smoothly on X, € [0,8[ and with principal symbol
Ql(x,g') homogeneous of degree 1 in &' .

It follows that

->
T

Sy
1]
—_—
=
Sy

[o})
td

N > * )
with Ty € c (Lo,sC ; D*(Q")) .
n

We assume that the operator Dx + Q is backward parabolic at (xé,gé) € T (Q")\0,
n
that is

(I.2) all the eigenvalues of the matrix Ql(xé,O,—gé) have positive real parts.
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By extension, we say that the equation (I.1) is backward parabolic at (xé,ﬁé) .
The condition (I.2) still holds if (x,§') belongs to a conic neighborhood
w' x [0,sf x vy of (Xélol_gé) .
>
We examine the behaviour of the singularities of T near (xé,Eé) . As is well

>
known, [4], T is microlocally c, if X > 0 ; more precisely,
->
WF T N[(w' x310,s0) x (-y xR)I =0 .

>
Moreover, all the traces of T are regular at (xé,gé) . This is the main result
of the present paper which we prove in section III. We obtain it by constructing

in section II a microlocal parametrix at (xé,Eé) for the Cauchy problem

-> >
Dx u + Q(x,Dx,)u =0,
n
(I.3)

e _ -> Y
uly o = g(x') .
n

J. Polking has obtained in [2] other regularity theorems for parabolic operators,

using L2 methods, (see also [3]).

II. CONSTRUCTION OF A MICROLOCAL PARAMETRIX

We first introduce an auxiliary space.

Let us set
q(x,&',W) = dtm (Ql(x,E')+iWIN) , WETE

It follows from (I.2) that all the roots W of g have positive imaginary parts
when (x,£') € w' x [0,s[ X v . We denote by ¢x £ a closed curve containing
’

these roots in its interior.

Definition II.1.: The space Zm is the linear hull of the functions
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ijk(x,F,')
—— , j*k - IN<m, j,lEN,
La(x, &', w1t

where AL is a classical (N X N) symbol of order k in ' % [0,sl with

support in &' contained in a closed subcone of Y .

The essential property of this space is presented in the following theorem.
Theorem II.1.: If F is an element of Zm , then the function

ix W
n

A(x,E') = J e F(x,&',W)aw

by
belongs to the space

By = Shid@'X00,sLXR™) A S, (' X 10,50 X R")

with p = (1,...,1) , o= (0,...,0,1) , [1].

Proof: If K = K'X [eo,ell is a compact subset of w' x [0,s[ , we have, uniformly
for x €K,

|m+1

clgr if e =0 ,

ax,EM ]| <

1
CN

le]

i >
N VN, if eo 0

Let <Y' denote a closed subcone of <y containing [F(x,.,W)]
It clearly suffices to prove that

j-1N+1
clgr|?

ix W 3 if € 7 o
(I1.1) sup J LR — aw | <

xe | "o, . La(x,£" w1t T )e

3

'IN ! (o]

in y' .

Note that there exists a closed curve ¢ enclosing the compact set
{w: Jx,gexk x y' ,|E'] =1 : q(x,&',W) = 0}

and contained in
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{W: mw>c>o0} .

Hence, for (x,£') € K X y' , we obtain

ion 3 ixnw 3
[ e W W o= J e W aw =
¢

dl
X 6' [q(x,E',W)]l |E'|¢ [CI(X,E'IW)J

, .
J-1N+1 elxn‘g | W)
= lg'| —————— W
¢ [q(xr r%'. rw):ll

The absolute value of this expression is bounded by

c e—C Eolg'l I£||j—1N+1

We then easily obtain (II.1).

It follows that the expression

[¢3 :

o n ix W o._-p
al n Bl ' _ p n p ul n BI
Dyr Dy Dpy Alx,E") = Z cg (je T WL, D" pf, Faw

n p=0 n n
gives the required estimate since
o_-p [

o' “n B

WP D_, Dxn Dg, F € Zm+p—|B'| C Z’“*un‘|5'| .

Now, we shall construct a microlocal parametrix at (xé,gé) for the Cauchy problem

(1.3).

Theorem II.2.: There exists of smooth family of (N x N) pseudo-differential

operators in w' of order o
> i Toyt)ef! ->
P(x'Dx') w :H—) el(x Yy ) E A(Xrgl) w (y") dyl dgl
with

XnEEOlS[ lAesO '

and such that
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(1) (D I  + Q)P is an integral operator with kernel in Ce(Ww' X Lo,sC xw") ,

P ' s 3 3 LI - |
(ii) P(x ’O’Dx') is elliptic at (xo, Eo) .
Proof: Let us define the amplitude by

A(xlgl) ~ Z qu (XIE')
P,q=0

where A €8
Pq

- (p+q)
More precisely, we set

ix W

n
A ,EY) = F L0 ,W)aw
pq(x & J(bx £ © pq(x ¢
with qu € Z-l—(p+q)
In particular, we take
' s -1 [ 1
(I1.2) Foq = (Ql(x,E ) + 1 W I Fq(x £,

with F_ €S (0 X R")
qa  "-q

Applying Dx +Q to P yields, [3],
n

(Dx + Q)P ﬁ: = Hv ei(x'—y')os'[Dx A(X,E') + B(X,E')J a)’ (Yl)dyldgl
n n

where B(x,E') is a symbol of Sl defined by the following asymptotic expansion

=0
B(x,£') ~ L = — D%‘,Q(x,gw b, A(x,E")
L al

Writing for large §&'»
Q=Q1+QOI

with Q0 € s0 , we obtain

0

D, A+B~Z Ty A
n k=0

where
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' =

T1(XIE IDX) DX + Q1 ’
n n

. _ gl g o

TO(XI‘E le.) = QO + o! Dqu D_, ’
o] =1

' [ - i—lul (¢ (¢ .

Tl-k(x B3 'Dx') = | | —E!—Dg,Q Dx' , if x>2 ,
o =]

are differential operators which map Sm into sm+1-k

Noting that

r=0 p+g=r
we get
oo r
D_ A+B ~ () YT, Ay
n r=0 k=0 p+g=r-k
In order to realize condition (i), we annihilate each term of the asymptotic
expansion of Dx A+B . We obtain
n

(I1.3) ZT A =0 , for r>1 ,

=0 k=0 1-k r-g-k,q

if we remark that

ixnw
e (AW + Q) (WI

-1
T, A, = + awF_ =0 .
 Pog (J¢x,£' . Q) anr,

N 1

The conditions (II.3) are satisfied if the functions qu are given by

. = -(i >
(I1.4) qu (1WIN + Ql) & Tl—k Fp—k,q ,P>1, g€ N

These relations determine F from F .
Pq oq

Furthermore, we have

-> U ey N | ->
P(x',0,D,) ¥ = }jﬁel‘x Y08 A x,0,60 ¥ (yhay' !
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Here A(x',0,£') is a classical symbol of order O having the following

asymptotic expansion

A(x',O,E')~AO°(x',O,£') + i (i A

(x',0,€") +A_(x',0,£"))
g-1
q=1 p=1

P, oq

The condition (ii) is satisfied if we take

1]

Aoo(x',O,E') a(x') x (§") Iy

©
A ',0,8! - A ',0,8" , for >1 .,
oq(x &) pgl p,q-1 (x &' o qz

where O € D(w') is equal to 1 in a neighborhood of xé and X € Cm(Rn) is
homogeneous of degree o for large &' , equal to 1 in a conic neighborhood of
—Eé for |£'| 2g%|£é| and with support contained in a closed subcone 7Y' of Yy .

Noting that

' [ - [ ' : -1 [ ' - ] '
Aoq(x ,0,8") = (I¢x',o’£'(91(x ,0,8') + 1WIN) dW)Fq(x EY) = 21TFq(x LE')

we obtain

-1 ' '
Fo = o7 alx IX(E") Iy -
(I1.5) ®
= - L ' '
Fy = o Zl B, g (x'0ED , for g1
p=
The relations (II.2), (II.4), (II.5) determine the functions qu . It is

easy to prove by induction that qu € Z—l—(p+q)

’

Let us remark that the support in (x',£') of qu is contained in [0l X y'

hence

[A(olxnlo)] C [al X Y'

Furthermore, if xn >0, P(x,Dx,) is an integral operator with kernel

€ Cp(w' X J10,sC X w'") .
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III. MAIN THEOREM

>
Lemma III.1.: If the distribution T satisfies the equation (I.1), we have

i) D 7 3 =T .0(x,D )0 + | T.0'ax'=0 , if € [o,sL o' € D@
(i anxn-¢ Txn-Q XD, ¢ «¢'dx'=0 , if =x3 ' PR (

and where ? € Cw(Q' x [o,sL) ,

+00 > > % > >
(ii) T. «(D_, + Q(x,D_,)¢ dx_ + f.$ﬂx =-Tned(x',0) , for every
0 XX X n 0 0

>
¢ € D(Q' X J-s,8C ) .

Proof: Integrating by parts, we obtain

(III.1) “T .. + pax_ = | T4+t $1 ax_ +
. o TXn. Xn Q(x,DX,))¢ xn = o —DxH TXn.¢ + Txn°Q(x'Dx')¢ X

> > 0
- T ¢(x',0) .
In particular, if we take
-> > ->
¢=v¢' , ¢'€ D@) ,yepao,sh ,

we obtain

*i P ) _ -> >, > >,
Jw dx_ J¥.¢ ax' = Jo s Dxn Txn.¢ + Txn.Q(x,Dx.)¢ 1dx

where f € c_(Q' X [0,S[) .

Hence we deduce (i) and using (III.1), we get (ii).

Theorem III.1.: If the equation (I.1) is backward parabolic at (xé,gé) , all the
traces of the distribution ? are regular at (xé,gé)

Proof: Let us introduce in the relation (ii) of Lemma III.1 the function

>
a(xn) P(x,Dx.) U]

where P is the microlocal parametrix constructed in Theorem II.2 and ¢ is a

function in D(J-s,s[) equal to 1 in a neighborhood of the origin.
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We obtain

> > >> > , >
T.(Dxna) P(x,Dx,)w + J g.¥ dx -——TO.P(x ,O,Dx,)w ,

>
where g € C_ (0') .

Hence

+
T,e P(x',0,D.,) €C, .

Since P(x',O,Dx,) is elliptic at (xé,-gé) , it follows that

>
(xo,Eo) ¢ wF Ty -

To complete the proof, it remains to note that

> o Dk >
WE TO N LJ we X Tx x_=0
n n| n

by relation (i) of Lemma III.1.
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