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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM AND ANALYTIC
REGULARITY FOR PARTIAL DIFFERENTIAL EQUATIONS WITH POLYNOMIAL

COEFFICIENTS IN THE PRESENCE OF GROWTH TYPE CONDITIONS

by O. LIESS (Technische Hochschule Darmstadt)

§1. INTRODUCTION

1. In this paper we study the uniqueness of solutions for the characteristic
Cauchy problem and regularity questions for solutions of a class of linear partial
differential operators with polynomial coefficients when growth conditions are

imposed at infinity. Let s > 1 and h > 0 be given and denote, here and in the

n+1 1

sequel, by 0 = s/(s-1) , and by R = {(x,t) € rR™ ; ]t| < h} . Assume that

p(x,t,Dx,Dt) is an operator of form

o B
(1) p(x,t,D_,D ) = 2:: a ,.(t) x DD
x t IQI/S"'IBI/O"'j < aBJ x t

where the a,.(t) are real analytic functions defined for |t| < h and

B3
aqu(t) Z1 when j=m. (Here a,B are multiindices, |a|,|B] is their lenghth
o o
o _ 1 n _B_ . 1 . Bn o . 3j
and, as usual, x = Xy oeee X ,Dx—( 18/8x1) cee (-18/3xn) , Dt = (-i9/3t)” ).

We can then prove the following two results:

Theorem 1.1. Let s >1 and h > 0 be given and let p be an operator of form

© n+
(1). Suppose u € 2%9 (RQ 1) is a solution of p(x,t,Dx,Dt) u = 0 such that

n+1

h ; t >0}

a) supp u C {(x,t) € R

b) there is B > 0 such that for any Yy , £ , we can find CYQ > 0 with
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I b} uex, 0 | cc emelxD v xoe S

Then it follows that u = 0 .

Theorem 1.2. Let p(x,t,Dx,Dt) be as in Theorem 1.1 and assume that

)

1/ 5 9 20 i @€ N0} ana |t| <n .
o+j=m

aaB

7.0 +
Let also u € Egﬂ (Rﬁ 1) be a solution of p(x,t,Dx,Dt) u = 0 which

satisfies condition b) from the statement of Theorem 1.1. Then u is real

n+1

analytic on Rh

Moreover for every h' < h we can find B' >0 and ¢ > 0

so that u extends to an analytic function U defined on

I =z €™ Je] <n'} for which [Tz, 0| < c exp(®'|2]%)  if
n+l
(z,t) € Chy

2. Operators of form (1) have been considered previously by J. Persson [1]
when studying the Cauchy-Kowalewska theorem for analytic functions which satisfy
growth conditions for Izl + o analogous to those used in this paper. We shall
give later on examples which show that it is natural to restrict oneself to
operators of form (1) in the context of this paper. When p is an operator with
constant coefficients, i.e. when p has the form
o)

= J
(2) p(DX,Dt) = a i

|B|/0+3i<m

for some 3 € C , then the theorems 1.1 and 1.2 are wellknown. In fact, theorem

a
8
1.1 then reduces to a wellknown result of I.M. Gel'fand-G.E. Shilov [1], which
generalizes earlier results concerning the characteristic Cauchy-problem for the
heat equation (due to E. Holmgren, A.N. Tichonov, M. Nicolescu and others) and

Theorem 1.2 is then essentially due to V.V. Grushin [1]. For a result related to

Theorem 1.2 for the case of operators with polynomial coefficients, cf. I.A. Luckij
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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

C1].

3. Results similar to those from the theorems 1.1 and 1.2 can be proved also
when the solutions u of the equation p(x,t,Dx,Dt)u = 0 are distributions on
which "growth" restrictions at infinity have been imposed. Since this only leads

o
to supplimentary technical complications we restrict ourselves to the ?9 case.

4. In the proof of the theorems 1.1 and 1.2 we shall study the singularities
of the solutions of p(x,t,Dx,Dt) u = 0 by using a simultaneous localization in
the t variable and in the variables Fourier-dual to x and t (one might note
here that there is also a "localization" for the growth in the x variables). 1In
analogy to the situation from the local analysis of singularities of solutions of
partial differential equations we call this a microlocalization. To make this more
precise we shall introduce (cf. definition 3.3 below) a notion of analytic wave
front set adapted to the study of problems in which growth-type conditions are
imposed at infinity. We shall then show that both theorems are in fact
consequences of a microlocal variant of Theorem 1.2. This is in complete analogy
to the local situation where Holmgren's uniqueness theorem and the analytic
regularity of solutions of elliptic equations with analytic coefficients are both
consequences of the regularity theorem of HOrmander-Sato (cf. Ho6rmander [3] and M.
Kashiwara [1]). The microlocal variant of Theorem 1.2, which is stated after some
preparations, as proposition 3.8, and which replaces the regularity theorem of
HOrmander-Sato in this context, is therefore the main technical result from this

paper.

5. Starting point for this paper has been an attempt to generalize Gel'fand-
Shilov's theorem on the uniqueness of the characteristic Cauchy problem. One might

then consider an operator of form

(3) p(xltlelDt) = Z

8
|B| /o+i<m x

Di , a =1

. (x,t)D
om

%83
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for some ¢ > 1 and ask what conditions on p one should impose if one wants to

- . E%?w n+1
conclude that u = 0 for any solution u€ (Rh ) of p(x,t,Dx,Dt) u=20

concentrated in t > 0 and which satisfies sup ntl IDI Di u(x,t)[/exp(BIx{s)<m

(x,t)eRh

VYy,% . Since no condition on the type of the operator is imposed in Gel'fand-
Shilov's theorem we can only put restrictions on the regularity of the coefficients
aBj and on their growth at infinity. It is then natural to assume that the
coefficients aBj

Before we continue this discussion we now give some elementary examples.

are at least real analytic.

Example 1.3. Denote by ¢(x,t) = exp(i(x3+x)/t3 - 1/t4) , by

a = —(3¢/3t) /(3%6/3x%) and by

¢ (x,t) for t >0
u:
0 for t <O
Then a is real analytic, bounded, and we have (93/3t + a(x,t)32/3x2)u=0 . This

example is a variant of an example considered in L. HOrmander [4].

0o
Example 1.4. Let g(6):R > R be a bounded i% function with support in 6 > 0

but O € supp g . Then

g(t-1/x) for t > 1/x if x>0

0 otherwise

satisfies (9/3t - x23/3x) u=0.
From this (standard) example one can see in particular that the problem in

this paper is global.

Example 1.5. Consider the equation p(x,Dx,Dt)u =D u—Di(xu)+iu and denote by

t
H+(€) the Heaviside function in & € R . Then u =L7¢u4(H+(£) exp(-1/E +iT/E))
is a solution of p(X’Dx’Dt) u =0 and its Fourier transform H+(E) exp(-1/E+iT/8)

has an analytic extension for Im T > O which is bounded. It follows that u is

166



UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

concentrated in t > 0 . If we consider v(t)¢€ SE?7:(R),supp v C {t € R;t > 0}
and denote by w = fu(x,t-t')v(t') dt' , then w 1is still a solution of
p(x,Dx,Dt) w = 0 concentrated in t > 0 and it is easy to see that it is bounded
with all derivatives. Essentially the same example is obtained if one simply

performs a Fourier transform in x in example 1.4.

6. It follows from example 1.3 that one cannot, in general, prove results
similar to the ones from this paper for operators of form (3) if one only assumes
that the coefficients are real analytic. Another natural choice is then to assume
that they are entire in x . When imposing also growth conditions of polynomial
type on them (which is necessary in view of the other examples), we then arrive at
coefficients which are polynomial in x . (Restriction to this case seems also
natural in view of the results from J. Persson [1]). The examples 1.4, 1.5 and
more sophisticated ones from S.D. Eidel'man [1] of the same type suggest that the

results from this paper are optimal. I cannot prove this however.

7. The present paper is an extended version of a talk at the conference on
"Analytic Solutions of Partial Differential Equations", Trento, March 1981. It

does not contain the proof of proposition 3.8 below.

+1 +
§2. THE SPACE %(P{: ) AND ITS DUAL. THE SPACE (/@S(cn !

A "h )

1. In this paragraph we collect a number of facts concerning function spaces
defined by growth type conditions. For more details we refer e.g. to Gel'fand-

Shilov [2].

Definition 2.1. Consider s > 1,A > O,h > 0 . Then we denote by’égﬁ(R;+1) the

. 5%7” n+1 .
space of functions £ from (Rh ) such that the quantities
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sup |D D f(x, t)l /exp(D|x|
xerR", |t]<h' ¥ '

are finite for all o , all j , all D >A and all h' with O < h' <h .
n+1
A(Rh )will be endowed with the topology defined by tha seminorms

j +
f - sup |Du D:J f(x,t)!/exp(Dlxls) , the sup being for (x,t) € R; 1 . It is then a

Fréchet space in which 2;7 (Rn 1) is dense. Its dual, endowed with the weak
topology, will be denoted by g ( n+1)

When f € é%?;(Rz 1) and g € A,(R;+1 , then it follows that the point-

. . . n+l n+1
wise product f(x,t)g(x,t) is in é%?;+A'(Rh . If f € é%?A(R , then
+ 00
f(x+x°,t) is in é%? n 1 for every x°€ R® . Moreover, if VY€ 2§ﬁo(Rn)
+
then Y*'f = ff(x—x‘,t)W(x')dx' is in s(Rn 1) . Further, if we fix C € c”

+
and T € C , then exp(-i<x,{>-itT) 1is in é%?;(Rn 1) for any s > 1 and any
A > 0 . More precisely, when s > 1 and D > 0 are fixed, then it follows with

the notations

(1) o =s/(s-1), A= (sD)_O/S(l/O) ,
that
(2) IDi D?: exp (-i<x,>-itT) < lcla[ﬂj exp(@|x|% + AlImz|%+nt |ImT]), if

|[t] < n'

s
In fact, (2) is a consequence of Youngs inequality |[<x,E£>| < |x|/s + |£|0/0

The notation introduced in (1), i.e. the association of o,A with s,D , will
be used very often in this paper, sometimes without explicit reference to (1).

+
2. Let us now consider v € 557 n 1) . Then v(exp(-i<x,l>-itT)) makes

sense for all (C,T) € C and is an entire analytic function in (Z,T) which
will be denoted by v , Or sometimes, by égzz . ; will be called the Fourier-
Borel transform of v (the same notations will also be used for the Fourier, or
Fourier-Borel transform in more standard situations). It is easy to see that

~ +
v=0 if v=0 on c" ! . Further it follows from (2) that for any
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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

+
vegi(R: 1)' we can find ¢ >0 , b >0, D>A and h' < h such that

(3) v, 0] <ctt + | )? expd|mz|® + n'|Imt)) .

+
n 1) (we denote by J@(U) the functions f : U+ C

Conversely, if ¢€ u»"g(c
which are analytic in U ) is an entire analytic function which satisfies an

estimate of type (3), then it is classical (cf. e.g. I.M. Gel'fand-G.E. Shilov [2]
for a similar result) that'there is v € é%?;(R§+l)' such that ¢(g,1) = ;(Q,T) .

+
Moreover, if f € égyi(Rn !

h ) , then [v(f)l < c' where c' depends only on

+
c,b,A,ht . If (3) is valid with ¢,b,A,h' for some given v € ég?i(RE 1)' then

we shall say that v is of order b .

(s +
Lemma 2.2. Consider v E éf;:(R: 1)' for which (3) is valid and choose D' with
+
A < D' <D . Then we can find a sequence vj € é%?i(RE 1)' such that:

a) all vj are of order :ieoro,

s n+l
: -
b) vj + v in gAth ,

c) |§j(c,1)| <+l 0D expar |mg|© + h'|imT]) ,

for some c¢' which does not depend on j (A' is associated with D' wvia (1)).

o +1
In fact, if g € 77 O(Rn ) 1is positiv, with integral one, and if gj(x,t) =

Y3
+
and to prove b) it remains to observe that gj * £f > f in é%?i(Rznl) for h" <h.

n

+ - -
=3 1g(jx,jt) , then we can define vj by = gjv . a) and c) are then obvious

+
3. Consider now f € é%fi(Rﬁ 1) and D>A , h' <h , b >0 . By the above
f defines a linear functional on the space of entire analytic functions

o€ ™) for which

sup |6z, )| / exp(A]|Imz|%+h' |ImT| + b 1n(1+] (g, D) [1) <=
n+1
(z,T)EC
and it is continuous if we endow this space of entire functions with an obvious
topology. It follows from Hahn-Banach's theorem that we can find a Radon measure

+
w:c” L, C (which depends on D,h',b) with the following two properties:
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0. LIESS

fexp(A|tmz|® + h'|Imt| + b 1n(1+]|(Z,D ) dw(g, 1) <
and
(4) v(£) = [v(z',T") aw(g',T")
if ve é%?;(R§+1)' satisfies

sup |;(C,T)| / exp(AlImC|0 + h'|ImT] + b In(1+|(z, ) ) < = .
C,T

In particular it follows from (4) that f£(x,t) = fexp(—i<x,§'>—itT')dw(§',T') if

|t| < h' . We shall therefore call w a representation measure for f . Consider

+
now again f € é%fi(R£+1) and also choose Vv € é%?i,(Rﬁ 1)‘ for some A' > A .

+1
We can then define an element fv € ;'—A(RE )' by (fv)(g) = v(fg) if

g € é%?i'—A(RE+1) such that it makes sense to ask for é;é(fv)(C,T) =

= v(f exp(-i<x,0>-itT)) = (exp(-i<x,T>-itT)Vv)(f) . Since
Hlexp (-i<x,L>=itT)v) (L', T') = v(L+L',T+T') it follows after a change of

variables that
(5) FFiEv) (5,0 = [v(C', 1A (g -L, T -T)

if W 1is a representation measure for £ (and for suitable A,h',b).

4. It has been observed already in I.M. Gel'fand-G.E. Shilov [1] that the
. :;Z7 n . . -
class of functions g€ (R') for which the Fourier transform g extends to an

entire analytic function on c™ which satisfies
(6) |g(C)[ Lc exp(—-c'ICIG + c"|Im§|o) ,

for some positive constants c,c',c" 1is of special interest in questions related
to the uniqueness of the characteristic Cauchy problem. It is wellknown that non-

trivial entire functions with (6) exist. More precisely we have
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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

Lemma 2.3. Let s >1 and D > 0 be given. Then one can find g€fg§’%Rn),g F30)

and positive constants ci,i=1,2,3,4,5 such that

(7 lg(x)| < exp(-D|x|%), vxeRr" ,

(8) la@| < c exp(—c2|r,|° + c3|1mc|°), vgect ,
- o . n

(9) |g(ig) | 2c, exp(-c5|£| ) if EE€R .

Note that & is an entire analytic function in view of (7).
For a proof of Lemma 2.3 we refer e.g. to I.M. Gel'fand-G.E. Shilov [2]. The last
property is not explicitly stated in that book, but it is immediate if we consider

a positive g with (7) and (8).

5. Proposition 2.4. Consider s > 1, A >0 and let g be given by Lemma 2.3

+
for some D > A . Also choose f € ég?i(Rﬁ 1) and assume that
(10) [g(x') exp(i<x',£>) £(x-x',t) dx' = 0

for all (x,t) € R£+1 and all ¢ € Rn . Then it follows that f = 0 . Note that

(10) makes sense in view of (7).

Proof (cf. I.M. Gel'fand-G.E. Shilov [2]). If x,t are fixed, then

. . , .. LSZQ n - .
x' > f(x-x',t)g(x') is in (R) . The condition (10) then just states that the
Fourier transform of this function vanishes identically. It follows that

g(x'")f(x-x',t) =0 in x,x',t . Since g Z 0 this implies f = 0 .

6. Proposition 2.5. Let s > 1,A' > A > 0,h > 0,b z_O,d1 > d2 >0,x >0 be

given. Then there are constants c¢,B such that

a) IDZ £(D)] < cBlal[a/s]! exp(A'|c|O),Va,Vc € c” for any function fel/ﬁg(c")

which satisfies |£(g)] 5_exp(A|C|O) .

b) |Dg £(z) | < 8l taysas exp(A'|1mz |%+b 1n(1+|z])) ,va,vz € c®  for any

fe L/{g(cn) which satisfies If(g)l 5_exp(A|Im;|0 + bln(1+]§l)).
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c) Fix (EV?) € Rn+1 and denote by Qi the sets Qi ={(,) € Cn+1;

|§—€10 + |11 g_di(lg]o+{?|). Also choose f€ L/ég(Ql) such that
£, 0] < exp(a|Im|% + h|Inr| + b In(1+| ,1))) on @, .
Then it follows that

|D§' £, < calol po/e1s exp(A'|Img|% + h|Imr| + b In(1+| (z,1)|)) for
loa] < x(EI+T) on @, .
Here and in the sequel we will denote (for a € R+ ) by [al the integer part of
a .

Proposition 2.5 is a wellknown consequence of Cauchy's integral formula. Cf. e.g.
I.M. Gel'fand-G.E. Shilov [2] for the proof of a) and b). For the convenience of
the reader we scetch the proof of the more technical c). To do so, we choose at
first d > 0 such that |[g-2|%+|1-7] < d2(|E|0+|?l) and 18|% < a(|Z]%+|T]
implies [z-E+6|%+|t-F| < &, (|E|%+[F]) . with this choice of d it follows from
Cauchy's integral formula that

|D§ £(z,7)] < C'a! min max G i~ |9|_|a||f(g+9,T)|
a'<a |e|%a (Jg|”+|Th

for all o and all (g,T1) with |§—E]O+|T—?1 §_d2(|g]0+|?1) . Let us also fix
A" such that A|Im(;+6)|O 5_A'lIm§|O+A"|e|O . The proof then comes to an end if
we can show that for suitable CI’B

(11) a!|§1_1u|—bexp(A"[6|0) <e, Blalta/s]!

mipc ~T i~
181" <adel"+|Th

£ fal < x(|E1%+TD

Let us in fact choose § such that § = (d|a|/x)1/0 . It follows in particular
that [510 5_d(|€]o+|?|) as long as [a[ S_X([EWO+|?1 ). It is a consequence of

|o|-p

Stirling's formula that for such 5 ' u!|§1_ exp(A"|§]o) can be estimated

by the right hand side of (11), whence the proposition.
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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

7. Definition 2.6. Let s >1 and A > 0, h > 0 be given. Then we denote

by cﬁ+1 = {(z,t) € ™, |t| <n} and by
(/gi(cgﬂ) = {fGL/g(CI‘;H); sup |f(z,t)|/exp(D|z|s) <o for all D> A

zeC", | t|<h"

and all h' < h}

One can easily prove:

+
Proposition 2.7. Consider £ € g;(R: 1) . Then there are equivalent:

(i) There is A' > 0,h' > 0 such that f can be extended to an element in

s n+1
b/igA.(ch. )
g +1
(ii) There are D > O,n > 0,c > 0 such that |v(f)| < c for all v g ;(R: )!

which satisfy
(12) |[v. )| < exp(a|z|%n|t])

8. The estimates (3) respectively (12) correspond to the Paley-Wiener
respectively Martineau-Ehrenpreis theorem. When multiplying v with an element
from (/65' (C:]ltl) then we obtain of course estimates of the same type. The
following result shows that this is essentially also true locally. More precisely

we have:

Lemma 2.8. Let ¢ > O,B > 0,?1' >0,d',0 < d' <1 be given and consider a holo-
morphic function a(t) defined for lt[ < n such that |a(t)| <1 . Then we can
find ¢ > 0,A > 0,e' > 0,D' > 0,n' > 0, which do not depend on a(t) , with the
following property:

s n+1

(R )' satisfies

if (E,?) € Rm-1 is fixed and if v € o Ry

(13) [v(g,T)| < exp((e'/2) (|Reg|+|Ret|)+A" | Img|%#n" [TmT[+b ln(1+] (z, ) |)

v, € ™!

respectively
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(14) |v(z, 0] < exp(A'|1mz|%+n" |1mT|4b 1n(14] (g, 1) )  for

|e-E1% | e-T] 2 a*Jg|%+ <D

then the functions £ (,T) defined for |v] < (Z1%|T)h by
£,(C,T) = viexp(-i<x,0>-itT) a(t)-x")

satisfy the estimates

< cAl\’l[v/s:l!exp(KIImg|O+?{|1mr|+b In(1+|(z, 1) ) for

(15) |f\)(C,T)| <
|z-2]%+|7-7] > 3a' (|Z]1%|Th
respectively
(16) l£, @ 0] 5cAl\)l[v/s]!exp(e(|Rea;|°+|ReT|)+K|1mg|0+?{|1mr|
+b In(1+] (z, D)) for |z-2|%|1-T| < 3a' (|Z]%+|T)
Proof. We only prove (15). (16) may be proved with similar arguments but is
easier.

p’ o
Let us then choose X',0 < x' < 1 and consider a function p(t) € 257 (R)
. ~ o~ ~
(which depends on £,T ) such that for some Al >0 and some n',0 <n'<n :
a) supp p C{t€R; |[t] <P} ,

b) p(t) =1 for |t| <n’

L+b+2 2+1 L T0, > L > ~
o o] e <A T E%+T for & < x' (|Z)%+|T .
Here and in the sequel we shall denote by Ai and also by cy positive
constants which do not depend on Eﬁ?’ and v . The "b+2" has been inserted in

c) for later convenience.

Later on we shall put restrictions on ¥' , but A1 must not depend on

~

E/?,X' . It is wellknown that such functions exist, provided A1 is great enough

(cf. e.g. L. Hdrmander [3]).

To simplify notations we denote X'(|€]O+|?W) in the sequel by k' . We will
@)
also denote temporarily by L?é' the Fourier-Borel transform in t . Since the

same notation shall be used (still further) also for the Fourier-Borel transform in
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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

(x,t) , the precise meaning of Lfﬁ must be clear from the context.

Now we observe that

(17) £, = (w/om 7%t Fomam) -tar

4

To estimate the integrand in (17) we apply Proposition 2.5. Since T'€ R it

follows that

V]

21 u/s1t exp(a] 1oz |+ 1n(1+] (gt )

|D\C’§(c,r') | <a

it |g-E|%]t-T] 2 28" (JT|9+|T) ana |v] < (|E]1%+|TD

respectively

Lv|+1[v/s]! exp(e'([Re§|0+|1'|)+Z]ImC]0+b In(1+|(g,t")])) in all

v-

|[p’viz, T | <A
4

other cases, provided that A' < A .

€' > 0 is here chosen with €' < € , but later on we will impose another

restriction on €'

At this moment we use the hypothesis on a(t) and Q(t) . This gives in view

of Cauchy's inequalities

|D2+b+2

2+1 2
t 3

p(tla(t)| < a k'" if 2 < k'

such that

| Fowam) (-t | < < A’; k'£(1+|T—T'|)-Q_b_2 exp(M|Imt|) for & < k'

We conclude that

(18) opvea ) Fiptrrate)) -t | < c, Ai"l"l k(e -t ) TF P 200/831 exp @

for & < k'

where G = Z]Img|o¥ﬁ|ImT|+b 1In(1+]| (z,T")|) when |c-€10+|14?| 2_2d'(|€]0+|?1) ’

respectively G = E'(|Re§|0+lT'|)+K]Im§|0¥ﬁ[1mr|+b ln(1+|(c,T‘)|) for
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|2-€|%+|t-7] < 2a* (JE|%+7]) .
When estimating the integrand from (17) we now distinguish between two cases.
The first is when |C—E]0+|T'4?I 3_2d'(|E]O+|?1) . In this case we use (18) for

2 = 0 such that we can estimate this integrand by

(19) CZAL\)I exp (8] mmz | O | T | +b 1n(1+] (2,0 )/ (1+T-T' 2 .

The second situation is when |£-£|%+|1-%| < 2a'(|Z|%+|%]) , such that

|;|0+|T'| 5_03(|g]0+|?1) for some c, . Since in (15) we are interested only in
points (z,T) for which |z-&|%+|t=%| > 3a' (|Z]|°+|T|) we then have

lt'-t] > @' (|E|%+|F) > ¢, (|g|%+|t'|) . We now apply (18) for £ = k' and choose

X' and €' (in the order: first X' and then €' ) so small that

K' k' K" >0, -
B, k' c, 1%+

kl
exp(E'(|ReC|0+|T'])) <eg -

The integrand in (17) can therefore also in the second case be estimated by
(19), perhaps with c, replaced by some greater constant. The estimate (15) now
follows.

Remark 2.9. It is clear that we now can also estimate a finite number of

derivatives of f by (15) or (16).

Remark 2.10. In the proof of Lemma 2.8 we have introduced the constant ¥' , which
must be small. No other restriction is put on X' however and the choice of '

only affects the g' .

§3. THE ANALYTIC WAVE FRONT SET WF:. DEFINITIONS AND STATEMANT OF THE RESULTS

1. In this paragraph we introduce a notion of analytic wave front set adapted

to the study of problems when growth type conditions in part of the variables
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appear. To justify our definition we recall the following result:

Proposition 3.1. Let £f€ gwm"),fe Rn and £°€ Rn\ {0} be given. Then
there are equivalent:
a)  (x°,€°) ¢wr, £ .
b) There are ¢ > O,c > 0 and an open cone I C R™\ {0} which contains Eo

such that |v(f)| < c for any v € 557'<R“) which satisfies the estimates

[vz)| < exp(e|Img| + <x°,Img>) , for Rer ¢ -T ,

In

and

|v(g)| < explelg| + <x°,Img>) for Re;é%flf

Here WFAf denotes the (standard) analytic wave front set of f , introduced
by M. Sato [1] and L. Hormander [2]. Proposition 3.1 is a consequence of results
from O. Liess [1] cf. also J.E. Bjork [1], pp. 310-313, for arguments which
immediately give this result. Note that s|£|+<xo,g> is just the support-function

of an €-neighborhood of xo

2. When trying to define a notion similar to WFA in the case when growth
type conditions appear, we have to replace conic neighborhoods of points by quasi-
conic neighborhoods of a certain kind. At first we therefore explain what we shall
call a quasi-cone in this paper (as well as other notions in this paper this will
depend on s , but, since we may keep s fixed everywhere we will not make this

dependance explicit in the terminology or notation).

Definition 3.2. T C R\ {0} (or T C c™!\ {0} ) will be called a quasi-cone if
(E,7) € T implies (tl/og,t T)E T for all t >0 .
Similar or also more general objects have been considered in connection with

(standard) wave front sets e.g. by L. Hérmander [2] and B. Lascar [1].

Definition 3.3. Consider f € g;m:ﬂ), t° € R, |t°| < h and
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+
€%, € r" ! \ {0} . Then we shall say that (t°,£°,7°) ¢ WF: f if we can find
c>0,e >0,D>0,n>0 and an open quasi-cone I C Rn+l\ {0} which contains

(EO,TO) such that |v(f)| < c for any v € é%?g(Rg+1)' which satisfies

(1) |viz, )| < expA|mmz|® + ¢° ImT + n|ImT|) if Re(z,T) ¢ - T ,
respectively
(2) v, 0] < expe(]z|® + |t)h+a|mmg|“+t°Imr + n|Imt|) , if Re(z,T) € -T.

(A is here associated with D by (1), §2).
For technical reasons it is very useful to have the following equivalent

characterization of WFA :

+
Proposition 3.4. Consider £ € é%fi(Rg 1) . Then there are equivalent:
1) (£%,E%,1%) ¢ W) £ .
+
(ii) There are € > 0,D > 0,1 > 0 an open quasi-cone [ C R" 1\ {0} which

contains (EO,TO) and for every b > 0 some c¢ > 0 such that lv(f)| L ec

for any v € é%?E(R:+1)' which satisfies
(3) |v, )| < exp(a]|Imz|® + t2Imr+n|Im|+bln(i+] (z,0)|)) , if Re(z,T) ¢ -T,
respectively
(4) [viz, 1) | < exp(e(|g]|%+|t|)+a] Img |+t Imr+n | Imr | +b1n (1+] (g, ) ),

if Re(C:T)E -T .

+
(iii) There € > 0,D > O,n > 0 and an open quasi-cone T C R" 1\ {0} which

contains (£°,7°) and for every b > 0 some c > O such that |vif)| < ¢

for any v € é%?:(R§+1)' of order zero which satisfies (3) and (4).
. . cas o _,o0 o s j .
In particular it follows from Proposition 3.4 that (t ,§ ,T ) ¢ WFA DS Dt f if

(£%,£%,1%) ¢ wr, £ .

Proposition 3.4 will be proved in §6.
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3. The notation WFi from definition 3.3 is also justified by the fact that

WF: has a number of properties which one expects an analytic wave front set to

have. Before we mention some of them we introduce a notation. Let then s > 1 be

given and denote by T : Rn+1\ {0} » Rn+1 the map

1/0

&, = &/ E|° + |th %1/ g|%|t])) for E€ R",T € R

n+1

Thus the image of T is {(£,T) € R ;]£|O+|T| =1} and T_I(E,T) =

= {(tl/og,tT); t >0 if Iilo + |T| =1} . Further T C R\ (0} isa quasi-

1

cone precisely when T T I =T .

n+1

Proposition 3.5. Let U be a closed set in E = {({,1) € R ;IE|O+|T| =1} and

consider f € é§7:(R§+l) . Suppose that (O,EO,TO) ¢ WF; f for all (EO,TO) €U .

Then we can find € > 0,D > O,n > 0 and for every b > 0 some c > 0 such that

]v(f)| < c for any v € é%?E(R§+1)' which satisfies

(5) [v(2, )| < exp(A|1mz|%+n|Int| + b In(1+] (¢, 1) ])) if T(Re,Rer) ¢ - U ,
respectively,
(6) [vz, )| < exple(|z]|%+|T)+A|Imz|“n|ImT]| + b 1n(1+] (Z, D) |)

if T(ReZ,ReT) € - U

+
In particular it follows from this result that fe,,7i;:(c£ 1) for some B

+
and n if (0,£°,7°) ¢ WF:’ £ for all (£2,7°) € R™1\ {0} . The converse is of
course also true (cf. Proposition 2.7). Proposition 3.5 corresponds to H.

Epstein's version of the edge-of-the-wedge theorem. It will be proved in §6.
 ps . s _n+l s s
Proposition 3.6. Consider f2,f2 € é%?;(Rh ) and assume that WFA f1 + WFA f2
1 2 1 2 i i +2
Qef. {(t,£" +&%,1 +1:(e,8,1) € W, £} C {(t,6,1) € R"; [t] < h,(E,7) # 0}

Then we have

s s s s s
WE, (£, - £5) C WE, £, UWF, £, L)(WFA(fl) + WFA(fZ))
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S s s _ . s s . .
(by definition we put WFA f1 + WFA f2 =@ if WFA f1 or WFA f2 is void).

The hypothesis from Proposition 3.6 is in particular satisfied when WFz f1 =0

and it follows that WF:(fl-fz) C WF: £, then. Proposition 3.6 will be proved in

§6.
4. The following two results are of particular interest in this paper.

st . +
Proposition 3.7. Consider f € é%?i(RE 1) such that f(x,t) = 0 for t < 0 and
assume that (0,0,a) ¢ WF: f for a=1 and a = -1 . Then there is n > 0 such
that f(x,t) =0 for t<n.

Proposition 3.7 will be proved in §6.
Proposition 3.8. Let s > 1 be a rational number and consider a linear partial

differential operator of form

(7 p(x,t,D0 D) = Z ayey (0 b Dz
la|/s+|B|/o+i<m ¥ *

where the a are holomorphic functions defined for |t[ <n,n>0 and

aBJ
a5 oom =1 . Let also (tO,EO,To) € Rx(Rn+1\ {0}) be such that
(8) Z aOSj(to) €% %7 # 0
|8]/0+3=m
. s _n+l _
and consider £ € ég?A(Rh ) such that p(x,t,Dx,Dt)f =0

Then it follows that (t°,£°,1°) ¢ wr*; £ .

Definition 3.9. If (to,Eo,To) € Rx(Rn+1\ {0}) satisfies (8) then we shall say
that it is noncharacteristic for p .
Thus Proposition 3.8 replaces the regularity theorem of L. H&rmander-M. Sato for
operators of type (7). It will be proved in a forthcoming paper.

It is now clear that Theorem 1.1 is a consequence of the Propositions 3.7 and

3.8. sSimilarly Theorem 1.2 is a consequence of the Propositions 3.5 and 3.8.

5. We conclude this paragraph with one more definition:
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Definition 3.10. Consider €3€ R and (EO,TO) € Rn+1\ {0} . Then we say that

+
U C R2n 2 is a microlocal neighborhood of (to,Eo To) if it contains a set of

2n+2

form {(x,t,8,1) € R“""“;x € R", |t-t°| < &,|T(E,D-T(°,7%)| < €} for some

€ > 0 . Note that microlocal neighborhoods are global in x . This is justified
s . . é%fé n+1
by the fact that the conditions which define elements from A(Rh ) are global

in x .

§4. PREPARATIONS FOR THE STUDY OF WF:

1. Let s > 1 be given. The notation ¢ has been introduced in (1), §2, and

the notations T and E in §3.

Lemma 4.1. For every c' >0 we can find ¢ > 0 such that

|g-g°

g

IO + IT‘Tol S.C(|EO|O + |1°) implies

(1) T, - 7%, | < .

This is obvious if we observe that it suffices to prove (1) under the

additional assumption that (&,T) € E .

- -1
Lemma 4.2. Consider U, V closed sets in E such that 0 ¢ T 1(U) + T (V) .

Then T(T_l(U) + T_I(V)) is a closed set in E .

Proof. The set A = T_l(U) + T_l(v) is quasiconic, so it suffices to show that
ANE is closed. This follows if we show that there is M such that
-1 -

re T, AmeT W), A+ A"E E implies [A\'"] <M, |A"| <M . Assume then by
contradiction that there is no such M . It follows that we can find sequences

|j lj nj uj s -1 s . -1
(g'7,t'7"), (&"',"°) in T " (U) , respectively in T " (V) such that
€, 7+ ,t) € E and such that €'3,7'9) > » . Denote |§'J|O + |T'J| by

1/0
’

tj and consider Aj = ((E'j+£"j)/tj (T'j+T"j)/tj), A'j = T(E'j,T'j),
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A3 = (g3 el/O iy
J J

Then Aj -+ 0 and |)\'j] + |)\"j| is bounded. If )\'o, A" are limit points for

)\'j, )\"j , we get 0 = A'C + A , which contradicts our assumption.

Notation 4.3. Let s > 1 be given and consider U C Rm-1 \ {0} . wWe denote by

%{U) the set of functions «r : Rm-1 -> R+ with the following properties:

a) there are constants ciicy ey > 0 such that r(&,T) 3c1(|£l0 + |t - c, if

T(E,T) € T(U) ,
b) there is a constant c¢ such that
|O

lr,D-r &, )] <ct + |g-81% + |t-1' ) ,vE,£' € R, v1, 7' € R .

In particular r(§,T) < c(|£|0+]TI) + oy

If U consists of just one point (EO,TO) , then we will also use the notation

%EO,TO) instead of %({(QO,TO)})

Note that the two inequalities (1) and (2) from 83 can now be replaced by

IG(C,T)| < exp(r(—Reg,—ReT)+A[ImC|0+t°ImT+n|Im§|) for some rsgg%%g°,T°).

Lemma 4.4. Consider U CE and ré€ L%(U) . Then there is € > 0 such that
r€%(u') for U' = {(§,1) € E;|§ - &'| + |t-1'] < €} for some (£',1')€ U'}

This is immediate.

Lemma 4.5. Let U C E and for every (§,T)€ U some r(g T)€ %(E,T) be
e ’
given. Then we can find a finite set of points (El,Tl) ,i=1,...,k and constants

c1,c2 such that

max r . . (5,10 2c (|€|%|t) -c, if TEDEU
i (El,_l,l) 1 2

This is an obvious consequence of Lemma 4.4.

3. The following lemma is helpful when we study the wave front set of a

product of two functions.
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- -1
Lemma 4.6. Consider Vi,V2 C E closed sets such that O ¢ T l(vl) + T (V2) and

choose (£°,7%) in E, (£°2,1° ¢ v, uv u(T_l(Vl) + T-l(vz)) . Also choose

2
rie %(Cvi),i=1,2 . Then there is r€ %(EO,TO) such that

r(g',t') £ min

(r, (B'-€,T'-T) + r,(§,T)) .
(£,T) € R

n+1

> 0,c we have

Proof. It suffices to show that for some € > O,c 9

1

(2) £ (8'-6,T'-1) + 1, (6,T) 2 cl(l‘g'I‘J + ]t e, if [T, t)-1€°%, 1) < e.

If we choose € small enough, then we may assume that (§&',1') € CV1 N CV2 . In

- -1
view of Lemma 4.2 we may further assume that (&',T') € T 1(V1) + T " (V,) then.

2
For such (&',T1') and for some fixed (§,T) we can now have one of the following
three situations:

a) (&,1) € v,

b) (£,7) ¢ Voo TE'-E,T'-T) € V,

o (€T ¢V, TE'-ET-T) ¢V,

We shall study the three cases one after the other.
Case a). If we choose € small then it follows from (§,T) € V2 and Lemma 4.1
that |£'—£|0+|T'—T| > c(lg'l°+|1'|) for some constant ¢ > 0 which does not
depend on §&,T,E',T' . Further we must have T(§'-£,71'-T) ¢ V1 then such that
rl(E'-E,T'-T) > c3(|€'-£!0+|T'—T|) - ¢, in view of r1€ %(cvl) . This gives
(2).

Case b). |T(E',T') - T(g°,r°)| <€ and T(E'-E,T'-T) € V1 implies

\'2

(el%th 2 eger=g|%+[vth . mus |gr|%+|t| < 2%Jgr-g]%27]g|%

In

[t -t|+|| c6(|F,|0+|'r|) . We then obtain (2) from r,€ %(CVZ) .
case c). Again we use |£'|%+|1'| < 2%|g'-£|%+2%|£|%+ |t ~1|+|t| , and then we
apply r, € %(cvi)

+
4, Lemma 4.7. Let r : Rn 1 > R+ be a function such that

183



0. LIESS

(3) lr &, - x@&,1)| < 1+]|g-£"|%|1-1"| for a1l E,£'€ RY, T,T' € R

+
Then there are constants c¢,Y and a plurisubharmonic function p : c” ! -+ R such
that

r(Rel, ReT) 5_p(;,1)+y(]1m;|0+|1m1|) ,
respectively
p(Z,T) £ 2r(Reg, ReT)+Y(|ImC|0+|ImT|) + c

Moreover, Y and c¢ do not depend on r here.

Proof (for a related result, cf. O. Liess [1]). We start by choosing a continuous
function Y (T,t) : C X R, >R, which is plurisubharmonic in T for each fixed t
and which satisfies the following inequalities:

a)  y(t,t) < C + B|Imt| ,

b) Y(T,t)

A

-lt| + Blimt| , for W/t < || <t,T€C,
) Y(t,t) < -t + B|Imt| , for |t| >t, T€C,
d)  y(it,t) > -B|t| , if TER,
for suitable constants C,B (cf. O. Liess [1]).
Further we choose ¢€lb/6g(cn), ¢(0)=1 , such that
a g . . (o) . n
|¢(;)| S_CleXP('|C| +cz|ImC| ) , respectively |¢(1€)| Z_c3exp(-c4|£| ) if E € R
for some positive constants ci,i=1,2,3,4 (cf. Lemma 2.3).
o _o n+l . . . .
For every (§ ,7 )€ R we now define a plurisubharmonic function

: ™SR by o o o T = r(£°,7%)+4 1n|o (-2 | + 4y (t-1°, 2 (€%,

P
€%, €°,t%

We claim that the following inequality is then valid:

(4) P o o (&iT) < 2r(Ref,Rer) + de,|1mg|% + 4B|1mt| + c

&°,7°) >

where Cg does not depend on (EO,TO)
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Proof of (4). Three cases are to be considered:

I. When |C—£°|0 + IT-T°| 5_r(EO,T°)/2 , then it follows from (3) that
lr(ReC,ReT)—r(Eo,To)] 5_1+r(£°,T°)/2 , such that r(g°,T°) < 2r(ReZ,ReT) + 2 ,
whence also (4).

11. when |z-£°%|%|t-1°| > £(£%,1®)/2 , but |1-1°| < r(£°,1°)/4 , then
|§-£°|0 > r(g°,r°)/4 such that r(EO,T°)+4 ln|¢(;—£°)| 5_4c2|1m§[0 + 4 1n cy
which again gives (4).

III. Finally, when |T-To| > r(Eo,To)/4 , then we can apply b) or c) and conclude
that r(g°,T°) + 4w(T—To,r(€o,T°)) <4 B!Imr| + 4C such that (4) is valid

also in this case.

We have now proved (4) and return to the proof of Lemma 4.7. In fact let us

define p'(g,T) = sup 1P o o (z,t) . Then p'(g,T) < 2r(Reg,ReT) +
(£°,1°)kR € ,1)
y({Imclo + |ImT|) + cg for y = max(4c2,4B) . In particular p' 1is finite at

every point. It is easy to see that p' is plurisubharmonic and from d) and the
corresponding property for ¢ it follows that r(Reg,ReT) < p'(Z,T) +

y(|ImC|O+]ImT|) +c We now set p = p'+c

6 6 -
5. With the aid of Lemma 4.7 one can now prove:

+1
Proposition 4.8. Consider «x(g,T) : R - R, a function which satisfies

|rg, ) - (€', 5_c(1+|€—g'|0+|T—T']) , and let k > 0 be given. Then there
are constants c¢',k' and b' such that the following is true:

o
if ué€ 2;7 (Cn+1) satisfies

13(3/00)% 3/ u(z,7) | < exp(xr(Rez,Ret) /2+A|Inz | %+h|Int|+b 1n(1+] (z,T)|))

for faf + ar| < k'

[e<]
+ — —-—
then there is v € 2%7 " 1) such that 3dv = 3u and such that
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|(3/3C)6(3/BE)B' v(Z,T)| < c' exp(r(Ref,ReT) + (A+cy)|1mc|o + (h+cy) |ImT| +

+b 1n(1+]| (z,T)])) for |[B] + |B'] <k .

Y 1is here the constant from Lemma 4.7 and 9 stands for the Cauchy-Riemann
operator in C,T .

In view of Lemma 4.7, Proposition 4.8 is a consequence of classical results
from L. Hdrmander [1]. For details of a proof in a similar situation, cf. O. Liess

[11, and also O. Liess [2].

§5. PREPARATIONS FOR THE STUDY OF WFZ. SPLITTING OF ENTIRE FUNCTIONS
+ +

1. Proposition 5.1. Consider ¢i . c” L R,i=1,2,3,4, and VY : " s R
continuous functions with the following properties:
a) ¢1(CIT) < ¢3(CIT)I ¢2(CIT) < ¢4(CIT) ’
b) Y is plurisubharmonic,
c) min(¢1(C,T), ¢2(C,T)) <Yz, §_min(¢3(C,T), ¢4(C,T)) ’
d) there is C such that |¢i(§,T) - ¢i(c',1')| < C(l + [g—g'|0+|1—r'|),

i=1,2,3,4 .

+1
Then there are constants ¢ and u such that every h€ L/ig(c" ) with

|h(C,T)| < exp max (¢1(§,T), ¢2(C,T)) can be decomposed in the form h =h, + h_,

1 2
hi€ L/ig(cn+1) with hi satisfying
|h) @, 1)| < e exp(9,(C,T) + 1 In(+[ (@, D)

|h, @, )| < e exp(@,(, 1) +u In(+[(, D) .

A similar result has been proved in O. Liess [2]. 1In fact (by means of a
partition of unity) it is quite easy to decompose h in the form h = f1 + f2
[ee]
+
where the fi are in 2%7 (Cn 1) and satisfy |fi(§,1)| < exp ¢i(C,T) B

respectively |§fi(c,r)| < c' exp(min(¢1(§,1),¢2(g,r)) + u'ln(1+|(C,T)])) for some
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c' and u' . Using b), c¢), d) and results from L. Hérmander [1] one can then
show that there is g¢€ E%Dw(cn+1) such that 3?1 = §§ and such that

lg@, 0| < " expmin(®,(2,7),9,(2, D) + 1 In(1+| (5,0 |)) for some c" and u .
We then define h1 by h1 = f1 - g and h
cf. 0. Liess [2].

by h_ = f2 + g . For more details,

2 2

2. Proposition 5.2. Consider a finite set of functions

+
r. : &% > R ,i=1,...,j , such that
i +
o] : .
(1) e, € - e @1 | < casle-g [TH|t-t D) ,ist, . g
for some C . Let D' >D >0,n>n'" >0 and b > 0 be given. Then there are

+
P+l hich satisfies

c>0,d4,0<d<1,u" >0 such that every h€ L/ég(c

(2) Inz, 0] < exp(d max r_ (Reg,ReT)+A" |Imz|%n' [Int| + b 1n(1+] (2, 1) |))
i

can be decomposed in the form
h = EE: hi
for some hi€ L/i%(cn+1) such that
|hi(§,T)| <c exp(ri(Rec,ReT)+A|ImC!0 + n|Int| + (o+p")In(1+|(z, D |)

Here d depends only on 3j,C,D,D',n,n' (and not explicitly on the ri ) and u' ,

which is related to u from Proposition 5.1, depends only on j (and n ).

: ; o s +
Moreover, if h is of form h = v for some v € D,(Rn,l)' , then we can

o s, n+l
choose the hi to be of form hi v, for some vi_e égyD(R )

(D and D' are here related to A,A' via relation (1) from §2).

Proof. Arguing by induction we may assume that j = 2 . The first part of the
proposition is then an immediate consequence of Proposition 5.1. To see this, we

introduce ¢i =d ri(ReC,ReT)+A']Im;|0 + n'|ImTl + b 1n(1+](§,T)|) for i =1,2
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and ¢, = ri_z(ReC,ReT)+A|Imc|0 + nlImt| + b In(i+|(z, D |) + ¢, for some c, if

i = 3,4 . The only thing which remains then to be shown is that for suitably

choosen d and ¢, we can find a plurisubharmonic function Y such that

min(¢1,¢2) LY < min(¢3,¢4) . The existence of such a function ¢y is a

consequence of Lemma 4.7. In fact in view of that lemma and for d sufficiently

+
small we can find a plurisubharmonic function ¢ : c" ! > R such that

d min(rl(ReC,ReT),rz(ReC,ReT)) < ¢z, T) 5_min(rl(Rec,ReT),r2(Rec,ReT)) + (A-A")

|Im(;|0 + (n—n')|ImT| + c Since lImt[O, |ImT| and b ln(1+|(c,T)|) are

5 -
plurisubharmonic it then remains to define { by
=0+ 4 mmz|® + n'|InT] + b In(t+| (2, D]) .

Let us now turn our attention to the second statement from the proposition.

s n+1

Thus assume h = v for some v € D,(Rnl )' . We want to show that the second

assertion is a consequence of the first applied for some modified ri .

The first thing to observe here is that we can find C1 > O,b1 Z_O,A1 < A
and nl <n' (which all may depend on v ) such that
(3) Ihz, ol <c exp(A1|ImZ;|0 +m,lmot] + b e+ @, )
In particular it follows that
(4) Inz, 0| < expa,|mz|? + n [Int| + ®+D1nA+] @, 0])  for
ol 2c

Let us also fix A2,n2 with A' < A2 < An' < n2 <n and let d be the one
given by the first part of the proposition for 2C,D',D2 (associated with Az),
n',n2
We now choose ri : Rn+1 -> R+ such that

a) |ri(£,r) - ri(g',T')| <2c(+|g-£' % + |-t

b) ri(g,r) = ri(E,T) if I(E,T)| g_Cz for some C2 z_cl which will be chosen

188



UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

later on,
©  r(5,D 2r(ED 2minlr, (£,0D,2(k,+1)/d1a0+[ €|, if [ED]2c,,
4 ri(E,T) =min(r; (£,1),2((b+)/)In0+[(€,D[) if [(ED]2c, for some
C3 > C2 .
Let us then assume that h satisfies (2) for the d introduced just before and
assume that it satisfies (3). We claim that h then also satisfies

(5) In(z,T)| < exp(d max r]!_(ReI;,ReT)+A'|ImC|O +n'|Imt| + b In(1+| (g, D |)
i

if C2 is chosen great enough.

In fact when IRe(C,T)l <c then (5) follows from b) and (2) and when

2
|re(z, )| 2 ¢, but [Im(z,7)| < [Re(g,T)| , then (5) follows from c) and (4). It

therefore remains to consider the case |Im(g,T)l 3_]Re(g,r)| > C, when (5) is a

2
consequence of (3) if we choose C2 great enough in order to have
@'-p) |z |7 + ('-n) |mot| > b+ In(14] (¢, 0 |) for the (,T) under
consideration.
We have now proved that we may assume that h satisfies (5). It follows from
. cas . /zn+1
the first part of the proposition that we can find hi€ ' (C ) such that
h =2 hi and such that |hi(C,T)l <c' exp(ri(Reg,ReT) + n2|ImT| +

(b+u') 1n(1+|(z,T)|)) . 1In view of d) from the definition of r! it is then clear
i

s _ 2 g?s n+l, |
that hi is of form hi = vi for some vi € D(Rn )

3. Remark 5.3. It is possible to apply Proposition 5.2 also if instead of (2)

we only have the weaker estimate

Inz, ] <

exp(d I r, (Ref,ReT) + At |1mz|© + n'|Int| + b In(1+| (z, D) |)) .
i

In fact then |h(;,T)| < exp((jd) max ri(ReC,ReT) + ...) and we must only change
i

the notation for 4 .

+
4. Proposition 5.4. Consider r : Rn ! * R, such that
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v, - r&',t]| < 1+|g-£'|%+|t-1'| and let D' >D >0,n>n' >0,b >0 and
u >0 be given. If u is sufficiently great then we can find d >0 and c¢ > 0

such that every }161/7?Z(Cn+1) which satisfies
(6) In(z, )| < exp(d r(Rezj,,ReT)+A'|Img|O +n'|Int| + b In(1+|(z,T)|))

+
can be written in the form h =h +h,, h € A, with n satisfying
’

1 2 1,2

Ihl(g,r)l < ¢ exp(r(Reg,Ren) +A|Imz | + n|Imt| + u In(+](z,D])
respectively
|h2(g,r)| <c exp(AIIm§|O +nlimt] + e+ In(1+](Z, DN

Moreover, | does not depend on r,A',A,n',n,b here.

~ +
Further if h = v for some v € ;,(R:,l)‘ then we can choose the hi such

-~ s,  n+l |
that hi = v, for some A € é%?;(R ) .

Proof. (cf. O. Liess [2] for a similar result). Let us choose A' < A" < A,

n' <n" <n . Then we can find cy such that

|h(z,T)| < c, exp(d r(ReZ,ReT) +b 1n(1+|Re(z, D) |)+A"|1mz|® + n"|1mt|)

1

if h satisfies (6). We would like to reduce ourselves to remark 5.3 by

essentially taking j = 2,r, = r,r

. = (1/d) b 1n(1+|(z,7)|) , where d > 0 is the

2

constant from the conclusion of Proposition 5.2 (when combined with Remark 5.3) for

c=1,A",n",A,n . Remark 5.3 is however not directly applicable since for small

£,7,8£',7' we do not necessarily have Irz(E,T)-r2(€',T')l <1+ |£—£'|0 + |T—T'|

We therefore introduce an auxiliary function ré and a constant c¢' such that
ré(E,T) = r2(£,T) if (&, ] 2c¢' and |ré(g,r) - ré(E,T)l 5_1+|g-g~|0 + |11 |

everywhere. For some c2 we will then have

Ih(z,0)| < c, exp(d(r, (Re,ReT) + ré(ReC,ReT))+A“|Im§|O +n"|1ot| .

2
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The proposition is now a consequence of Remark 5.3.

5. Proposition 5.5. Let r'€ zfzag(g°,r°),n' >0,n' >0,d >0 be given.
. LS;%; o _O s
Then we can find c¢ > 0,r € (¢°,T),0>0,n>0,b >0 and a sequence of points

5,7 € ®**Y, = 1,2,3,... with the following property:

if ve 1i(R""'l)' satisfies

N [v(z,T) | < exp(r(-Rer,-ReT)+A|Imz|% + n|Imt|)

n+1
then there is a sequence of entire analytic functions h : C +>C,k=1,2,...,

k
such that only a finite number of them are Z O (how many functions are % 0 may

depend on v) and such that

(8) vz, =% h (g,T)
by

(9) |hk(2;,"r)| < (c/(1+k2))exp(r'(—Rec,—ReT)+A'|Iml;|0 +n'|Imt| +

+b In(1+|(g,T)|)) for all g,T ,

(10) lhk(C,T)| < (c/(1+k2))exp(A'|Im§|o +n'|Int| +

+b I+, 0 if |g-£%|% + |t 2 ar(|eX|0 + KD .

Proposition 5.5 is closely related to Proposition 5.2. On the other hand the main
difference is here that the constants must not depend on the number of terms which
effectively appear in (8). Induction in this number is not allowed therefore and
we must obtain all terms from the decomposition at the same time. We prepare the
proof by a lemma in which we show that it suffices to obtain (10) on a smaller set

(smaller appart from a renotation).

Lemma 5.6. There is c¢' such that every h,_ which satisfies (9) and

k
(11) |hk(c,1)| < (c/(1+k2))exp((A'/2)|1m;|° + (n'/2) |Imr| +
+b In(1+] (£, D)) for |Reg-£X|% + |Ret-tX| > (a'/2) (|E¥] + |[¥])
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also satisfies (10) with ¢ replaced by cc' , if r'€ ¢9%3(5°,T°) is small
enough.

Proof of Lemma 5.6. When IReC-EkIO + |ReT—Tk| 2,(d'/2)(|€k|0 + |Tk|) , then (10)

follows from (11). 1In the remaining case we have for

e-£519 + o] 2 a' (€% + [P that  (|rez|% + |ret]) < oy (|Imz|® + |TmT))

for some c1 . If we choose r' small enough in order to have

r'(-Ref,-ReT) < (A'/2) |Img

o4 (n'/2)|ImTI+c2 for such ,T then it follows from
(9) that (10) is satisfied with c¢ replaced by c¢ expc,,
We now return to the proof of Proposition 5.5. The situation is here similar

to the one in Lemma 3.6 from O. Liess [1] or (even more so) to the one from

Proposition 5.18, chapt. VII in J.E. Bjork [1].

oo
Proof of Proposition 5.5. We choose a E; partition of unity 9, on

+ +
Rn 1,gk >0,k=1,2,..., a sequence of functions rk : Rn 1 > R+,k=1,2,..., and a

+
sequence of points (Ek,Tk) € R" 1 with the following properties:

a) there are c1 > 0,c

€] 2 ek

5 > 0 such that (&,T) € supp 9 implies

1/0
/0 _ ey
b) supp g N supp gj =@ if |k-j| >2

c) there are ¢, and V such that |grad€ Tgk(E,T)| 5_c3(1+|(£,T)|)v for all k,
’

3
d) for k > 2 we can decompose gradnggk into the form gradg,_[gk = gﬁ + gﬁ
for some gi,gﬂ such that
d,) supp gy N supp g, = @
d2) gi = -gi_l if k 2_2,gi = gradnggl (by definition),

e) there is a sequence of positive numbers tk > © such that

k k, _ , 1/0,0 o
(€51 = (5778, 5T,
£) rk(gr’r) < r'(EIT) ' V(EIT) € Rn+1 ’
9 1, (E,T) =0 if le-eX1% + |1-t%| > @2y (|19 + |5

) [r, (6,1 - r (€T < 14]E-£"1% + |t-1'| , for all E,E£',T,T' ,
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de

H

FE,0€e T,

i) max r, (§,T)
k k

i) (&€,T) € supp g, N supp rj =>-rj(E,T) 5_rk(E,T), vk,j

k) (&,T) € supp gy N supp rj =>-rj(€,T) S.min(rk(E,T),rk+1(E.T)) . Yk,3 .

Such r and (Ek,Tk) are easy to construct. (Note that e) will not be used

k' %
later on -it only serves to make the construction more transparent- and that k) is

in fact a consequence of b), d) and j)). In fact, we may, e.g., consider the sets

+
v, C R Gefined by

u, = (€, e ", 1£1% 1] < 2b,u = {0 € R k-3 < |£]% 1| < 2k} ,

+1
and choose the partition 9y to be subordinate to this covering of R" .

Further we choose some "small" r°€ J?%?(g°,r°) and define r, on Uk\J Uk+1 to

n+1
be the restriction of r° to this set. We then extend T to R by letting

it die out as rapidly as this is allowed by h). This immediately gives the desired
properties, if r° has been choosen suitably (in particular r° must vanish in a
neighborhood of the origin in order to avoid the difficulties which might come from
the fact that for small d' and small k the sets
|€-£k|0 + |T-Tk! _<__(d'/2)(|gk|0 + |Tk|) can be small)). A similar construction is
implicit in J.E. Bjérk [1], loc. cit. We omit further details.

Once we have constructed T, 19 and (Ek,Tk) with the properties a),...,k),
the proof of Proposition 5.5 is straightforward. Let us in fact assume that
ve g;m"”)- satisfies (7) for r =d T , where T is from i) and d > O
shall be specified later on. In view of Proposition 5.4 we may assume that v is

of order U such that we can find c4 for which
vz, 1)| < exp(a|Img|% + n|Imt| + (1) In(1+|(Z, D)) for |(z,T)| >c,

It follows in particular that for some x°

(12) |;(C,T)| < exp(d max rk(-Re;,-ReT)+AIIm;|0 + n|ImT‘ + (u+1)1n(1+|(§,1)|))
k<k©®
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As a first attempt to find hk we introduce functions f by

fk(C,T) = gk(Rec,ReT) h(g,t) .

In view of a) and j) it follows that

£, (0| < e (1) ™! exp(@ r, (-Ret,-Rem) +4|Inz| + nlTmt| +

+ (3o+p+l) In(1+]| (g, D) |))

Further 5fk = (1/2) gradg,Tgk(Reg,ReT)h = (1/2)(gi(Re§,ReT)h + gﬂ(ReC,ReT)h) .
In view of d2) it is now clear that (1/2)(gﬁ(Rec,ReT)h) = 5((}£: gj)h) (one might
i<k

alternatively observe that in view of dl)’ 5§£(Re§,ReT)h = §§£(Rec,ReT)h =0 ,
where we have now interpreted gih and gﬁh as (0,1)-forms, and use a variant of

Proposition 4.8 later on). We now use a), j) and k) and conclude that

|g§(Re§,ReT)h(§,T)[ < c6(1+k3)'1 exp(d min(r, (-Ref,-ReT),

rk+1(-Rec,-Rer))+A|Im¢|0 + nlimt| + Bo+pu+rv+l) In(l+]| (g, 1) [N
if k §_k° , respectively

lg;. (Rez,ReT)h (g, T) | < c6(1+k3)_1 exp(A|Imz|% + n|ImT| + Gotp+v+l) 1n(1+](z,1)|))

for k > k° .
Now fix A",n" such that A< A" < A',n<n"<n' . If 4 is sufficiently small

n+1

then we can find ?kS %w(c ) such that 5—?]; = (1/2)g}'<(Reg,Re'r)h and such

that

|?k(c,r)| < c_,(1+k3)—1 exp(min(rk(-Rec,-Rer),rk+1(—Rec,—Re-r)) +

+ A" |mmz] + n|ImT| + pUIn(i+| (g, ) if k < K°
respectively

IfL(C,T)' 5_c7(1+k3)'1 exp(A"|1mz | + " 1mt| + b"In(1+] (z, D) |))
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for k > k° and suitable c7,b" . This follows from Proposition 4.8. The proof

of Proposition 5.5 comes now, in view of Lemma 5.6, to an end if we set

~ ~ o

= -7 = - <k <
h1 f1 fl’hk fk fk + k-1 for 2 <k <k and
h = (£ -F + % ) and observe that EZ: )™t <o eyt
KO+1 S S O R € o =~ g :

k>k° k>k

§6. PROOF OF THE PROPOSITIONS 3.4, 3.5, 3.6 and 3.7 -

1. Proof of Proposition 3.4 (first part).

(ii) = (i) and (ii) => (iii) are trivial. If (iii) is valid then (ii) follows from
Lemma 2.2. It remains to prove that (i)=>(ii). In doing so, we may of course

assume that t° =0 .

Proposition 6.1. Suppose (0,£O,To) ¢ WFZ f and let b > 0 be given. Then we

can find ré€ %(EO,TO),D > 0,n > 0 , which do not depend on b and c¢ such that
+
(1) |v(f*g)| < c”g(x,t)| dx dt for any Vv € gg(Rg 1)' which satisfies

(2) |v(Z, )| < exp(r(-Rez,-Re)+A|Imz | + n|Imt| + b 1n(1+](z,T)])) , and for

any gcg%:m"“) such that supp g C {(x,t) € Rn+1;|x| < A,lt] <n}

In particular we obtain from (1) that |v(f)| < c for any v satisfying (2),
o
by just inserting in (1) for g a sequence of % ° functions gj such that
. . ) , . , g' n+1

”gj(x,t)| dx dt = 1 which approximates the &-distribution in (R ) and
have support in |x| < A,|t| < n . Thus Proposition 6.1 shows that (i)=>(ii). We
have taken the idea to estimate v(f) via v(f*g) from W. Rudin [1]. For a
similar argument, cf. O. Liess [2].

Before we prove Proposition 6.1, we mention a simple lemma which follows

essentially from the fact that the Laplace operator in n+l! variables is elliptic.
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Lemma 6.2. Denote by V the Laplacean in n+1 variables and let
A>0,n>0,b' >u be given. | 1is here the constant which appears in the

conclusion of Proposition 5.4. Then we can find ¢, > 0,2 > 0, £ an integer, and

1
maps
[e<] [e+]
s, , 6 et € k] <o le] <nh > et € R x| < 28, )¢ < 2m)
such that

2
g=V Slg + Szg

and such that

o
sup ID DS g(x,t)[ <c f[g(x,t)|dx dat
(x,t)ERn+1 ld|+jﬁb'+1 X t1,2 1
It follows in particular that
3 (1+|(c,r)|)b'|J;2751 L9 €] < e flax,t)|ax at -

- exp(2A|Img| + 2n|Imt|) ,

for some <,

2. Proof of Proposition 6.1. 1In view of the hypothesis on f we can find

r'€ g;%g(g°,r°) , D'">0,n' >0 and c such that [v(f)| <c

3 for any

3

v € ;,(Rgfi)' which satisfies |v(z,7)| < exp(r'(-Reg,-Ret) + A'|Img| +

+ n'IImTI) . We now apply Lemma 6.2 with A = A'/4 and 1 =n'/4 such that

v(fxg) = (v*slg)(f) + (VQV*Szg)(f) . Let also v € ég,;(R2+1)' satisfy (2) for

these A,n and consider r€ ¢963(5°,r°) . If r (e.g. of form dr' ) is small
enough, then we can apply Proposition 5.4 in order to split Vkv in the form
L
Viv = vy + v,
s n+l . .
for some v, € D"(Rn'/z) which satisfy

196



UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM

|Gl(c,r)| < ¢, exp(r'(-Reg,-ReT) + (ar/2) |1z | + ('/2) |Imt| 4w lni+](C,O )

respectively

vyt 0] < e, exp((A'/2) |tmg| + (n'/2) [Tmt| + b In(1+] (@, 0 )

and where A'/2 = (sD“)—O/S(l/O) .
We now estimate v (f*g) wusing v(f*g) = (V*Slg)(f) + (vl*SZg)(f) + (V2*Szg)(f)
It is then clear that the proposition follows as soon as we can show that the

inequalities (4), (5), (6) below are valid

(4) [trrs, @) (D] < e flgx,0)| ax at
(5) | (v*s,9) (D) | < ¢ flgtx,0)| ax at
(6) | (v xs,9) (D] < e flgtx, )| ax at .

a) Proof of (4) and (5). It follows from (3) that
|J;ZTV*Slg)(C,T)l 5_czexp(r'(—Reg,—ReT)+A'|Imz;|0 + n'|ImT|) . flg(x,t) dx dt

Thus (4) follows with c5 =c, ° C by the choice of r',A',n' . A similar

2 3

argument gives (5).

b) Proof of (6). This follows from the fact that vz*szg/flg(x,t)|dx dt is a
bounded set in ég?z(R;+1)' if A',n' are small, as we may assume. This

concludes the proof of Proposition 6.1 and thus also that of Proposition 3.4.

3. Proof of Proposition 3.5. Using the assumption on £ , Proposition 3.4 and

Lemma 4.5 we conclude that we can find a finite set of functions

+
P S Rn 1 -+ R , some roe Q;ag(U) and ¢ > 0,D > 0, > 0 which have the

rl,... i : +

following properties:

a) for every b' > 0 we can find c¢' such that lv(f)] < c¢' for any
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v € é%?g(az+1)' for which |v(z,1)] <

exp(rk(-ReZ;,—ReT)+A|Im§|0 +

+ nlimt| + b'ln(1+|(g,T)|)) for some k,1 <k <3 ,

b) le €0 - r @] <1+ [e=gr |7+ |-t |, ist,d
c) max r (E,T) > r (§,T) .
is1 i o

Let us also fix b > 0 , and apply Proposition 5.2. It follows that we can find
d >0,A* >0,n" >0,b' >0 and c" such that every v € é%?i(R§+l)' which

satisfies |v(Z,T)| < exp(d r_(-Ref,-ReT) + A |Imz|© + ntlImt| + b 1n(1+] () |

X S. s n+1 :
can be decomposed in the form v = £._ v, , for some v, € ,(R_, )" which
i>1 i D n
satisfy
v, (€, 0| < c" exp(r, (-Ret,-Rem) + A|1mg|% + n|mmt| + b'in(i+| (@, 1)) .
The proposition now follows since we obtain that |v(f)| = |Zvi(f)| < jc'c"

+
4. Proof of Proposition 3.6. Consider fl,f2 € é%?:(Rg 1) as in the

proposition and consider quasi-cones U,,U, C ™1\ {0} such that
{0} x u; N WFZfi =@ for i = 1,2 and such that the sets T(Ui) are closed. We

+
may assume that CU, + CU, C R {0} . To prove the proposition it then

1
. o o s .
suffices to show that (0,§ ,7 ) ¢ wE, (£, - £)) if

(EO,TO) ¢ (CUl\J cu \_I(CU1 + CU2)) . In order to prove this last assertion, let

2
us choose rie ngg(ui),i=1,2, D>0,n>0 and c¢ > 0 such that |v(fi)| <c if

v € é%?s(Rn+1), satisfies
D'n
(7) |v(z, 1) | < exp(r, (-Reg,-ReT) + Altmz | + nlImt))

Such vi,D,n exist in view of Proposition 3.5.

Let us now apply Lemma 4.6 for r_ ,r and denote by r the element from

172

:;%%EO,TO) given by that lemma. We want to show that |v(f1- f2)| < c' if
s n+l, | e

v € D'(Rﬂ ) satisfies
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(8) [v(g, ) | < exp(r(-Rez,-ReT) + (A/20)|Img|o + n|Imt|)

where D' is associated with (A/20) via (1), 82. 1In order to show this we shall

show that
(9) |J;27f1V)(§,T)| < c"exp(r, (-Reg,-ReT) + A|1m§|0 + n|Imt|)

in this case.
To prove (9) we choose a suitable representation measure « for f1

In fact from the definition of rl,A,n and from Hahn-Banach's theorem it follows

+
that we can find a Radon measure ww on Cn ! and c1 such that
a) fexp(rl(—Reg',-ReT')+A|Imc'|O + n|Imt' D4 w(g', ') < cy v
b) V(fl) = f&(g',r') dw(z',t') for all v which satisfy (7) for i=1l

In particular we get from (5), 82, that

(10) é;ZTflv)(g,T) = fv(C',T') dw' (¢'-C,T'-1)

for all such v . It now remains to estimate the integral from (10) when v

satisfies (8) with the aid of Lemma 4.6.

+1
5. Proof of Proposition 3.7. We consider f € é%?i(R: ) as in the

proposition. Further we choose g€ (R™) such that |g(x)| 5_exp(-A‘|x|S) and

lg(@) | <e exp(—c2|z;|0 + c3|ImC|0) for some A' >Aa,c, > 0,c, > 0,c, and

3

g 20 . It is easy to see that H(x,t) = If(x—x',t) g(x') dx' is in é%?in(RE+l)

1

+
and that {0} x (R" 1\ {oh n WFi h =@ . 1In particular H is therefore an
analytic function for lt[ small. Since it vanishes for t < 0 we conclude that

H = 0 . We can now apply Proposition 2.4.
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