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ON CONTINUATION OF REAL ANALYTIC SOLUTIONS 

OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

by A. KANEKO (University of Tokyo) 

INTRODUCTION. 

This lecture aims at an introduction to a special kind of problem among the 

vast study on continuation of solutions of linear partial differential equations. 

That is, we discuss here the continuation of real analytic solutions to a rela­

tively small exceptional set, in particular the removable isolated singularity. 

Probably the first example of removable singularities in such a context which 

appeared in the history is Riemann1s theorem on isolated singularity [l]. This 

theorem is, however, also outside our interest because it imposes an a priori bound 

to the solutions (of the Cauchy-Riemann equation!) on the neighborhood of the 

exceptional set. Hence the really first example for us is the Hartogs extension 

theorem [I] which guarantees especially the continuation of holomorphic functions 

of several variables to an isolated singularity without the assumption of any 

boundedness contrary to the case of one variable. This phenomenon has been ex­

plained by Bochner [1] from the standpoint of overdetermined systems, and general­

ized by Ehrenpreis [l], Malgrange [l] and afterwards by Komatsu [l] as a theorem 

even for the continuation of distribution or hyperfunction solutions. On the other 

hand, Grusin [I] has given a result on removable singularities for C°°-solutions of 

a class of single equations (without any a priori bounds) and thus shown that the 

overdeterminedness is not the ultimate explanation when we treat the continuation 

of sufficiently regular solutions. (Shortly speaking his result says that for an 
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Λ. ΚΛΝΕΚΟ 

operator Ρ with constant coefficients of which every irreducible factor contains 

a real simple characteristic direction, every isolated singularity of a C°°-solution 

u of Pu = 0 is removable). 

The present speaker has started from the examination of this work of Grusin 

and given various results on continuation of real analytic or C°°-solutions with the 

aim of the ultimate explication of this phenomenon. In this lecture we will 

introduce the outline of this study (but restricting ourselves to the real analytic 

solutions for the sake of simplicity and also of the title of this meeting). We 

divide the talk into three parts. In part I we give a typical result in the case 

of constant coefficients which is based on the Fourier analysis, or rather on the 

Fundamental Principle of Ehrenpreis [2]-Palamodov [l]. In part II we will explain 

the theory of non-characteristic hyperfunction boundary value problem by Komatsu-

Kawai [1], Schapira [1] which is necessitated as a substitute for the Fundamental 

Principle in order to treat the equations with variable coefficients. By this tool 

the problem of continuation of regular solutions is translated to a kind of 

propagation of regularity along the boundary for solutions regular outside a non-

characteristic boundary. Here we give a result which we think fairly sharp on this 

subject. The result of part I in the case of constant coefficients can be re-

explained by the method of this part except for the irreducible decomposition of 

the operator. Finally in part III we attack the problem of irreducibility of the 

operators including those with variable coefficients, aiming at the same time to 

accomplish the superiority of the method of part II even in the case of constant 

coefficients. The method proposed here is a kind of Fundamental Principle in the 

conormal sphere bundle of a manifold with boundary. The latter space is the key 

tool for Kataoka's boundary value theory [l]. Though the result is yet partial, we 

expect that we have chosen a right way to this last unsolved important problem in 

the generic theory of linear partial differential equations. 

As the class of generalized functions we will employ the hyperfunctions. 
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CONTINUATION OF REAL ANALYTIC SOLUTIONS 

A hyperfunction u(x) on an open set Ω C 3Rn is the sum of formal boundary value 

expressions of holomorphic functions on various wedges with the edge Ω : 

(0.1) u(x) = Σ Fjix+irjO), F^z) e (9* (Ω + irjO) . 
j : finite 

Here Tj denotes a convex open cone with vertex at the origin, and Ω +ίΓj0 

denotes an infinitesimal wedge of the width Tj , that is, a complex open set 

which approaches from the interior to the product set Ω + ίΓj when the imaginary 

coordinates approach the vertex of Tj . In the above expression we can perform 

the following reduction of terms: 

Fjix+ifjO) +F k(x+ir k0) = (F_. +F k) (x + irjHr k0) if Ι^Πΐ^τΜ . 

An expression (0.1) is said to be equal to zero if after a finite times of such 

reduction (both composition and decomposition) all the terms disappear. 

For an open subset Ω 1 C Ω we can define the restriction u | ^ i ky simply 

restricting the domain of definition of F^(z) . This definition satisfies the 

localization principle, that is, the hyperfunctions constitute a sheaf. In 

particular, the notion of support is legitimately defined. 

We have the obvious operation of linear combination over <£ , the operation of 

differentiation: 

E 9F 
. (χ + ΙΓ-,Ο) , 

9x k j 8z k J 

and multiplication by a real analytic function φ(χ) : 

4>(x)u(x) = Σ (MzîFjiz) Ι 
Î ' ζ + χ + ifjO 

hence combining these the operation of linear differential operators with real 

analytic coefficients. Obviously these operations are local, that is, define 

sheaf homomorphisms.We have also the integration on a bounded domain D C 3Rn if 

each Fj(z) is continuous up to a neighborhood of the real set 3D : 

u(x)dx = Fj(z)dz , 
«Ό Î ^Dj 

13 



Α. ΚΛΝΕΚΟ 

where Dj is an η-dimensional path deformed into the infinitesimal wedge Ω + ίΓjO 
with the fixed boundary 3D . Especially this last is the case when the support 
of u is a compact subset of D . In fact, such u admits an expression of the 
form (0.1) with those Fj (z) which can be continued analytically up to the real 
axis outside supp u . The integral (j)(x)u(x)dx then defines a duality between 

•'D 
the real analytic functions φ and the hyperfunctions u with compact supports. 

The sheaf Β of hyperfunctions constitutes the most wide class of localizable 
generalized functions. The sheaf D' of distributions is contained in Β in such 
a way that the ideal limits χ + ϊΓ_.0 in (0.1) are replaced by those of 
distribution sense. Among others Β has the property of flabbiness, that is, a 
hyperfunction is always prolongeable from any open subset to the whole space. This 
will be found a great advantage for the problem of continuation of solutions. In 
the sequel, the properties of Β will be explained every time when they become 
necessary. The audience will be able to accept them without a special knowledge to 
the theory of hyperfunctions. 

To conclude the introduction the speaker would like to refer to [33 , [93 as 
previous survey reports by him for a better comprehension of this talk. 

I. CONTINUATION OF REAL ANALYTIC SOLUTIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS 
WITH CONSTANT COEFFICIENTS 

For the convenience of references we first list up main results on continua­
tion of solutions for general systems. Let P(D) be a system of linear partial 
differential operators corresponding to the polynomial matrix 
Ρ (ζ) : (α[ζ3)δ + (€[ζ3)1: of size t x s . We put D = (D1,...,Dn), Dj = -id/dx^ . 

Theorem 1. (Komatsu [13) Let Κ be a convex compact set in IRn and U be a 
convex open neighborhood of Κ . Then every hyperfunction solution u of 
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CONTINUATION OF REAL ANALYTIC SOLUTIONS 

P(D)u = 0 in U \ Κ can be necessarily continued to a hyperfunction solution on 
U if and only if Ρ is overdetermined, that is, Ext1 (Coker^C^] ) = 0 . 

Note that in the case of a single operator Ρ , Ext1(CokertP,CCc3) 
= <εΓζ3/Ρ(ζ)€Εζ3 f 0 except when Ρ Ξ const, φ 0 . Thus the above assertion 
becomes trivial for a single operator. 

Theorem 2. (Kaneko [2]) Let Κ C U be as above. Then every real analytic 
solution u of P(D)u = 0 in U \ K can be necessarily continued to a hyper­
function solution on U if and only if Ext1 (Coker^^I^D ) has no elliptic factor, 
that is, every irreducible component of the algebraic varieties associated with 
this module contains a real point at infinity. 

Theorem 2'. Under the same situation, every real analytic solution u of 
P(D)u = 0 in U \ Κ can be continued to a real analytic solution on U if and 
only if in addition to the above condition Ρ is determined, that is, 
HomiCokerS,*:^:!) = 0 . 

The difference between these two results is whether the propagation of 
regularity up to Κ holds or not for hyperfunction solutions on U regular in 
U \ Κ . We will consider this as a secondary question and in the sequel we will 
mainly concern the continuation of real analytic solutions as hyperfunction 
solutions. Of course we will remark the possibility of continuation as real  
analytic solutions every time when we can know it. Thus we will say that Κ is an 
"exceptional set" for a real analytic solution u of P(D)u = 0 if u cannot be 
continued to Κ even as a hyperfunction solution. (We avoid the terminology 
"singularity" which is usually preserved for the singularity of a solution. Note 
however that the singularity of a holomorphic function is used not in this sense 
but rather as the exceptional set in our sense). 

Now a single operator Ρ φ 0 is always determined and Theorem 21 implies the 
following non-trivial assertion: 

Corollary 3. Let Κ C U be as above. The continuation of real analytic solutions 

15 



Λ. ΚΛΝΕΚΟ 

of a single equation P(D)u = 0 from U \K to U is always possible if and only 

if each irreducible component of Ρ is non-elliptic. 

We will start our study by examining this result. We have given in CI03 a 

fairly elementary proof without the theory of hyperfunctions. Here we prefer the 

original presentation based on the hyperfunctions Cl] for the sake of consistency 

with the other parts. In the sequel we will denote by Ap(U) (resp. Bp(U)) the 

space of real analytic (resp. hyperfunction) solutions of P(D)u =0 on U . 

Thus let uGBp (U\K) . By virtue of the flabbiness of Β we can choose an 

extension CuÜGB(U) . Then P(D)Cu3 becomes a hyperfunction with support in Κ . 

Let BCK3 denote the totality of hyperfunctions with supports in Κ . As is 

easily seen from the definition of the integral, the Fourier transform 

'ν'(ζ) = e ̂ X̂ v(x)dx of VGBCKD satisfies the following estimate of Paley-J η TR 
Wiener type: 

For any ε > 0 there exists C£ > 0 such that 

(i.i) I < α ε β ε Ι ζ Ι + % < ^ > , 

where Ηκ(Ιπιζ) = sup Re(-ix · ζ) is the supporting function of Κ . The ambiguity 
X£K 

of the construction u P(D)CuD obviously vanishes when restricted to the variety 

Ρ (ζ) = 0 . If we employ the multiplicity variety N(P) = JN(P^), j = l,...,sj 

taking into account the multiplicity Vj of each irreducible component P.. , then 

the mapping 
(1.2) Bp(U\K)/Bp(U) h - ^ •BDO(N(P)) (1.2) Bp(U\K)/Bp(U) I—— >BDG(N(P)) 

U ' * |^kP<D,Cu3|N(P j ) ' 0 i k i v 3 - X ' j " 1 s 

becomes even injective, where the right-hand side denotes the space of (family of) 

holomorphic functions on the multiplicity variety with the growth order indicated 

by (1.1). This assertion is a part of the so called Fundamental Principle. (Here 

we are assuming that = const, is non-characteristic with respect to Ρ ). 
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CONTINUATION OF REAL ANALYTIC SOLUTIONS 

We will call the mapping G the "Grus'in representation". 
The real analytic solutions Ap(U \ K)/Ap(U) constitute a subspace of the 

left-hand side of (1.2). (In fact we have the propagation of regularity 
Ap(U\K) Π Bp(U) = Ap(U) for a single operator P / 0 ). The image Gu = | Gjku J 
of u6Ap(U \K) has a more strict estimate of the following form: For any ε > 0 
there exist δ = δ(ε) > 0 and C£ > 0 such that 

(1.3) |P(C)| < αεβ"δ|ζ| + Ηκ(ΙΙΒζ) + εΙχιηζΙ 

An entire function which satisfies this estimate in the whole space would reduce to 
0 as is easily seen from the Phragmén-Lindelof principle. Because the estimate 
holds now only on N(P) , the triviality of Gu = JG^UJ depends on the situation 
of N(Pj) relative to the real axis. If Pj is elliptic, we see easily that the 
function 1 satisfies (1.3) on N(P J . On the other hand, assume that Pj has 
a real point at infinity. Then by way of the local coordinates on a neighborhood 
of this point, we can apply a variant of Phragmén-Lindelof principle (Carlson's 
theorem) to conclude that a holomorphic function on N(Pj) satisfying (1.3) 
vanishes on this neighborhood. Note that the propagation of zero, or the principle 
of analytic continuation, holds on an irreducible algebraic variety. Thus under 
the assumption that every Pj is non-elliptic, we can conclude that Gu = 0 , 
hence uEBp(U) (and even uGAp(U) because of the propagation of regularity). 

The deduction of the estimate (1.3) can be performed by various methods 
according to the choice of "approximate real analytic functions with compact 
support". (Remark that the estimate (1.3) mentally implies that F(ζ) is the 
Fourier transform of a real analytic function with support in Κ ). The method 
which we propose here is the use of a class of differential operators of infinite 
order. Consider a formal series 

(1.4) J(D) =Z]aaDa , 
a 

with the coefficients aaec satisfying 
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Α. ΚΑΝΕΚΟ 

(1.5) lim 01 / I aa Iα ! = Ο . 

I ot ι °° 

Then (1.4) operates to the holomorphic functions, hence to the hyperfunctions in 

a local manner, that is, as a sheaf homomorphism by the formula 

J(D)u(x) = Σ (J(D)F.) (χ+ίΓ.Ο) , J(D)F.(z) = Σ a ^ F . (ζ) . 
3 3 3 D 3 α J 

(It is a good exercise of the complex function theory to show that (1.5) is the 

necessary and sufficient condition for the locally uniform convergence of the 

latter series on the domain of definition of F..(z) ). 

A hyperfunction is differentiable of infinite order in this generalized sense. On 

the other hand, we have 

Lemma 4. (Chou Cl], Kaneko C5]) u€B(fi) is real analytic at xQ€ Ω if and only 

if for every J(D) , J(D)u is a germ of continuous function at xQ . 

An approximate real analytic function u(x) in our sense is such that 

J(D)u(x) is continuous (C°°) for some subfamily of J(D) . Note also that we can 

choose an extension of u to Κ even in Coo functions if we accept a modifica­

tion of u on the ε-neighborhood K£ of Κ . Thus given u(x)£ Ap (U \ Κ) , we 

can apply this modified construction of the Grusin representation to the new 

element J(D')u(x) of Ap(U\K) to obtain 

(1.6) J(C')Gu = ^ — C P 7 D M X U ) 7 ^ . 
) k 0|N(P.) J / 
ld^i 3 I 

Here ζ* = (ζ2,...,ζ ) and X(x) is an appropriate cut-off function of class C00 

such that 

X(x) Ξ 1 in U \ Κε , 

X(x) = 0 in K£/2 

The symbol C ]Q means that we extend the object by zero up to Κ . The precise 

deduction of the identity (1.6) follows from the fact that the difference 

CP(D)X(x) J ( D ' )uJQ - JTD^TP"(D)ÎLÎT produces the factor Ρ (ζ) , hence vanishes on the 
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CONTINUATION OF REAL ANALYTIC SOLUTIONS 

multiplicity variety N(P) . The right-hand side of (1.6) satisfies the estimate 

like the Fourier image of a C°° function with support in K£ . Therefore we will 

have, given any J(ζ *) and any ε > 0 , 

|j<Ç')G.tu| < C eHK(ImÇ)+e|lmç| 
1 jk 1 ~ Jfe 

The arbitrariness of J together with the non-characteristic assumption gives the 

estimate (1.3) for G.,u 
1 I 

Now we turn to another situation where Κ is now the part in (x < 0} of a 
ι ι ' n ' η 

convex compact set L = Κ C Ι X N — 0| , and U is a neighborhood of Κ in 1R 

(in the sense that Κ C U is a relatively closed subset). As remarked by 

Malgrange C1•, we have an affirmative result on continuation of general solutions 

analogous to Theorem 1 under the assumption of overdeterminedness, which, however, 

is no more necessary. The precise condition can be expressed by a kind of hyper-

bolicity of the module Ext1 (CokertP,CÜC3) (see Kaneko C4D). Now the Grus'in 

representation takes the following form of relative nature: 
B P (U \ K) / B P (U) I — » B C L Î ( N (Ρ) ) / B C L \ KD (N (P) ) 

u I • | ^ C C P ( D ) M 3 : | N ( P i ) f 0 < k < Vj-l,j=l,...,s| . 

Here Cu3GB(U) denotes an extension of uGBp(u\K) and CÜP (D) Lulll G BCL3 an 

extension of P(D)[u]6B(U) . (We are always assuming that x^ = 0 is non-

characteristic with respect to Ρ ). Thus this time the ambiguity of the extension 

on the "lid" L \K » remains up to the final stage. By way of J(D)'s a real 

analytic solution u£Ap(U\K) can be characterized by the following estimate of 

relative type for every component F(ζ) of Gu : 

(1.7) For any .Ι(ζ') and ε > 0 , there exists a decomposition 

J(C')F(C) = ν(ζ) +W(C) suchthat 
|ν(ζ)| < CeHL(^)+£|lmç| f 

|w(c)| < c ©ΎIζI +HL\K(ImC> +ε|ΐπιζ| 
, for every γ > 0 
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Α. ΚΑΝΕΚΟ 

This estimate can be obtained by the same way as above on decomposing the support 
of Ρ (D) (χ (x) J (D1 ) u) by another C°° function φ on a neighborhood of the lid 
L \ Κ . Thus we obtain the following abstract theorem: 

Theorem 5. We have Ap(U \ K)/Ap(U) =0 if and only if every global holomorphic 
function F(ζ) on Ν(Ρ) satifying (1.7) satisfies simply 

(1.8) |ρ(ς)| < ΟγβγΙζΙ +HL\K<ImÇ> f for every γ > 0 , 

that is, the estimate corresponding to "ΒΕίΛ^κί(Ν(Ρ)) 
Note that the propagation of regularity Bp(U) Π A(U\K) = Ap(U) is known by 

Kawai ill even for our present situation. 
The assumption of Theorem 5 is far from practical. We will give here two 

practical sufficient conditions for that. First note that if we have the following 
estimate on N(P) : 

(1.9) HL(InÇ) <-HL\K(Imi) + ε|ζ| + C£ , for every ε > 0 , 

then the image of every u€Bp(U\K) will satisfy (1.8). This corresponds to the 
continuation of all the hyperfunction solutions and (1.9) implies the weak hyper-
bolicity of Ρ to the direction dxn . Considering the unique continuation 
property for real analytic solutions we can directly obtain the first half of the 
following theorem: 

Theorem 6. (Kaneko C4D) Assume that every irreducible component Pj of Ρ 
satisfies either of the following conditions: 
1) There exists a sequence of conormal directions ok converging to dxn such 

that Pj is weakly hyperbolic to 
2) Κ C |x1 =0} and the roots χ (ζ ' ) ,k=l,. .. ,m. of the equation P. (ζ,., ζ*) =0 

J 1 J κ 3 3 
for satisfy the estimate 

(1.10) |ΐππ\ (ζ')| < ε|ζ I + b .,|ΐπιζ I + Cr„ , for every ε > 0 and ζ"60η"2. κ η ζ η ζ , ε 

(Here m. is the order of P. and ζ" = ( ζ ζ „ ) ). 3 3 2 n-1 
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Then we have Ap(U \ K)/Ap(U) = 0 . 
The second half of this theorem constitutes the main subject of further 

discussion. Note that (I.10) implies the hyperbolicity of the "frozen" operator 
Pj(D^,0,Dn) in two variables x̂  , xn . This is far from the hyperbolicity in all 
the variables and the second part of this theorem is much deeper than the first 
part. As in the case of compact Κ , we reduce the problem to the estimation on 
one variable . Then we can apply the following Phragmén-Lindelof type theorem 
of relative nature: 

Lemma 7. (Kaneko [4]) Let F(z) be a holomorphic function of one variable z on 
Im z > 0 . Assume that for any J(z) and any ε > 0 , there exists a 
decomposition J(z)F(z) = V(z) + W(z) such that 

|v(z)| < Ce£|z| , 
|W(Z) I < Ceb I Im ZI . 

Then F(z) simply satisfies, for any ε > 0 , 

|F(z) I <Cf.eel2l . 

After we improve the estimate with respect to by way of this lemma, we 
consider the symmetric functions of F(τ. (ζ'),ζ'),k = l,...,m. and employ a lemma 

k 3 
by Martineau for the growth order of entire functions to obtain a global uniform 
estimate in ζ' , hence (1.8). Note that the zero propagates along an irreducible 
variety and correspondingly the assumption of non-ellipticity requires the 
existence of only one approximately real roots. On the contrary, we cannot expect 
the propagation of estimate, and consequently we must impose here the condition 
(I.10) to all the roots concerned. 
Remark. The article Kaneko C4] contains other examples of operators for which the 
continuation is possible. For example, for a heat equation of any space dimension 

/ i L + . . . + j _ \ u ( x ) .o 
V dxf Bx1 Λ 8x / 1 n-1 η 
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the conclusion of Theorem 6 is true even for Κ not in |x̂  = o j . Since the 
calculus there essentially concerns the principal part only, the same conclusion is 
true for the Schrödinger equation with constant coefficients. In order to explain 

this result from the local theory, we would have to replace the non-characteristic 

boundary value theory of the next part by one for a family of boundaries possessing 

characteristic points, or by a somewhat global substitute relying on the analytic 

functionals. 

II. HYPERFUNCTION BOUNDARY VALUE THEORY AND PROPAGATION OF MICRO-ANALYTICITY ALONG 

THE BOUNDARY 

Now we intend to interpret our results from the local theory with the attempt 

of generalization to the case of variable coefficients. Which tool can replace the 

Fourier transform? For the function F(C)GGu on N(P) constructed in part I, 

there corresponds always an entire function of polynomial form in : 

F(Ç) -çï + vç-jçf1 + ... +fM < Ç " > | N ( P ) . fjtç'Je^V1-1) . 

Such an entire function can easily be obtained via the global interpolation 

formula. Since the exceptional set Κ is contained in the non-characteristic 
hyperplane x̂  = 0 , it satisfies also the same estimate as F(ζ) . Therefore we 
can consider it (or rather its coefficients ί_.(ζ')) as a representative for the 
Grusin transform of u . In fact these coefficients are essentially the Fourier 
image of the difference of the boundary values of u(x) to x̂  = 0 from both 
sides. Thus we are led to the idea of employing the boundary value theory. 

Let P(x, D) be a linear partial differential operator of order m with real 
analytic coefficients defined on a neighborhood of 0 EJRn . Let Κ be a locally 
closed set contained in the non-characteristic hypersurface x̂  = 0 . Assume that 
OEK and let U be a neighborhood of 0 in Bn on which Ρ is defined and 
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CONTINUATION OF REAL ANALYTIC SOLUTIONS 

which contains Κ as a closed subset. Put U+ = U Π |+χ^ > o j . We will discuss 
the continuation of real analytic solution u6Ap(U\K) . Let Cu3+GB(U) be the 
canonical extension of the solution u|u+ · BY definition it has support in U+ 
respectively and satisfies the identity of the form 

(II.1) ±P(x,D)Cu]+ = ̂  û (x,)<5(m~j~1) (χχ) in U . 

+ 

The coefficients u_.(x') are uniquely determined by this identity and called the 
boundary values of u from ±x1 > 0 (with respect to some normal boundary system 
which we need not specify here). The identity (II. 1) can be obtained by the 
following way: By the flabbiness of Β we can obtain anyway an extension u€B(U) 
of u|y G B(U+) such that suppu C U+ . Then supp Ρ (x,D)u C Jxi=0j ' hence we 
will have the expansion 

oo 
(II.2) P(x,D)u= Σ u. (x')6(j) (xJ . 

j=0 3 
In case where the left-hand side has compact support, such expansion holds in the 
sense of topology. In the contrary case the expansion, is formal and even not 
faithful. The hyperfunction boundary value theory (cf. Komatsu-Kawai CI]) shows 
however that we can "divide" the right-hand side by P(x,D) so that the residue 
gives the right-hand side of (II. 1) and the quotient serves the modification of 
u to the canonical extension. (The division holds in the sense of topology in the 
case of compact support, and it can be localized in the general case. The calculus 
is just the dual of the Cauchy-Kowalevsky theorem). Note that we are employing 
here the flabbiness of Β in an essential way. (In the category of distributions 
such a construction is only possible when we restrict ourselves to the solutions a 
priori prolongeable as distributions beyond the boundary. But then the calculus 
becomes purely algebraic and works even for the characteristic boundary of 
parabolic type). 

Now because of the uniqueness of the expression (II.1), the coefficients give 
the boundary values in the usual sense at every point of the boundary where the 
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+ 

solution u(x) is prolongeable as a usual function. Especially u~(x') are real 

analytic outside Κ , and hence the differences 
(II.3) u_.(x') = u*(x') - u~(x') , j = 0,...,m-l , 

have support in Κ . We propose that u -> juj J replaces the role of the Grus'in 

representation, because in the case of constant coefficients this one has been 

nearly equivalent to the Fourier image of Ju_. J Then the decay property for Gu 

coming from the analyticity of u will correspond to a kind of micro-analyticity 

of j û  J . The Phragmén-Lindelof principle will correspond to a kind of micro-

local unique continuation property. For the latter we have the following famous 

result, called the Holmgren type theorem: 

Lemma 8. (Kashiwara-Kawai) Let u(x) be a hyperfunction defined on a neighbor­

hood of OGin such that supp u C Jx̂  — °| · Assume that u is micro-analytic at 

either of the conormal points (0,+idx̂ °°) . Then u vanishes on a neighborhood of 

0 . 

Remark. We say by definition that u(x) is micro-analytic at (Ο,ϊξαχ00) if u 
admits the analytic continuation into the half space JzGCn; Re<iξ,z> < oj near 
the point 0 , that is, if u has, near the point 0 , an expression of the form 

u(x) = Σ Fj (Χ+Ϊ-Γ̂ Ο) , 

with Γ^π |<ξ/Υ> > o j φ φ . This is equivalent to say that on a neighborhood of 

0 , u is the sum of a real analytic function and the inverse Fourier image of a 

(Fourier) hyperfunction exponentially decreasing on a conical neighborhood of ξ . 

The set of points (χ,ϊξάχ00) G iS* TRn = JRU x iS* Π 1 where u(x) is not micro-

analytic, is called the singular spectrum (S.S. for short) of u and is written 
* η 

S.S.u. This is a closed subset of iSco 1R and agrees with WF^(u) when u(x) is 

a distribution (cf. Bony ClD). Lemma 8 means that we have the unique continuation property to the micro-

analytic direction. The fact that only one choice of the sign suffices is a little 
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delicate. Kashiwara's proof can be found in Kaneko CUD. Since we have no other 
reference in European languages, we will give a simplified proof in the appendix of 
this part. 

Thus we can obtain the following abstract theorem indicating the direction of 
our study: 

Theorem 9. Assume that Κ is contained in one side of a hypersurface φ(χ') =0 
of class C1 in 3Rn * = |χ^=θ| passing through 0 . Assume that every real 

± 

analytic solution u of P(x,D)u = 0 on U+ has the boundary values û (x')-
which are micro-analytic at either of the points (0,±id<j> (χ')°°) Ε iS* 3Rn * . Then 
uEAp(U \K) can be continued as a hyperfunction solution to a neighborhood of 0 . 

The proof will be clear: Since then (II.3) all vanish by virtue of Lemma 8, 
the continuation of u will be given by [u3 + + Cu] in view of (II.1). Note 
that the continuation is unique. This follows from the uniqueness of the 
expression (II.1), where those Cu]+ with support in x̂  = 0 are not allowed 
except for the trivial one: CuD+ Ξ 0 . 

Thus the problem is now to seek such a class of operators as the above 
propagation of micro-analyticity up to the boundary holds for their real analytic 
solutions. In this direction we have given the following result. 

Theorem 10. (Kaneko C8D) Let P(x,D) be an operator with real analytic 
coefficients having x̂  = 0 as non-characteristic hypersurface. Assume that 
P(x,D) is semi-hyperbolic to x̂  < 0 (resp. to x̂  > 0 ) on a neighborhood I of 
(0,iv'dx'«>) in Mn 1 x isjn 2 in the following sense: 

(II.4) There exists ε > 0 such that all the roots of the characteristic equation 
Pm(x ,ζ^ξ') = 0 for have non-positive (resp. non-negative) imaginary 
parts when (χ' ,ίξ'dx'») £ I and 0 <_ x̂  <_ ε (resp. -ε <_ x1 <_ 0) . 

Then the S.S. of the boundary values of real analytic solutions of P(x,D)u =0 in 
U (resp. in U ) does not contain the point (0,iv'dx'oo) . 
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Corollary 11. (Kaneko [8]) Let Κ and φ(χ') be as in Theorem 9. Assume that 
P(x,D) is semihyperbolic to x̂  < 0 and to x̂  > 0 on a neighborhood of either 
of the points (0,+ί(3φ (χ1 )°°) . Then uGAp(u\ K) can be continued as a hyper­
function solution to a neighborhood of 0 . 

This time the propagation of real analyticity does not necessarily take place, 
hence we cannot assert the continuation as a real analytic solution in general. 

For an operator with constant coefficients the assumption (II.4) of Theorem 
10, when we choose iv'dx'00 = idxn°° , means the following inequality for the roots 
ζι = ν ζ , ) of Ρ^ι'ζ') = 0 : 

(II.5) ±ΙπΓΓ]ζ(ζ·) <. a|ReCn|q + b| InçJ + C on ReCn >. c| ReC "| , 

where q < 1 and a, b, c, C are some constants. This inequality is far stronger 
than (I.10). Therefore Corollary 11 is much weaker than the second part of 
Theorem 6 when we compare them for a convex Κ . In fact, we cannot deduce Theorem 
6 from Theorem 9, as we have the following example of non-propagation of micro-
analyticity up to the boundary under the condition (I.10): Let u(x) be a 
solution of the wave equation 

2 2 2 
(II.6) P(D)u = ( 3 _ + ··· + -iL 2 _ ) u (x ) = ο , 

^ 3x. 9x 8x ' 1 n-1 η 
whose S.S. agrees with the bicharacteristic strip 

|(x,i?d*»); Xl=...=xn_2=o, χ ^ - χ ^ Ci-.-.-C^-o. ξ η _ Γ ξ η > ο I . 

(For the construction of such a solution see e.g. Kawai [2]). Then u is a real 
analytic solution on x, > 0 . Choosing the function χ , + χ as the new χ -1 n-1 η η 
coordinate, we see that the characteristic roots of this operator satisfy (I.10). 
But either of the boundary values u| I _ must contain in S.S. the 

1 1x^+0' 8χχ [XJ-M-0 
direction idx^ along the bicharacteristic curve, because otherwise u should be 
real analytic there. 

To utilize the convexity of Κ we must generalize Theorem 9 in the following 
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way: 

Theorem 9'. Let Κ and Φ(χ') be as in Theorem 9. (To fix the situation we now 
assume that KC |φ(χ') >. oj ). Assume that for every real analytic solution u 
of P(x,D)u =0 on U+, the following propagation of micro-analyticity along the  
boundary holds: If the boundary values u~(x') are real analytic in φ(χ') < 0 , 
then they become all automatically micro-analytic at either of the points 
(0,+ίάφ (χ' )°°) Ε iS*nn 1 . Then uEAp(U\K) can be continued as a hyperfunction 
solution to a neighborhood of 0 . 

Our main subject of this part is to introduce the following new result on the 
propagation of micro-analyticity along the boundary: 

Theorem 12. (Kaneko C133) Assume that the roots ζ1 = τ̂ ίζ") of Ρίζ^ζ') = 0 
satisfy: 

(II.7) ±Imx (ζ') £ε|ζ I + b|ln£ | +C on ReC > 0 . 
Jc η η £j , ε η 

Let u be a hyperfunction solution of Ρ(D)u = 0 in +x̂  > 0 , micro-analytic to 
the directions ρ 1 (idx̂ 00) , where ρ : sjn 1 \ j +idx̂ °°| —> S * n 2 is the 
projection from the poles to the equator. Then for the S.S. of the boundary values 
+ 
u (χ') of u we have the following assertion: 

m-1 ± 
(II. 8) \^/ S .S .u . (χ' ) π {(x',idx 00 ) ; χ =const.} must not be compact. j=0 3 η η When we apply this result combining with Theorem 9* and the method of sweeping 
out, we can recapture the second part of Theorem 6 completely from the viewpoint of 
local theory of hyperfunction boundary value problems. 

In the rest of this part we will sketch the proof of Theorem 12. First we 
employ a reduction which will be found a very powerful tool for operators with 
constant coefficients. Recall the "curved wave decomposition" of the delta 
function: 

(II.9) 6(x) = ^(χ,ω)σω . 
Jsn-1 
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The most classical is the "plane wave decomposition" where the component satisfies 

S.S.W0(X,Ü) (-2-ni) (χω+iO) 

S.S.W0(X,Ü)) = {(χ,ω,-i (oodx+xdü))00) ; χω = 0} 

As is discovered by Kashiwara, we can improve this estimate by twisting the phase 

into the complex domain. The general form of W(x,0)) is 

(II.10) Μ(χ,ω) =inzln_det(gradωψ(x,ω)) ^ 
(-2πί)η (<χ,ψ(χ,ω)>+ί0)η 

where ψ(χ,ω) is a real analytic vector-function of (χ,ω)Ε 3R2n , positively 

homogeneous of degree 1 in ω , ψ(Ο,ω) = ω , and such that <χ,ψ(χ,ω)> is of 

positive type, i.e. Ιπι<χ,ψ(χ,ω)> >_ 0 when Re<x,ip(x,o))> = 0 (see S-K-K [1]). 

The case where <χ,ψ(χ,ω)> f 0 outside the origin is of particular importance, 

because then as a hyperfunction of χ the component W(x,ü)) contains in S.S. the 

only one point (Ο,ίωαχ00) . For our purpose is also useful such a component as 

allows the flow-out of S.S. along a certain linear subvariety. Multiplying the 
-χ2 

component by e we can obtain a decomposition by rapidly decreasing components 

thus accepting the Fourier transformation in χ . If we further choose the phase 

such that <χ,ψ(χ,ω)> is asymptotically linear in χ as |x| 00 , then the 

Fourier image of W(x,U)) admits a good estimate, i.e. exponentially decreasing 

outside any conic neighborhood of ω , and slowly increasing everywhere. 

Employing this decomposition we can paraphrase the micro-analyticity of hyper-

functions as follows: 
Lemma 13. Let u(x) be a hyperfunction with compact support. Then u(x) is 

micro-analytic at (0,ivdx ) if (and only if) u(x)* Vi (χ,ω) is real analytic when 

(χ,ω) runs in a neighborhood Ω of (0,v) . 

This follows from the decomposition 

u(x) = u*W(x,u))dü) + Λ u*W(x,0))dü) , 
h χ Jsn_1\n χ 
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where the last term is always micro-analytic to the direction iVdx°° . (The only 
if part holds if S.S.W(x,U)) = {(0,iu)dx<»)} or if the S.S. of u outside the 
origin is such that it does not propagate to 0 by convolution with W(x,U)) ). 

Employing a refinement of Lemma 4, the above assertion can be improved into 
the following ultimate form: 

Lemma 13'. (Kaneko C6D) Assume that for every J^0^ ' having constant coeffi­
cients with respect to a fixed system of local coordinates ω on a neighborhood of 
V , u(x) *J(D )W(X,UJ) I is real analytic at χ = 0 . Then u(x) is micro-x ω |ω=ν 
analytic at (0,ivdx°°) . 

In view of this lemma the following proposition micro-localizes the problem of 
analyticity of the boundary value problem to exactly one direction in the case of 
constant coefficients. 

Proposition 14. (Kaneko [12]) Let u be a hyperfunction solution of P(D)u = 0 
in U+ such that S.S.u Π ρ 1 (idx̂ oo) = φ . Put U' = U η {x^O} which we 
consider as an open subset of 3R̂ ,* · Let u_. (χ') Ε Β (U ' ) be the boundary values 
of u and let f (χ')Ε BCu'3 be their extensions with compact supports. Then for 
every V CC U' we can find V CC U such that V = V η {χχ=θ} and a real 
analytic solution ν of P(D)v = 0 in V+ whose boundary values agree with 
f.(x') *,J(D JWÎx'fu)1)! , , on V . Here V' = (0,...,0,1) and W(x',w') is 3 χ ' ω I ω ' = ν1 
the component of a decomposition of δ(χ') such that νί(χ',ω') is regular outside 
x'=0 . 

In case where we know a priori that the boundary values û (x') are micro-
analytic to the direction idxn°° on some part of 3u1 , then we can also employ 
those νϊίχ',ω') which cause by convolution the flow-out of s.S. from the interior 
of U' to such part of 3u* . We can prove this proposition by convoluting 
J(D jWU'fü)1)] . . to both sides of the identity ω ω -ν 

m-1 
CCP(D)Cu3+:3 = ̂ f .(x')6(m"j"1) (χ χ) +w , 

j=0 3 
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which is a modification of (II.1), and thereafter adjusting superfluous terms. 
For the latter purpose is very useful the following lemma which can be considered 
as an extension of the Cauchy-Kowalevsky theorem. 

Lemma 15. (Kaneko C103) Let P(x,D) be an operator with real analytic coeffi­
cients with respect to which x̂ =0 is non-characteristic. Let f be a hyper­
function locally defined on a neighborhood of x̂ =0 such that 

(II. 11) supp f cjxx >_oJ, S.S.fC jx1 >L 0 J x Jtidx^ J . 

Then on a smaller neighborhood of x̂ =0 we can find a unique solution u of 
P(x,D)u = f which satisfy the same condition (11.11). 

Note that the Cauchy-Kowalevsky theorem corresponds to the data of particular 
m-1 (m-'-l) 

form f = Y(x„)g(x) + / ν.(χ')δ m 3 (x. ) , where g, v. are real analytic. 
1 j=6 3 1 3 

Now fix U' = j I χ1* I < Α| Χ J|*nl < rJ * BY virtue of this proposition and 
Lemma 13', we can assume without loss of generality that u is a real analytic 
solution and the boundary values may be non-micro-analytic only to the direction 
idx̂ 00 , and it suffices to prove that when u_. (χ' ) are further real analytic on a 
neighborhood of |χ"| = A , then they are real analytic everywhere. Remark that 
the estimate (II.7) implies the following more handy one: There exists Ν > 0 
such that 

±Ιπη^(ζ·) ̂ ΙΐιηζΊ + c|ReC" |1/N|ReCn|1"1/N + C . 

Then we introduce the function 

(11.12) Ε(χ·,ε)=^(θχρ(-2οε( 1/ΐ + |ζ"|2)1/Ν( l / l + K ' | V " 1 / N > . 

Our next task is to show that f.(χ')*,Ε(χ',ε) becomes real analytic in 
U' x {Re ε > 0} , and complex holomorphic in ε there. This can be proved by 
Green's formula coupled with the solution of the boundary value problem 
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(11.13) 
( tP(D)Fk = Ο 

| £ jFk|Xl^O = 6jkjJ(Dü),)w0(x-,w-)|(ü,=v,.E(x',e)J(y-x',e),J=O m-1 

Here *~Ρ(ϋ) is the transposed operator of P(D),V*=(0,— ,0,1) and W0(x',u)') 
denotes the component of the plane wave decomposition of δ(χ') . Remark that 
(11.11) just assures the solvability of (11.13) (Kaneko [12]). (Or we can 
employ the method of part I based on the Fourier analysis (Kaneko C133): We choose 
a cut-off function χ such that χ Ξ 1 on a neighborhood of U Π Jx^=oj in U . 
Then we obtain an identity of the form 

m-1 
CCP(D) (l-χ) J(D')u]] = ^J(D')f . (x,)ô(m""j"1) (ΧΧ) +w 

j=0 3 
modulo P(D)B*(]Rn) which vanishes on N(P) after the Fourier transformation. 
CCP(D) (l-χ) J(D1)u3D is a suitable extension with support in the closure of 
{θ < χ(χ) < 1} . The residue term w has support in 8U' and along |x"| = A, 

m-1 _ . j |x I < r it has the form y~w.(x')6 m 3 (x ) with coefficients micro-analytic η ( ι Ί 1 
j=0 

outside the direction dx^ = 0 . Thus the real analyticity of u is reflected in 
the decay property of CCP(D)(l-χ)J(D')ull , and hence to the continuity of 
J(D')f .(χ')*,Ε(χ\ε) ). 

Then we study the analytic continuation of f.(χ')*,Ε(χ',ε) beyond Re ε = 0 
3 x 

through the part Im > 0 . This can be done directly examining the expression 
(11.12). As a result f̂ (χ')*,E(χ',ε) becomes the boundary value of a function 
ν(ζ',ε) holomorphic on a domain of the following form: 

|(ζ',ε)Ε€η; I χ" I < Α-δ, |xj < r-δ, | Re ε | < Β, 
Β > Im ζη > φ ( I Im ζ" | + max {0,-Re ε} ) - ψ (max {Ο,Re ε} ) | . 

Here φ (t) >_ 0, ijj(t) >_ 0 are convex functions satisfying φ(0) = ψ(0) =0, 
<i>(t)/t + 0, ψ(t)/t •> 0 as t + 0 . 

Finally we recall the local Bochner theorem which, after Kashiwara's remark. 
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has become a very useful tool in the analytic theory of linear partial differential 
equations. 

Lemma 16. (see e.g. Komatsu C2H) Let F(z) be a function holomorphic on a 
neighborhood of the thin wedge 

z=x+iyecn; |x| < A, 0 < y < B, y'=0 . 

Then F(ζ) can be continued to a wedge with positive width: 

z=x+iyGCn; |χ|<Α-δ, Cgly'l < γχ < Β-δ . 

We apply this lemma in two steps changing the role of Re ε and Im ε . Thus 
we conclude that ν(ζ',ε) can be continued on |x"| < Α-2δ, |xn| < r-26 up to the 
boundary ε = 0 . Since on the other hand f.(χ')*,Ε(χ',ε) -> f.(x') is the 

3 x 3 
process of boundary value ε 0 with respect to the differential equation 

2N ι 
(11.14) (2α)2Ν(ΔχΙ,-1) (1-Δχ,)Ν_1 V(x',G) =0 , 

we thus conclude that £̂ (χ') is real analytic on |x" | < A-2<S, | | < r-26 , 
thereby proving Theorem 12. 

Remark 1. There are operators beyond the range of Theorem 10 which admit the same 
conclusion. The partial Laplacian ΑχΙΙ is a distinguished example among them 
(Schapira L3l, Kaneko C123). Thus for the operators to which we can choose Ν = 1 
in (11.11), we can simplify the last part of the above proof by applying this 
result to (11.14). We infer, however, that under such assumption we can expect 
the conclusion of Theorem 10 rather than that of Theorem 12. 

Remark 2. Theorem 12 is best possible in the sense that if a root does not satisfy 
(II.7) then we can construct a real analytic solution of Pu = 0 whose boundary 
values possess a compact, but in total non-void S.S. In fact, such a root defines 
an elliptic pseudo-differential factor for which the corresponding boundary value 
problem is micro-locally solvable on a neighborhood of the direction +idxn°° , e.g. 
with the boundary data W(x',V'), V'=(0, ,0,1) . This gives rise to a required 
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solution of the original equation. There are, however, results of various types 
concerning a more precise propagation of regularity along the boundary. For 
example, we can strengthen the observation up to the bicharacteristic level for t 
wave equation (Kaneko Cl2D). Note also that there are studies of similar kind ir 
relation to the propagation of waves. For example, Sjöstrand CID seems to consid 
similar problem for the wave equation. He assumes, however, a boundary condition 
while we do not, naturally according to the different origin of problems. 
Therefore the conclusion must be a little different. 

APPENDIX TO PART II. 
Here we give a simplified proof of the Kashiwara-Kawai theorem of Holmgren 

type (Lemma 8). Let u(x) be such a hyperfunction. By the so called Holmgren 
transformation 

~ , 2 2, χ. = x1 + ε(x~+...+x ) 1 1 λ η 
χ' = χ' , 

we can assume that supp i: C χ, > ε(χ2+...+χ2) . 
1 ζ η 

Then we can calculate the 
convolution 

u (χ) = u(x)*,W(x' , Δ.) , 
J Χ J 

where = S*1 2 is a decomposition by piramids and W(x',/\ J = 

J W(x',ω')<3ω ' . Hence we have X^u. = u . We have obviously 
Aj 3 

supp û  C Jxx >. o| , S.S.u.. C p-1(Aj) U jiidx^J 

A more precise estimate of S.S. shows that S.S.û  is free from either of 
(0,+idx^) which has been absent in S.S.u . Thus S.S.u.. is contained in a 
convex proper cone and therefore û  admits a boundary value expression by 
unique term: û  (x) = F.. (χ+ίΓ_.0) . Then the fact that û  (χ) Ξ 0 in x1 < 0 
implies F_. (ζ) Ξ 0 there, hence u_. (χ) Ξ 0 everywhere as long as this expression 
is valid, q.e.d. 
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III. PROBLEM OF IRREDUCIBILITY OF THE OPERATOR WITH REAL ANALYTIC COEFFICIENTS 

In the preceding part the role of real characteristic roots has been clarified 
from the standpoint of local theory. Now we try to cover the second feature of 
Corollary 3 : Which operators can we consider as irreducible from the standpoint of 
local theory? This is a very delicate question because the two operators 
and behave differently concerning Corollary 3, although the latter can be 
decomposed via pseudo-differential operators in a very good sense. Recall here the 
result in the case of variable coefficients which we have formerly presented as the 
correspondent to Corollary 3 (or rather to the result of Grusin). 

Theorem 17. (Kaneko £73) Let P(x,D) be a linear partial differential operator 
of order m with real analytic coefficients defined on a neighborhood U of 0 . 
Assume that Ρ̂ ίχ,ϋ) is real, simply characteristic, has x̂  = 0 as a non-
characteristic boundary at χ = 0 , and that the roots of Ρ (χ,ζ,,ξ') = 0 for ζ, 

m i ι 
are all real and simple when (χ,ξ') runs in a neighborhood of some point 
(0,v')£3Rn x Sn"2 . Then Ap (U \ {0} )/Ap (U) = 0 (and also C~ (U\{0> )/C~(U) = 0 ). In this part, as the first trial to this problem we will content ourselves by 
weakening the condition of this theorem to require only one real simple root 
instead of all, with the introduction of an assumption of "irreducibility" of 
Ρ (x,D) which would guarantee a phenomenon corresponding to "the propagation of m 
zero" on the irreducible variety in <Cn . 

The space on which we undertake the work corresponding to the Fundamental 
Principle in the case of variable coefficients is the one introduced by Kashiwara-
Kawai [13 or Kataoka [13. Recall that the cotangential sphere bundle iS*n 1 on 
which we discuss the micro-analyticity of hyperfunctions is naturally introduced as 
the conormal sphere bundle S*X of M = ]Rn in X = C11 . Kashiwara-Kawai CID has 

M 
introduced the conormal sphere bundle S*X of Ν = |x^=o| C X in order to analyse 
the hyperfunctions with supports in a hypersurface in relation to the boundary 
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value problem. Kataoka CI] has worked out their idea by introducing the conormal 
sphere bundle S* X of the real half space Μ, = Ι χ, > 0 | C X . These spaces are M+ + I l I 

written in local coordinates as follows: 

S*X = |(x\(ζ^+ΐη'άχ·)») ; x'GI*11"1, ζχΕ€, n'eiR11"1, (ζ^η') φ oj 

S* Χ = |(χ,ΐηάχοο) ES*X, x1>o| u |(0,χ' , (ζ^^Ιη'άχΉΪΞ S*X, Κβζ1>.θ|. 

Let π denote the projection from S*X, S*X, S* X to the corresponding base 
Μ Ν M+ 

spaces. Then there exist objects (sheaves) C , C„i . C • on these spaces 
Μ Ν J X M_j_ j X 

respectively, such that 

(111.1) TT*CM = B//A (this means simply that the classes of hyper functions by the 
micro-analyticity can be expressed as an object on S*X , called the micro-

M 
functions), 

(111.2) 0 ΓΝ(Μ,Β) -+ π*αΝ|χ AM|N 0 is exact (that is, the hyperf unctions 
with supports in Ν are completely decomposed without ambiguous regular 
part, but with the excess of a kind of "period"), 

(HI-3) CM+|x|lnt (M+) = S^Int (M+) , 

(ΙΙΙ·4) ^ C M + | X | N = ΓΜ+ (Μ'Β) |Ν ' 

(ΙΙΙ·5) CM+|x|JReCl>0] = CN |x|JReCl>o| (that iS' CM+|x ^ an object which is 

the usual microfunctions on the interior x̂  > 0 , decomposes along x̂  = 0 

just the germs of hyperfunctions with supports in M+ , and behaves like 

CN|X °N ^ E NEM:*-SPNERE ReCj > 0 ). 

Among various properties of these sheaves most important is the unique continuation 
property with respect to the complex variable , which holds also along Reζ1=0 
with respect to the "real" parameter Ιπιζ̂  . As a consequence, we have the 
beautiful theorem on watermelon slicing describing the shape of S.S. of the hyper-
functions with support limited by a half space (see the appendix to this part). 
Recall also that the pseudo-differential operators operate to these sheaves where 
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they are defined. 
The complex parameter accepts the operation of restriction or the 

boundary value to the "real" which induces the relation 

(III.6) S « | x | s * X x N ^ % J x | s * X x N ^ S 4 | s * X x N ' 
X X ^ 

where S*X χ Ν denotes the restriction of S*X on Ν , that is, the "real part" 
X M 

(more precisely the pure imaginary part) of the fibres of S*X or S* X 
These constructions can be unified to the following general situation: Let 

Κ C Jx^=oJ be a linear subvariety with boundary, say 
Κ = |χ1=0, x2=...=xk=0, x ^ > 0 x ^ > OJ . 

Then its conormal sphere bundle S*X in X is defined in the same way. The 
Κ 

corresponding sheaf on this space is C ι whose precise definition is 
κ ι X 

κ 
C K | x ^ x ( i r l ^ ® W K | x κ 

where π : ΚΧ* = (Χ \ Κ) [J S*X ~+ Χ denotes the comonoidal transformation with 
center Κ and ω ι denotes the corresponding orientation sheaf- The sections of κ ι X 
C ι have the unique continuation property with respect to the complex parameters κ ι X 
ζ! ζΚ+Α for ζ1 CkeI'ReCk+l - ° R e Ç k U - ° - PUt ^ = 1 * ! = ·-· = 

=xk+jr° ) · We have 

(III.7) RK(M'B)|3K^*CK|x|3K , 

(ΙΙΙ·8) CK|X|S*XC^C |Χ -
M 4. 

Definition 18. Put ζ1 = (ζχ , . . . ,ζ^) / ζ11 = ^k+£+1 ' · · · ' ^ · We wil1 saY tnat 
Ρ (x,D) is irreducible at (0,V) along S*X if the m points πι κ 
(T1(iV,)#iVl),...,(Tn(iV,),iVl) of Pm(0,C1,iV) =0 lying over iV can be 
joined by a non-singular complex analytic submanifold of dimension k+&-l in 
the conic algebraic variety 

|ζΙ6 0Κ+£; (0,(CIdxI+iVIIdxII)oo)GS*X, Ρ (Ο, ζ1, iV ΧΙ) =0 . 
1 K m ) 

36 



CONTINUATION OF REAL ANALYTIC SOLUTIONS 

(Here V 1 1 denotes (V, . .,...,V ) ). 
Now consider u £ Ap(U \ K) . By the construction of part II, we have 

m-1 
(Il.l)bis ±P(x,D)CuD+ = 2Zu ±(x , )6 ( m "" j ~ 1 )

 ( x ) m 

~ j=0 3 

Hence 

(111.9) P(x,D)(Cu]+ + LulJ = ̂ u . (x ' ) 6 ( m " j " 1 ) (xx) , 
j=0 3 

and this .hyperfunction becomes a section of x • N c> w choose any extension 
Cu3 € B(U) of u . Then P(x,D)Cu] has support in x̂ =0 , hence gives also a 
section of ^^jx • H o w i t : differs from (111.9)? Obviously by a term of the 
form P(x,D) TT*CN|x . Since the space S*X directly concerns only the principal 
part, we cannot annihilate this ambiguity by simply restricting to some variety. 
Note however that P(x,D) is invertible as a pseudo-differential operator outside 
the characteristic variety P (x,£) = 0 . Thus the ambiguity has the meaning still 

m only along P (x,£) = 0 . To continue u to a hyperfunction solution to U is, m 
therefore, to show that (III.9) goes into the ambiguity term even along 
P (x,£) = 0 . Assume that on a neighborhood of (x',C) € S*X , P (x,r) = 0 has m N m 
simple component ^ i - ^ ^ ' ^ = ^ * by virtue of the Weierstrass preparation 
theorem (S-K-K CU), we can decompose P(x,D) in such a way that 

m-1 
(D1 -T (D'))P'(x,D)(Cu3 + CuD ) = ]Lu.(x , )6 ( m ~ j " 1 ) (xj . 

1 * " j=0 3 1 

In view of the division theorem in S*X (see Schapira L2l, Kataoka [3D), we obtain 
m-2 

(111.10) (D1-Tk(D'))(p' (x,D) (Cu]+ + CuIIJ - 5Iv j(x , ) 6 ( m " j " 2 ) ( X l )j=u^ k ) (x')6(x1) . 

(k) 
We claim that this coefficient u Q (x') is, near (x*,£) , the substitute for the 
object p ^ D ^ U ^ | N ( P ) considered in the Fundamental Principle. In fact we have 

Lemma 19. Assume that P^x,^,?') has a simple real root ^ = Tk(£') near 
(k) 

(x,£') = (0,V') . Then the coefficient u (x') vanishes there (as an element 
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of c , that is, becomes micro-analytic near (χ',ξ') = (0,V) ). Ν 
This is a special case of the propagation of micro-analyticity up to the 

boundary for micro-hyperbolic operators (Schapira [2D, Kataoka [3]). Our main 
lemma where the irreducibility concerns is the following: * 

Lemma 20. Assume that Ρ (x,D) is irreducible at (Ο,ν') along S*X . Then the 
propagation of zero holds for the coefficient in (III.10). 

In fact the restriction of support supp u_.(x') C Κ allows us to consider 
u.(x') as sections of TT*C Ι . Thus we can let ζ1 run in the complex with J ΚIX 
respect to which û (x') enjoys the unique continuation property. This property 
is inherited to the coefficient in (III.10), because the division process 
conserves the complex holomorphic parameter. 

Summing up we have obtained 

Theorem 21. Let P(x,D) be a linear partial differential operator of order m 
with real analytic coefficients defined on a neighborhood U of 0 . Let Κ be 
as above and let v' be a conormal of Κ in x̂  = 0 . Assume that x̂  = 0 is 
non-characteristic, Ρ̂ ίχ,ϋ) is irreducible at (Ο,ν') along S*X in the sense 
of Definition 18 and that the roots of Ρ (χ,ζ,,ξ') = 0 for ζ, are simple and 

m l l 
one of them is real for (χ,ξ') near (Ο,ν') . Then every u£Ap(U\K) can be 
continued as a hyperfunction solution to a neighborhood of 0 . 
Corollary 22. Let Κ = {0} . Then under the same assumption we have 
A (U\ {0})/A (U) = 0 . 

In fact this time the singularity of the extended solution, if it existed at 
0 , would flow out along the bicharacteristic strip corresponding to the real 
simple root (Kawai [23). 

Let us examine an example to Theorem 21. Consider the following operator with 
constant coefficients on a neighborhood U of 0 : 

3 3 3 3 P(D) = D + D2 + D on Μ 
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First choose Κ = {χ^Ο, χ2>_0} . Then ν' = (1,0) C is the unique conormal of 
Κ in χ = 0 . The operator P(D) is not irreducible at ν' along S*X . 

In fact, at iV = (i,0) , as a function of and ζ2 , Ρ (ζ) can be decomposed 
as follows: 

ζ?+ζ2 " (ζ1 + ζ2)(ζ ϊ - ζ1ζ2 + Φ · 

We can even construct an element u G Ap (U \ K) which cannot be continued as a 
hyperfunction solution to a neighborhood of 0 : Choose f(x) = Υίχ^δίχ^) . Since 

2 2 
the operator D - D̂ D + D is elliptic, we can find a hyperfunction solution u 

2 2 
of (D̂  - + D2)u = f (hence of P(D)u = (D1 + D2)f) which is real analytic 
outside Κ . By the uniqueness of the boundary values supp u contains certainly 
the points outside Κ . Next choose Κ = jx^O, *2 — °' x3 — 0 J * choose v' G K ' v2 — °' V3 — 0 ' 
2 2 
+ = 1 as a conormal of Κ in x̂  = 0 . This time an elementary considera­

tion shows that the non-singular variety 
het3 \ {0}; ζ3χ + ζ32 + ζ33 = 0, ReC2 > Ο, ReC3 > Ο 

is connected, that is, P(D) is irreducible at v1 along S*X in the sense of 
Definition 18. Therefore combined with the existence of a real simple zero, we can 
conclude by Theorem 21 that uGAp(U\K) can be continued locally to a neighbor­
hood of 0 as a hyperfunction solution (hence as a real analytic solution in view 
of the propagation of regularity by virtue of the convexity of Κ ). Note however 
that if we consider Vx* as the new xn coordinate and take for U a neighbor­
hood of Κ η {ν'χ' < const.} , we cannot assert Ap(U \ K)/Ap(U) = 0 globally as in 
Theorem 6. 

APPENDIX TO PART III. 

We introduce here the statement of the theorem on watermelon slicing (or 
chopping) which exhibits a distinguished feature of the analytic singular spectrum 
as compared with the C00 . 
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Theorem. Let u(x) be a hyperfunction defined on a neighborhood of O e E n such 
that 0 e supp u C — °J * Tn®n tne fiber at χ = 0 of S.S.u has the 
following remarkable structure: There exists a closed subset F in the equator 
S*n 2 such that 

00 
(III.11) S.S.u|x=0 = p_1(F) U Jiidx^j , 

where ρ : S*n * \ jiidx̂ coj -> S*n 2 denotes the projection from the poles along the 
meridians. 

This theorem has its origin in the works of V.S. Vladimirov, M. Morimoto etc. 
on the interdependence of support and S.S. translating the law of causality in 
quantum mechanics (see Morimoto CID). It was conjectured by M. Sato in the 
conversation with Morimoto on this subject. As remarked in the text, it is based 
on a kind of unique continuation property with respect to ζ^, which had been 
conjectured by Morimoto. The latter was afterwards proved by Kashiwara by virtue 
of the contact transformation and the unique continuation property for micro-
functions with holomorphic parameter. The proof has been reconstructed by Kataoka 
ill which seems the first written one. An elementary version is given in Kaneko 
Cll] where only the hyperfunctions with holomorphic parameter is used. Remark that 
|±idx̂ ooj C S.S.u is the conclusion of the Holmgren type theorem (Lemma 8). By 
virtue of this theorem the treatment of boundary wave front set becomes very simple 
in the analytic case: It suffices to consider the S.S. of the traces (Schapira C2]Y 
Kaneko CI2]). Cf. the talk of P. Lousberg in this meeting for the C°° case. 

By a figure of the form (III.11) (for n=3), we Japanese imagine at once a 
slice of the watermelon which is fully round in Japan, whence the denomination due 
to Morimoto. In Kaneko CUD, however, the melon is referred to instead of the 
watermelon, because the latter in France seems of long, ellipsoidal form. The 
speaker does not yet see the Italian watermelon. But the sketch of "cocomero" in 
the dictionary seems also long. 
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