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DESINGULARIZATIONS OF ORBITS OF CONCENTRATORS 

Wim H. Hesselink, July 31, 1980. 
Groningen University, Department of Mathematics, P.O. Box 800. 
9700 AV Groningen, The Netherlands. 

1. Introduction. 

1.1 Let G be a connected reductive algebraic group over an algebraically 
closed field K. Let V be an affine G-variety and let X be a closed sub-
variety of V which is stable under the action of a parabolic subgroup P of 

p 
G. We form the contracted product Z: = G x X which is the quotient of G x X 
under the P-action given by p(g,x) =(gp~ 1,px). Since G/P is a projective 
variety, the morphism Z — * V which sends the class of (g,x) to the element 
gx, is proper. So the image Y =GX is a closed subvariety of V. We have a 
proper surjective morphism f: Z — > Y , which is called the collapsing 
morphism, cf. [5] . 

Definition. X is said to be P-resolute, if f: Z — • Y is birational; that 
is, if Y has an open dense subset U such that f induces an isomorphism 
between f _ 1 U and U. 

Remark. Usually Y has singularities, even if X is smooth. Then Z is also 
smooth. So, if X is P-resolute, f; Z — > Y is a desingularization of Y. 
1.2 In this paper we give a method to determine some P-resolute subvarieties 
in V. This method is based on the theory of optimal concentration of Kempf 
[6] and Rousseau [8], see also 12]. In [3] we observed that equality of the 
optimal concentrator is an equivalence relation with nice geometric behaviour. 
In particular, the equivalence classes are locally closed and, if char(K)=0, 
the closure of an equivalence class is P-resolute for some parabolic group P. 
In [4], after a quick introduction to the theory, we investigated the possibi1i-
ties of scheme-theoretic generalizations. 

The innovation in this paper is a more flexible objective of the concentration. 
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In [3] the points are concentrated on a fixed base point. In [63 and [4] the 
points are concentrated on a G-invariant subvariety. Here we consider concen
tration on a finite number of subvarieties with different lower bounds on the 
speed of concentration. These data are collected in the so-called objective. 
In this way we get more P-resolute subvarieties. In [3] and [4] we only con
sidered points of the concentrated cone N(V). This set clearly depends on the 
objective. Here we admit a formally concentrating co-weight <», so that the 
non-concentrated points are no longer exceptional. In terms of 1.1 this concerns 
the trivial isomorphism G x V—-*V, but there is no reason to exclude this case. 

Since the innovation penetrates into the technical details of the two main 
proofs, we have given the proofs again. Some of the minor arguments have not 
been repeated. For these we refer to [3] and [4]. Nevertheless we hope that 
the present text can be read independently. The theory is exposed in the sections 
2 and 3. In section 4 we introduce some concepts which may be indispensable for 
a systematic analysis of the possible stratifications. We give an example in a 
module over a group of type B 2« 

I am greatly indebted to Tadeusz Jdzefiak and the Polish Academy of Sciences 
for the invitation to visit the Torun Conference and for the stimulating request 
to prepare a paper for the proceedings. 
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2. Optimal concentration. 

2.1 In this section G is a linear afgebraic group over an algebraically closed 
field K, acting on an affine variety V. The multiplicative group K * of the 
field K is considered as an algebraic group and as an open subvariety of the 
affine line K. 

Let Y(G) be the set of the one-parameter subgroups y: K * — • G . The set M(G) 
of the "finite co-weights" is defined as the quotient (Y(G) x 1N)/^ where 
(y,n)^(v,m) means that v»(tn) = v(t m) for every t € K * . If T is a torus, Y(T) is a 
free Z-module and M(T) =Y(T)8 2 Z((. The interior action int(g)h = ghg" 1 of G 
induces an action of G on M(G). An application q: M(G) —• $ is called a norm if 
we have 
a) q(int(g )A) = q ( A ) for every g € G, A € M(G). 
b) If T is a torus the restriction of q is a positive definite quadratic form 

on the vector space M(T). 
By [7] p.58, norms exist. A different construction is given in [4] 2.3. For 
convenience we define the completion M ( G ) C to be the union M(G) u {«}. The 
elements of M(G) c are called co-weights. The action of G is extended by 
int(g)oo = oo for every g € G . Every norm q is extended by q(~) =«>. 

2.2 Let M € Y(G) and v € V . We say that lim p(t)v = w if there is a morphism of 
varieties h: K —• V with h(0) = w and h(t) = p(t)v whenever t + 0. Let C be a 
G-invariant closed subvariety of V. Following [7] we define the speed of con
centration s^(v,C) to be the dimension of the co-ordinate ring of the affine 
scheme h - 1 C as a vector space over K. So we have s^(v,C) = + » if and only if 
v € C . We have s^(v,C)=0 if and only if w $ C . If the limit does not exist, we 
define s^(v,C): = - 0 0. If A e M(G), we can define s x(v,C) : = m" 1s^(v,C) where (y,m) is 
an arbitrary element of the equivalence class A . If A = < » inM(G) ,we define 
s x(v,C) : = +00. 

2 - 3 A n objective y in V of rank r is defined to be a triple (C^.c^q) where 
is a sequence of G-invariant closed subvarieties C l t . . . C r , and c^ is a 
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sequence of rational numbers ciS...cr>0, and q is a norm on M(G), see 2.1. 
We fix an objective y . If A€M(G) , the concentrator V ( X ) is defined to 

c • - ' - y 

consist of the points v € V such that sA(v,C)>c.j for every index i. Let X be 
a subset of V. We define the optimal value 

| X | y : = i n f l q ( A ) | A 6 M(G)c, XczV ( A ) y } 

and the optimal class 
A(X) : = ( A € M ( G ) I XczV (X) . q ( A)=|X|Y>. 

Y Y Y 

2.4 Proposition. A(X) is non-empty. If T is a torus in G then M(T) contains 
Y c 

at most one point of A(X)^. 

The proof is given in 2.7. It uses two standard lemmas. 

2.5 Lemma (quadratic programming) Fix rational numbers c 0 , C j,...c . Let E be a 
finite dimensional rational vector space with dual vector space E *. Let R ^ be 
a sequence of finite subsets R0,RlS...Rr of E *. Let q: E — • (J be a positive 
definite quadratic form. Assume that 

D ( R J : = (x£E|Vi : u € Ri <u,x) ^ c ^ 

is a non-empty set. Then there is a unique d € D ( R ^ with q(d)<q(x) for every 
x€D(R*). 

2.6 Lemma (linearization). There is a G-module V with a sequence of submodules 
C|,...CJ,, and a G-equivariant closed immersion j:V—*V' such that C1 is the 
schematic inverse image j_1(C^) for every index i. 

2.7 Proof of 2.4. If |X| = « , then clearly A(x)y = {«>}. So we assume that |X| < « . 
By lemma 2.6 we may assume that V is a G-module and that the subvarities Clt...Cr 
are submodules of V. 

Choose a maximal torus T of G. The character group of T is the dual Y(T)* of 
the free Z-module Y(T). So it is a lattice in the dual vector space M(T)*of 
M(T). The torus T induces on a G-module W a weight space decomposition W =IW^ 
with n€Y(T)*. If F is a subset of W, let R(F) be the smallest subset R of Y(T) * 
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such that F is contained in £ R W^. 
Let F be a subset of V. Let CQ denote the zero submodule of V. If 0 < i < r , 

put R ^ F ) : =R(Fi) where F1 is the image of F in the quotient module V/Cj. By 
an analysis of the speed of concentration, one obtains 

l n € M ( T ) | F C = V ( M ) > = D ( R J F ) ) 

Here we use the notation of 2.5 with E = M(T), and cQ = 0, and c1,...cr and q 
as given in the objective y. The index i = 0 with RQ(F)=R(F) and cQ = 0 had to 
be introduced in order to quarantee convergence. 

In the definition of |X|^ we substitute A = int(g)u with u€M(T) and g £ G . 
Then we have q ( A ) = q ( n ) , and X c V ( A ) ^ if and only if g"LXc:V ( M ) ^ . It follows 
that 

IX I =inf {q(M)| MeD(R,(g_1X)), g € G } 
Since each R ^ g ^ X ) is contained in the finite set R(V), lemma 2.5 implies the 
existence of h € G and M € D(R +(h"1X)) with q(u) = |X | . Then we have 
int(h ) n € A(X)^. The second part of 2.4 is now also clear. 
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3. Stratification and geometry. 

3.1 From now we assume that the group G is connected and reductive. Recall 
that V is an affine G-variety and that Y is an objective in V. Let X £ M ( G ) C . 
Using the interior action of G on itself we define G ( x ) to consist of the 
points g € G with s x(g,G) =«>. It is a parabolic subgroup of G and it stabilizes 
V ( x ) . The equivalence relation ^ on M(G) is defined by x ^ y if and only if 

Y C 

p = int(g)x with g € G ( x ) . If x % y then V ( X ) Y = V ( y ) y and G ( x ) = G ( y ) . Let X be a 

subset of V. The class A(X)^ is clearly a union of equivalence classes in 
M(G) . Now 2.4 and [3] 2.5 (b) together imply the 
Theorem of Kempf [6] and Rousseau [8]. The class A(X)^ is one equivalence class 
in M(G) . 

3.2 It follows that we may define the Kempf group PfX)^: = G ( x ) and the y-saturation 
S(S(X) ) S V ( x ) where x is an arbitrary element of A(X)^. It is clear that 

A(S(X) ) =A(X) . As in [31 2.8 one proves that 
(*) P(X) Y = { g € G | gX<zS(X) y} 
In particular P(X)^ is the normalizer of S(X)^. Since S(X)^ is closed in V, the 
set GS(X)^ is also closed by 1.1. If x € V we write |x|^ instead of |{X}| y» etc.. 
The set of values |x|^ is finite. If s€(|!u{«>}, the locus of the points x € V 
with IxI < s is closed. See [31 2.9. 

3.3 Points x and y of V are said to be y-equivalent if they have the same optimal 
class (or equivalently: the same y-saturation). The equivalence class of x is 
called the y-blade [x]^ of x. It consists of the points y € S ( x ) ^ with |y| y = |x| y. 
It is an open subset of the closed set S(x)^. So if S(x)^ is irreducible, then it 
is the closure of [x]^. 

The set G[x] is called the y-stratum of x. It consists of the points 
Y 

y e G S ( x ) ^ with |y| y = l xl y« It is an open subset of the closed set GS(x)^. The 
variety V is a finite disjoint union of the y-strata. 
3.4 Theorem. Let X Q be a y-blade in V with y-stratum U = G X Q . Let X be the closure 
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of XQ. Let P be the normalizer of X in G. 
a) If x € XQ then P = P(x) ; so P is a parabolic subgroup. 

p 

b) Let f: G x X — • GX be the collapsing morphism. The set U is open and dense 
in the closed set GX, and f"1U = 6xPXQ. 
c) The restriction f: f-1U—*U is a universal homeomorphism. 
d) Assume char(K)=0. Then f: f - 1 U — i s an isomorphism. The set X is a 
P-resolute subset of V. 
Proof, a) Put X :=S(x) and P : = P(x) . We have X c X c X . By 3.2(*) it follows 

' 1 Y 1 Y 0 j ^ \ # 
that PczP,. Since the function |?| is G-invariant and P, stabilizes X., it 

l Y 1 1 

stabilizes XQ by 3.3. Therefore ?l stabilizes X. This proves that P1 = P. 
b) Since U is open in GX1 it is also open in GX. It is clearly dense in GX. The 
set GX is closed by 1.1. If g £ G and x € X and g x € U , then we have x € XQ by 3.3. 
This proves that f"1U = GxPXQ. 
c) The morphism f: f_1U—*U is clearly proper and surjective. Let (g,x) and 
(h,y) in G x XQ satisfy gx = hy. As h ^ g x e x ,it follows with (a) and 3.2(*) that 

- 1 P h g € P . So (g,x) and (h,y) represent the same point of G x X. This proves that 
the restriction of f is injective. So by [1] III 4.4.2 and IV 2.4.5, it is a 
universal homeomorphism. 
d) As in the proof of [3] 4.7 and [4] 3.6 it suffices to prove that the restriction 
of f is unramified. By lemma 2.6 we may assume that V is a G-module and that the 
subvarieties are submodules. Now it suffices to prove the Lie algebra analogue 
of 3.2(*): 

3.5 Lemma. Assume char(K) = 0 . Let V be a G-module and C^,...^ be submodules. 
Let v € V . The Lie algebra p of P(v)^ consists of the elements X of the Lie algebra 
g of G with Xv € S(v)^. 

Proof. If X€j? then clearly Xv€S(v)^. Suppose X e g satisfies X $ p and Xv€S(v)^. 
Choose A € A ( v ) . Then A =)= °°» so it induces <|!-gradings V = IV and g = I g with 
s e i Write v = lv„ and X = I X , with vs eV5 and X € g . Let m be minimal with 

* S S S S S arS 

Xm 4 0- Since X $ p we have m < 0 . An element x = Z x§ with x$ € Vg belongs to S(v)^ 
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if and only if x$ € C.j whenever s<c.j. Here 0 < 1 < r a n d co = {0} and co = 0, as 
in 2.7. Since both v and Xv belong to S(v)^ and since Ci is a submodule of V, 
we obtain 

Rule 1: If s=ci then X ^ ^ C ^ 
Since m < 0 the element Xm is nilpotent in g Using the Jacobson-Morozov theory 
we construct a reductive subgroup L of G of semisimple rank one with a maximal 
torus T and root system {a,-a} such that A € M ( T ) and that X^ is a root vector 
of a in the Lie algebra of L. Let ( , ) be the inner product on M(T) with 
( u » n)-=q ( i i ) for every n € M ( T ) . This inner product is used to identify M(T)* 
with M(T). Since X m € g m we have (a,A) = m . The representation theory of si (2) 
says the following. If an element w is annihilated by Xm in an L-module W, 
then every weight T T € R ( W ) satisfies (n,a) > 0 . Here we use the notation of 2.7. 
Now rule 1 implies 

Rule 2: If u6R.(v) satisfies (n,A)=c.., then (n,a)>0. 
Recall that (TT,A)>C. whenever n€R..(v). Now it is clear that there exists a 
positive number e such that for every rational number te[0,e] and every index 
i € [0,r] and every weight n e R ^ v ) we have (TT,A + ta) > c.|. The optimality of A 
implies that q ( A ) < q ( A + ta) and hence that ( a , A ) > 0 . This contradicts m < 0 . 
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4. Additional remarks and an example. 

4.1 A co-weight A is said to be y-balanced if A € A ( x ) ^ with x € V . The map 
which associates to a y-stratum U the union of the classes A(x)^ with x € U , 
is a bijection between the finite set of the y-strata in V and the set of 
the conjugacy classes of y-balanced co-weights. A co-weight A is said to be 
weakly Y-balanced if A £ A ( V ( \ ) ^ . Every y-balanced co-weight is weakly 
y-balanced, but not vice versa. 

Remark. The (weakly) balanced co-weights were introduced in [3] 6.8, for a 
special case and with a slightly different terminology. 

We fix a Borel group B of G. A co-weight A is said to be dominant if 
B C Z G ( A ) . We fix a maximal torus T of B. If C is a conjugacy class in M ( G ) C > 
there is a unique dominant co-weight in CflM(T)c. So the y-stratification of 
V is determined by the set of the dominant y-balanced co-weights in M(T)c. 
Determination of the weakly y-balanced co-weights is usually a first step, 
since the verification of 4.2(b) is much easier than of 4.2(a): 

4.2 Lemma, a) A co-weight A € M ( G ) is y-balanced if and only if V(A) is not 
C y 

contained in the union of the sets G V ( y ) ^ where y runs through the set of the 
y-balanced (or weakly y-balanced) dominant co-weights y € M ( T ) with q ( u ) < q ( A ) . 

b) A co-weight A G M ( T ) C is weakly y-balanced if and only if every co-weight 
y £ M ( T ) with V ( A ) ^ C Z V ( M ) ^ satisfies q ( A ) < q ( n ) . 

Proof, a) is trivial, b) Assume that A €M(T)c satisfies q ( A ) < q ( y ) for every 
p € M ( T ) with V ( A ) ^ C V ( M ) y . Put X = V ( A ) . The intersection of the parabolic 
subgroups G(A) and P(X)^ contains a maximal torus S of G. Since S and T are 
maximal tori in G ( A ) , we have T = int(g)S with g € G(A) . Then gX = X and therefore 

TCint(g)P(X)Y = P(gX)Y = P(X)y. 
It follows that M(T)c contains an element of A(X)^. The assumption on A 
implies that \€A(X)^. This proves that A is weakly y-balanced. The other 
implication is trivial. Compare [31 5.5. 
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4.3 Playing with the objective. An objective y is said to be equivalent to an 
objective 6 if S(X)^ = S(X)6 for every subset X of V. An objective y is said to 
be trivial if V is the y-concentrator of the zero co-weight. Every non-trivial 
objective is equivalent to an objective y = (C*,c^,q) with C ,...Cr a strictly 
increasing sequence of subvarieties and Cr 4 V , and with c1...cp a strictly 
increasing sequence of rational numbers and c = 1. The influence of the choice 
of the norm q is discussed in [2] section 7 and [31 4.10. 

4.4 An example. We restrict ourselves to the linear situation. So V is a 
G-module and C1,.. . . .C1 are submodules. In [3] section 6 we gave examples with 
r = 1 and Cj ={0}. Here we give an example with r = 1 and C1 .{0}, and an example 
with r= 2 and {0} = C ± C . 

1 1 2 
Let G be the symplectic group Sp(4). Let V be the G-module F i g , where 

F = K4 with basis e ,...e^ and the action of G on Fis the classical representation; 
g is the Lie algebra of G with the adjoint representation. The invariant alter
nating form 3 on F is chosen such that 3(e^,ej) 4 0 if and only if i + j = 5 . The 
vectors e ,...e are weight vectors of a maximal torus T of G. Let the Borel 

1 *+ 
group B of G be the stabilizer of the flag F^-.-F^ with F..:=Z^ = l Kei. Let P 
be the stabilizer of F} in G, and let p be the Lie algebra of P. Let x € g be 
the element with x e, = e , and Ker(x) = F . We claim that the subspaces 

^ 1 x ' 3 

Xji = F ® p and X2: =F} 9 Kx and X3: = F2 ® Kx are closures of blades in V, so 
that theorem 3.4 applies. 

We use two different objectives y and <S, both with the norm q which is given 
by q ( A ) = a 2 + b2 if A(t) = diag(ta,tb,t~b,t~a). Let p and v be the co-weights 
given by 

vi(t) =diag(t2,l,l,t"2), v(t) = diag(t2,t,t"1 ,t"2) 
Then we have G(p) = P and G(v) = B . We use the norm q to identify M(T) and M(T)*. 
Then the weights a1 and a2 of e^ and e^ in F, respectively, form an orthonormal 
basis of M(T) and we have u = 2ni and v = 2n1+n2. The simple roots are a = n 1 - n 2 
and 3 = 2TT2. 

1 0 6 
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In the notation of 2.7 we have 
RfFj) =A(S(X) ), R(F2) = (n iS n 2 } , R(p) = {0, ± 3,a,a + 3,2a + 3 ) , and R(Kx) = {2a + 3 ) . 

These weights and co-weights are shown in the diagram below. The dominant 
chamber is shaded there. 

The objective y is of rank one with CA = j and c = 2 . The objective 6 is of 
rank two with C1 = {0}, C£ = F, cx = 1, c2 = 4. We have X2 = V(v)y and X£ = V(p)6 
and X3 = V(v)6. If A € M(T) and q ( A ) < q ( y ) then V (A)Y<=g. This proves that 
X ^ p is a Y-blade with optimal co-weight p and Kempf group P. The set GX2 
consists of the pairs (f,y) such that Kf+Im(y) has dimension at most one. 
Therefore X3^GX2 is non-empty and equal to X ̂  (F£ u X2). If A is a weakly 
6-balanced dominant co-weight in M(T) with q ( A ) < q ( v ) , then A = p or V(A)fic:F. 
This proves that X2^Fx and X ^ ( F 2 U X 2 ) are 6-blades with optimal co-weights 
P and v and Kempf groups P and B, respectively. It follows that dim(GX ) = 1 1 , 

that dim(GX2) = 5, that 
dim(GX3) = 7. If char(K) = 0 , 
then Xx and X2 are P-resolute 
and X is B-resolute. 

3 

p = 2 a + 3 

Diagram of relevant weights and co-weights. 
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