Michael Clausen
 A constructive polynomial method in the representation theory of symmetric groups

Astérisque, tome 87-88 (1981), p. 61-77
http://www.numdam.org/item?id=AST_1981__87-88__61_0

© Société mathématique de France, 1981, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A CONSTRUCTIVE POLYNOMIAL METHOD IN THE REPRESENTATION THEORY OF SYMMETRIC GROUPS

Michael Clausen, Lehrstuhl II für Mathematik, Universität Bayreuth, D-8580 Bayreuth, West Germany

During the last few years polynomial rings in double--indexed indeterminates have been investigated for quite different reasons. In this note I would like to report about these polynomial rings from the viewpoint of the representation theory of symmetric groups.

Letter Place Algebras

Let R be a commutative ring with unit element $1=1_{R} \neq 0$, and let $m, n \in \mathbf{N}:=\{1,2, \ldots\}$. The polynomial ring

$$
R_{m}^{n}:=R\left[x_{i j} / i=1, \ldots, m ; j=1, \ldots, n\right]
$$

in the $m \cdot n$ indeterminates $X_{i j}=:(i \mid j) \quad$ - i is the letter and j the place index - is called the letter place algebra in m letters and n places [DKR,p.66].

The double indication of the indeterminates makes it possible to associate to a monomial $x_{i_{1} j_{1}} \cdots \cdot x_{i_{k} j_{k}}=:\left(\begin{array}{c|c}i_{1} & j_{1} \\ \vdots & \vdots \\ i_{k} & j_{k}\end{array}\right)$ (of total degree k)
the letter-content $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right), \alpha_{i}:=\left|\left\{v / i_{v}=i\right\}\right|$, the place-content $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \beta_{j}:=\left|\left\{\nu / j_{\nu}=j\right\}\right|$, and the content (α, β).

Hence the letter- (resp. place-) content of a monomial of total degree k is an improper partition of k, i.e. α (resp. β) is a sequence of non-negative integers which sum up to k. Let me write $\alpha \vDash k$ and $\beta=k$, for short.

By homogeneity conditions with respect to monomials the letter place algebra $R_{m}{ }^{n}$ can be decomposed into finite--dimensional R-subspaces $R_{\alpha \beta}$:

$$
\begin{aligned}
& R_{m}^{n}=\sum_{k \geqq 0}^{\Sigma^{\oplus}} \quad \sum^{\Sigma^{\oplus}} \\
& \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \vDash k
\end{aligned}
$$

where $R_{\alpha \beta}$ is defined to be the span of the monomials of content (α, β).
(In the sequel $V=\ll B \gg R$ means: B is an R-basis of V.)

Example.
$R_{(1,2,1)(2,2)}=\ll\left(\begin{array}{l|l}1 & 1 \\ 2 & 1 \\ 2 & 2 \\ 3 & 2\end{array}\right),\left(\begin{array}{l|l}1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 3 & 1\end{array}\right),\left(\begin{array}{l|l}1 & 2 \\ 2 & 1 \\ 2 & 1 \\ 3 & 2\end{array}\right),\left(\begin{array}{l|l}1 & 2 \\ 2 & 1 \\ 2 & 2 \\ 3 & 1\end{array}\right) \underset{\mathrm{R}}{ }$.

The general linear group $G L(m, R)$ acts from the left, and GL(n, R) acts from the right on R_{m}^{n}, and these actions induce algebra-automorphisms of $R_{m}{ }^{n}$:

For all ($a_{r s}$) in $G L(m, R)$, all ($b_{u v}$) in $G L(n, R)$ and all monomials $\prod_{i, j}(i \mid j)^{C_{i j}}$ in R_{m}^{n} put

$$
\begin{aligned}
& \left(a_{r s}\right) \cdot \prod_{i, j}(i \mid j)^{C_{i j}}:=\prod_{i, j}\left(\sum_{k} a_{k i}(k \mid j)\right)^{c_{i j}} \\
& \prod_{i, j}(i \mid j)^{c_{i j}}\left(b_{u v}\right):=\prod_{i, j}\left(\sum_{h} b_{j h}(i \mid h)\right)^{c_{i j}}
\end{aligned}
$$

Moreover this yields a ($G L(m, R)$, $G L(n, R)$) bimodule structure on $R_{m}{ }^{n}$.

The symmetric group S_{n} is embedded into $G L(n, R)$ via permutation matrices.

The spaces $R_{\alpha \beta}$ can be interpreted in a representation theoretical way.

Theorem [C1 I, p. 168]

$$
R_{\alpha \beta} \cong \cong_{R} \operatorname{Hom}_{R\left[S_{k}\right]}\left(R\left[S_{k}\right] \otimes_{R\left[S_{\alpha}\right]} R, R\left[S_{k}\right] \otimes_{R\left[S_{\beta}\right]} R\right)
$$

Here S_{α} (resp. S_{β}) denotes the Young-subgroup to $\alpha \vDash k$ (resp. $\beta=k$).
-

Hence the $R_{\alpha \beta}$ are intertwining spaces, and Mackey's Intertwining Number Theorem (see e.g. [CR, § 44]) suggests to deal with the question:

```
Are there any R-bases of }\mp@subsup{R}{\alpha\beta}{}\mathrm{ which are of represen-
tation theoretical interest?
```

Before I start answering this question, let me recall some notations.
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$ is a (proper) partition of n (for short: $\lambda \vdash n)$, if λ is a non-increasing sequence of strictly positive integers which sum up to $n . \lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$, the associated partition to λ, is defined by $\lambda_{i}^{\prime}:=\left|\left\{j / \lambda_{j} \geqq i\right\}\right|$. [It is well-known that the (proper) partitions of n parametrize the conjugacy classes of S_{n} as well as the classes of ordinary irreducible representations of S_{n}.]
 ated to the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$. A λ-tableau T (or a tableau of shape λ) is a mapping $T:(\lambda) \longrightarrow \mathbb{N}$.

One can illustrate such a tableau T in the following way

$$
\begin{aligned}
& t_{11} t_{12} \cdots \cdots{ }^{t_{1 \lambda_{1}}} \\
& t_{21} t_{22} \cdots \cdots \cdot t_{2 \lambda_{2}} \\
& \vdots \\
& t_{h 1} t_{h 2} \cdots t_{h \lambda_{h}}
\end{aligned} \quad\left(t_{i j}:=T((i, j))\right),
$$

and it is clear how to define the i-th row and the j-th column of a tableau $T=\left(t_{i j}\right)$.
T is said to be standard if the elements in each row of T are strictly increasing from left to right and are non--decreasing down the columns.
$c(T):=\left(c_{1}(T), c_{2}(T), \ldots\right), c_{k}(T):=\left|\left\{(i, j) / t_{i j}=k\right\}\right|$, is the content of T.

Example. The tableau $T=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 1 | 2 | |
| 2 | | |
| 4 | | |\quad is standard and

$c(T)=(2,3,1,1,0, \ldots)$.
ㅁ
Let $S T^{\lambda}(\alpha)$ denote the set of all Standard Tableaux of shape λ and of content α.

To get a representation theoretical description of the R-dimension $\left(R_{\alpha \beta}: R\right)$ of $R_{\alpha \beta}$ let me remind you of

Young's Rule.
The multiplicity of the irreducible representation $[\lambda]$ of S_{k}, $\lambda r k$, in $\mathbb{C}\left[S_{k}\right] \otimes_{\mathbb{C}}\left[S_{\alpha}\right] \mathbf{C}$ is just $\left|S T^{\lambda^{\prime}}(\alpha)\right|$, i.e.:

$$
\mathbb{C}\left[\mathrm{S}_{\mathbf{k}}\right] \mathbb{\otimes}_{\mathbb{C}}\left[\mathrm{S}_{\alpha}\right]^{\mathbb{C}} \sim \underset{\lambda \vdash \mathbf{k}}{\boldsymbol{\Sigma}^{\oplus}}\left|\mathrm{ST}^{\lambda^{\prime}}(\alpha)\right| \cdot[\lambda] \mid
$$

As $\quad\left(R_{\alpha \beta}: R\right)=\left(\mathbb{C}_{\alpha \beta}: \mathbb{C}\right)$ (monomials!), one gets

$$
\begin{aligned}
\left(\mathrm{R}_{\alpha \beta}: \mathrm{R}\right) & =\underset{\lambda \vdash \mathrm{k}}{\mathrm{i}\left(\Sigma^{\oplus}\left|\mathrm{ST}^{\lambda^{\prime}}(\alpha)\right| \cdot[\lambda], \underset{\mu \vdash \mathrm{k}}{\Sigma^{\oplus}}\left|\mathrm{ST}^{\mu^{\prime}}(\beta)\right| \cdot[\mu]\right)} \\
& =\underset{\lambda, \mu}{\Sigma}\left|\mathrm{ST}^{\lambda^{\prime}}(\alpha)\right| \cdot\left|\mathrm{ST}^{\mu^{\prime}}(\beta)\right| \cdot \delta_{\lambda \mu} \\
& =\underset{\lambda \vdash \mathrm{k}}{\boldsymbol{\Sigma}}\left|\mathrm{ST}^{\lambda^{\prime}}(\alpha) \times \mathrm{ST}^{\lambda^{\prime}}(\beta)\right| \cdot
\end{aligned}
$$

($i\left(D_{1}, D_{2}\right)$ denotes the intertwining number of the two representations D_{1} and D_{2}.)

Thus pairs of tableaux of the same shape will be of importance.

A bitableau is a pair (S,T) of two tableaux of the same shape. If S (resp. T) has content α (resp. β) then (S, T) is said to have content (α, β). (S,T) is standard if both S and T are standard.

Let $B T(\alpha, \beta)$ (resp. SBT (α, β)) denote the set of all (resp. all standard) bitableaux of content (α, β).

So the main problem of this section will be to determine "natural" functions

$$
F: B T(\alpha, \beta) \longrightarrow R_{\alpha \beta}
$$

such that $\operatorname{SBT}(\alpha, \beta)$ is mapped by F onto an R-basis of $R_{\alpha \beta}$.

One can look upon these functions as a kind of alternation or symmetrization process, or suitable combinations of these processes. Let me begin with a pure alternation process.

I. Bideterminants.

Call

$$
\begin{aligned}
& \prod_{i=1}^{h} \operatorname{det}\left(\begin{array}{ccc}
\left(s_{i 1} \mid t_{i 1}\right) & \cdots & \left(s_{i 1} \mid t_{i \lambda_{i}}\right) \\
\cdot & \cdot \\
\cdot & \cdot \\
\left(s_{i \lambda_{i}} \mid t_{i 1}\right) & \ldots & \left(s_{i \lambda_{i}} \mid t_{i \lambda_{i}}\right)
\end{array}\right)
\end{aligned}
$$

the bideterminant associated to the λ-bitableau (S,T). If $\operatorname{SBD}(\alpha, \beta)$ denotes the set of all bideterminants which correspond to the standard bitableaux of content (α, β), the following theorem holds.

Theorem (Doubilet, Rota, Stein)
Let R be any commutative ring with unit element $1_{R} \neq 0$. Then

$$
\left.R_{\alpha \beta}=\ll \operatorname{SBD}(\alpha, \beta)>\right\rangle_{R}
$$

(See [DRS, DKR, CP, CEP, Cl III].)

The fact that $\operatorname{SBD}(\alpha, \beta)$ spans $R_{\alpha \beta}$ follows from a straightening algorithm, based on a generalized Laplace expansion. The linear independence of $\operatorname{SBD}(\alpha, \beta)$ results from certain nice properties of the so-called Capelli operators. These Capelli operators are suitable products of (set) polarization operators.

After this pure alternation process I now mention a pure symmetrization process.

II. Bipermanents.

To every λ-bitableau (S, T) of content (α, β) corresponds the following element of $R_{\alpha \beta}$, which I would like to call the bipermanent to (S, T) :

$$
\begin{aligned}
& \prod_{j=1}^{\lambda_{1}} \operatorname{per}\left(\begin{array}{ccc}
\left(s_{1 j} \mid t_{1 j}\right) & \cdots & \left(s_{1 j} \mid t_{\lambda^{\prime}{ }_{j}}\right) \\
\cdot & & \vdots \\
\cdot & & \cdot \\
\left(s_{\lambda^{\prime}{ }_{j} j} \mid t_{1_{j}}\right) & \cdots & \left(s_{\lambda_{j}^{\prime} j} \mid t_{\lambda_{j}{ }_{j}}\right)
\end{array}\right)
\end{aligned}
$$

Again there exists a generalized Laplace expansion, but some terms appear several times, so a straightening algorithm works only under suitable assumptions on R. To be more precise let r and t be non-negative integers, $r \leqq t$. Define the natural number $c_{r t}$ by

$$
c_{r t}:=\Sigma_{s=0}^{r}\binom{r}{s} \cdot\binom{t}{s}
$$

Theorem.
If all $c_{r t}-m u l t i p l e s ~ o f ~ 1_{R}$ with $r+t \leqq \max \left\{\alpha_{i}, \beta_{j}\right\}$ are invertible in R, then the standard bipermanents of content (α, β) form an R-basis of $R_{\alpha \beta}$.

Corollary

If Q is a subring of R s.t. $1_{Q}=1_{R}$ then the standard bipermanents form an R-basis of the letter place algebra $R_{m}{ }^{n}$.

A proof of the above theorem and more details about bipermanents can be found in [Cl IV].

In contrast to the results for bideterminants, the straightening of bipermanents is not "characteristic-free". The same is true for the following
III. Combinations of Symmetrization and Alternation Processes.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right) \vdash \mathrm{n}$.
$H(\lambda):=\left\{\sigma:(\lambda) \longrightarrow(\lambda) / \forall_{i} \forall_{j \leqq \lambda} \exists_{j} \quad \sigma((i, j))=\left(i, j^{\prime}\right)\right\}$ is the group of row (= horizontal) permutations, and
$V(\lambda):=\left\{\sigma:(\lambda) \longrightarrow(\lambda) /{ }_{j}{ }_{j} \forall_{i \leq \lambda_{j}^{\prime}} \exists_{i} \quad \sigma((i, j))=\left(i^{\prime}, j\right)\right\}$
is the group of column (= vertical) permutations with respect to (λ).

Recall that a λ-tableau is a mapping $T:(\lambda) \longrightarrow \mathbf{N}$. Hence the composition $T \circ \sigma, \sigma$ any permutation of (λ), is again a λ-tableau.

Two λ-tableaux S and S^{\prime} of the same content are said to be column-equivalent (for short: $S \underset{\mathcal{C}}{\sim} \mathbf{S}^{\prime}$) if there is a $\sigma \in V(\lambda)$
such that $\mathbf{S}^{\prime}=$ Soo.
NOw I can define to a λ-bitableau (S,T)
(1) the L-symmetrized bideterminant
$(\bar{S} \mid T):=\underset{S^{\prime}{\underset{C}{c}}^{\Sigma} \quad\left(S^{\prime} \mid T\right), ~}{T}$
(2) the P-symmetrized bideterminant

(3) the LP-symmetrized bideterminant

(4) the L-alternated bipermanent

(4) the p-alternated bipermanent
$(S \mid T)^{\#}:=\sum_{\tau \in H(\lambda)} \operatorname{sgn}(\tau)(S \mid T \circ \tau)^{\#}$, and
the LP-alternated bipermanent

By a simple computation one gets the following

Lemma
Let (S, T) be a λ-bitableau. Let $V(\lambda)_{T}:=\{\sigma \in V(\lambda) / T o \sigma=T\}$; so $V(\lambda)_{T}$ is the stabilizer subgroup of T in $V(\lambda)$. Then

$$
(S \mid T)^{\#}=\left|V(\lambda)_{T}\right| \cdot(S \mid T)
$$

i.e. the L-alternated bipermanent to (S,T) equals (up to the factor $\left.\left|V(\lambda)_{T}\right|\right)$ the $P-s y m m e t r i z e d$ bideterminant to (S,T). a According to [Cl I] straightening algorithms exist for all six classes of polynomials.

Now using Corollary 3.4 in [CEP] and results of section 4 in [Cl I] one easily gets the following

Theorem

If Q is a subring of R such that ${ }^{1} Q_{Q}=1_{R}$, then the elements of type (1),(2),(3),(4),(5) or (6) which correspond to the standard bitableaux form an R-basis of the polynomial ring $R_{m}{ }^{n}$.
§ 2 Applications in the Representation Theory of S_{n}
I. The Group Algebra of S_{n}.

Note that $S_{n} 3 \longmapsto\left(\begin{array}{c|c}\sigma(1) & 1 \\ \vdots & \vdots \\ \sigma(n) & n\end{array}\right) \quad$ (resp. $\quad \sigma \longmapsto\left(\begin{array}{c|c}1 & \sigma(1) \\ \vdots & \vdots \\ n & \sigma(n)\end{array}\right)$)
Yields an isomorphism $R\left[S_{n}\right] \xrightarrow{\simeq} R_{\left(1^{n}\right)\left(1^{n}\right)}$ of left (resp. right) $R\left[S_{n}\right]$-modules. Thus one can interpret elements of $R_{\left(1^{n}\right)\left(1^{n}\right)}$ as elements of the group algebra.

Theorem
(1) The standard bideterminants (resp. bipermanents) of content $\left(\left(1^{n}\right),\left(1^{n}\right)\right)$ form an R-basis of $R\left[S_{n}\right]$.
(No further assumptions on R are necessary!)
Now let R be a field, char $R \| n!$. Then $R\left[S_{n}\right]$ is semisimple and the following holds:
(2) $\quad R\left[S_{n}\right]=\Sigma_{\lambda \vdash n}^{\oplus} \sum_{S \in S T^{\top}}\left(1^{n}\right)<(S \mid T) / T \in S^{\lambda}\left(1^{n}\right) \gg R \quad$ is a direct decomposition of $R\left[S_{n}\right]$ into minimal right ideals $\ll(S \mid T) / T \in S T^{\lambda}\left(1^{n}\right)>_{R}$,
(3) $\quad R\left[S_{n}\right]=\Sigma_{\lambda \vdash n}^{\oplus} \sum_{T \in S T^{\top}}\left(1^{n}\right) \ll(S \mid T) / S \in S^{\lambda}\left(1^{n}\right) \ggg_{R} \quad$ is a direct decomposition of $R\left[S_{r_{1}}\right]$ into minimal left ideals, and
(4) $R\left[S_{n}\right]=\underset{\lambda \vdash n}{\Sigma^{\oplus}} \ll\left(T \mid T M / T, T \in S T^{\lambda}\left(1^{n}\right) \gg_{R}\right.$ is a direct decomposition of $R\left[S_{n}\right] i n t o$ minimal two-sided ideals.

ㅁ
More details can be found in [CL III, §7].
II. The Ordinary Irreducible Representations of S_{n}.

The map $(i \mid j) \longmapsto\left(X_{j}\right)^{i-1}$ extends to an epimorphism $F: R_{m}^{n} \longrightarrow R\left[X_{1}, \ldots, X_{n}\right]$ of (right) $R\left[S_{n}\right]-$ algebras and the right $R\left[S_{n}\right]$-module

$$
\varphi_{\lambda^{\prime}}(R) \quad:=\left(\begin{array}{cccc}
1 & 2 & \ldots & \lambda_{1} \\
1 & 2 & \ldots & \lambda_{2} \\
\vdots & & & \\
1 & 2 & \lambda_{1} & \lambda_{1} \\
\vdots & 1_{n} & \ldots & \lambda_{1}+\lambda_{1} \\
\vdots & \ldots & n
\end{array}\right) \cdot R\left[S_{n}\right]
$$

is mapped isomorphically onto the classical specht module involving Vandermonde determinants.

Theorem

Let R be a field, char $R \nmid n!$. Then $\left\{\mathscr{S}_{\lambda}(R) / \lambda \vdash n\right\}$ is a full set of pairwise inequivalent irreducible $R\left[S_{n}\right]$ --modules.
III. The Modular Irreducible Representations of S_{n}.

Let R be a field of prime characteristic $p, p \mid n!$.

Theorem

If $\lambda \vdash n$ is p-regular (i.e.: no p of the λ_{i} 's are equal) then $\mathcal{Y}_{\lambda^{\prime}}(R)$ has a unique minimal (non-zero) submodule:

$$
\oiint_{\lambda^{\prime}}(R):=\left(\begin{array}{cccc}
1 & 2 & \ldots & \lambda_{1} \\
1 & 2 & \ldots & \lambda_{2} \\
\vdots & & & \\
1 & 2 & \ldots & \lambda_{h}
\end{array} \begin{array}{|cccc}
1 & 2 & \ldots & \lambda_{1} \\
\lambda_{1}+1 & \ldots \lambda_{1}+\lambda_{2} \\
\vdots & \\
\ldots & \ldots & n
\end{array}\right] \cdot R\left[S_{n}\right]
$$

and $\left\{\mathscr{D}_{\lambda},(R) / \lambda \vdash n\right.$ p-regular\} is a full set of pairwise inequivalent irreducible right $R\left[S_{n}\right]$-modules. This result [Cl I] duals the following theorem of James.

Theorem [J]

If λ is p-regular then the specht module $\mathscr{\rho}_{\lambda}(R)$ has a unique maximal submodule $\mathcal{F}_{\lambda}(R)\left(\neq \mathcal{\rho}_{\lambda}(R)\right.$, and $\left\{\mathcal{J}_{\lambda}(R) / \mathcal{F}_{\lambda}(R) / \lambda \vdash n\right.$ p-regular\} is a full set of pairwise inequivalent irreducible right $R\left[S_{n}\right]$-modules. \quad.

In [Cl III] an algorithm for the computation of the matrices for the modular irreducible representations of the symmetric groups S_{n} has been developed. By hand I computed the matrices up to $n=5$ for all relevant primes. At the present we are writing a computer program for this algorithm.
IV. Various Module Constructions in the Language of Letter

Place Algebras

In this subsection I want to indicate how classical $S_{n}{ }^{-}$ module constructions can be expressed very naturally in terms of letter place algebras. Let me illustrate these constructions by examples.
(i) inner tensor products of Specht modules:

Example.

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 2 & 3 \\
1 & 2 & & 4 & 5 &
\end{array}\right) \cdot R\left[\mathrm{~S}_{5}\right] \otimes_{\mathrm{R}}\left(\begin{array}{ll|ll}
1 & 2 & 1 & 2 \\
1 & 2 & 3 & 4 \\
1 & & 5 &
\end{array}\right) \cdot \mathrm{R}\left[\mathrm{~S}_{5}\right] \stackrel{\sim}{=} \\
& \\
&
\end{aligned}<\left(\begin{array}{lll|l}
1 & 2 & 3 & \mathrm{~S} \\
1 & 2 & & \\
4 & 5 & \\
4 & 5 & \mathrm{~T} \\
4 & & \mathrm{~S} \in \mathrm{ST}
\end{array}\right.
$$

(ii) some induced modules:
$R \otimes_{R\left[S_{\alpha}\right]} R\left[S_{n}\right] \quad$ is isomorphic to $R{ }_{\left.\alpha(1)^{n}\right)}$ as well as to
the following example $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is an improper partition of n.

If $A S_{\alpha}$ denotes the sign-representation of the Young subgroup S_{α} then $A S_{\alpha} \otimes_{R\left[S_{\alpha}\right]} R\left[S_{n}\right]$ is isomorphic to (1 $\left.2 \ldots n \mid 12 \ldots n\right) \cdot R_{\alpha\left(1 n^{n}\right)}^{n}$ as well as to

$$
\left(\begin{array}{cccc|ccc}
1 & \ldots & \ldots & \ldots & \alpha_{1} & \begin{array}{cccc}
1 & 2 & \ldots & \ldots
\end{array} \alpha_{1} \\
\alpha_{1}+1 & \ldots & \alpha_{1}+\alpha_{2} & \alpha_{1}+1 & \ldots & \cdot \alpha_{1}+\alpha_{2} \\
\ldots & \ldots & \ldots & & \ldots &
\end{array}\right) \cdot R\left[s_{n}\right]
$$

In an extrem simple way one can define
(iii) $R\left[S_{n}\right]$-modules to skew tableaux:

Let $\lambda \vdash n_{1}$ and $\mu \vdash n_{2}$. If (λ) is a subset of $(\mu),(\mu) \backslash(\lambda)$ is called
a skew diagram, and a mapping $T:(\mu) \backslash(\lambda) \longrightarrow \mathbf{N}$ is a skew
tableau of shape $\mu \backslash \lambda$. The notion of bitableau (resp. bideterminant) is easily generalized to skew bitableau (resp. skew bideterminant).

To every skew tableau with n entries belongs an $R\left[S_{n}\right]$-module.

Example.

$$
=\left(\begin{array}{lll|lll}
1 & 3 & 4 & 1 & 2 & 3 \\
1 & 2 & & 4 & 5 & \\
2 & 4 & & 6 & 7 & \\
2 & 6 & & 8 & 9
\end{array}\right) \cdot \mathrm{R}\left[\mathrm{~S}_{9}\right]
$$

As a special case of (iii) let me mention

(iv) Littlewood-Richardson products:

These are modules of the following type.
If $\lambda \vdash n_{1}$ and $\mu \vdash n_{2}$ then $\left(\varphi_{\lambda}(R) \# \varphi_{\mu}(R)\right) \otimes_{R}\left[S_{n_{1}} \times S_{n_{2}}\right] R\left[S_{n_{1}}+n_{2}\right]$
is the Littlewood-Richardson product with respect to the partitions λ and μ. (\# denotes the outer tensor product, see [CR].)

Example.

A Specht series of an $R\left[S_{n}\right]$-module M is a chain $M=M_{1}>M_{2}>\ldots>M_{r+1}=0$ of $R\left[S_{n}\right]$-submodules M_{i}, where each factor M_{i} / M_{i+1} is isomorphic to a specht module ${\underset{\lambda}{ }(i)}_{(R)}^{(R)}$ (i=1, ...,r).

Letter place algebras are an efficient tool to construct Specht series for some classes of $R\left[S_{n}\right]$-modules in a very homogeneous and systematic way (see [C1 II]); examples are certain induced and subduced $R\left[S_{n}\right]$-modules, tensor spaces, and last but not least one gets a characteristic-free version of the classical Littlewood-Richardson rule in a module theoretical setting.

Theorem [Cl II]
Specht series for Littlewood Richardson products can be constructed explicitly.
\square

The proof of this theorem shows a close connection between
(i) lattice permutations,
(ii) symmetrized bideterminants, and
(iii) Capelli operators to skew tableaux.

Final Remarks

Similar results hold for the general linear groups.

Extending the letter place algebra concept to letter place spaces of formal power series one can construct series of infinite-dimensional irreducible representations for the countable infinite symmetric group (see [Cl v]).

M. CLAUSEN

References.

[Cl I] M. CLAUSEN, Letter Place Algebras and a Characteristic--Free Approach to the Representation Theory of the General Linear and Symmetric Groups, I, Advances in Math. 33 (1979), 161-191.
[Cl II] dto., II , Advances in Math., to appear.
[Cl III] M. CLAUSEN, Letter-Place-Algebren und ein charakteris-tik-freier Zugang zur Darstellungstheorie symmetrischer und voller linearer Gruppen, Bayreuther Mathematische Schriften, Heft 4 (1980).
[Cl IV] M. CLAUSEN, Straightening Formulae for Ordinary and Alternated Bipermanents (in preparation).
[Cl V] M. CLAUSEN, On the Representation Theory of the Countable Infinite Symmetric Group (in preparation).
[CEP]
C. De CONCINI/ D. EISENBUD/ C. PROCESI, Young Diagrams and Determinantal Varieties, Inventiones math. 56 (1980), 129-165.
[CP] C. De CONCINI/ C. PROCESI, A Characteristic-Free Approach to Invariant Theory, Advances in Math. 21 (1976), 330-354.
[CR] C.W. CURTIS/ I. REINER, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers; New York, London, Sydney, 1962.
[DKR] J. DÉSARMENIEN/ J.P.S. KUNG/ G.-C. ROTA, Invariant Theory, Young Bitableaux and Combinatorics, Advances in Math. 27 (1978), 63-92.
[DRS] P. DOUBILET/ G.-C. ROTA/ J. STEIN, On the Foundations of Combinatorial Theory: IX. Combinatorial Methods in Invariant Theory, Stud. Appl. Math. 53 (1974), 185-216.
[J] G.D. JAMES, The Irreducible Representations of the Symmetric Groups, Bull. London Math. Soc. 8 (1976), 229-232.
[RD] G.-C.ROTA/ J. DÉSARMÉNIEN, Théorie Combinatoire des Invariants Classiques, Series de Mathématique Pures et Appliquées, IRMA, Strasbourg, 1977.

