Astérisque

MICHAEL CLAUSEN

A constructive polynomial method in the representation theory of symmetric groups

Astérisque, tome 87-88 (1981), p. 61-77 http://www.numdam.org/item?id=AST 1981 87-88 61 0>

© Société mathématique de France, 1981, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A CONSTRUCTIVE POLYNOMIAL METHOD IN THE REPRESENTATION THEORY OF SYMMETRIC GROUPS

Michael Clausen, Lehrstuhl II für Mathematik, Universität Bayreuth, D-8580 Bayreuth, West Germany

During the last few years polynomial rings in double--indexed indeterminates have been investigated for quite different reasons. In this note I would like to report about these polynomial rings from the viewpoint of the representation theory of symmetric groups.

§ 1 Letter Place Algebras

Let R be a commutative ring with unit element $1 = 1_R \neq 0$, and let $m, n \in \mathbb{N} := \{1, 2, ...\}$. The polynomial ring

$$R_m^n := R[X_{ij} / i=1,...,m; j=1,...,n]$$

in the m·n indeterminates $X_{ij} =: (i|j) - i$ is the <u>letter</u> and j the <u>place index</u> - is called the <u>letter place algebra</u> in m letters and n places [DKR,p.66].

The double indication of the indeterminates makes it possible to associate to a monomial

$$x_{i_{1}j_{1}} \cdot \ldots \cdot x_{i_{k}j_{k}} =: \begin{pmatrix} i_{1} & j_{1} \\ \vdots & \vdots \\ i_{k} & j_{k} \end{pmatrix} \qquad (of \underline{total} \underline{degree} k)$$

the <u>letter-content</u> $\alpha = (\alpha_1, \dots, \alpha_m), \alpha_i := |\{\nu / i_{\nu} = i\}|,$ the <u>place-content</u> $\beta = (\beta_1, \dots, \beta_n), \beta_j := |\{\nu / j_{\nu} = j\}|,$ and the <u>content</u> $(\alpha, \beta).$ Hence the letter- (resp. place-) content of a monomial of total degree k is an <u>improper partition</u> of k, i.e. α (resp. β) is a sequence of non-negative integers which sum up to k. Let me write $\alpha \models k$ and $\beta \models k$, for short.

By homogeneity conditions with respect to monomials the letter place algebra R_m^n can be decomposed into finite--dimensional R-subspaces $R_{\alpha\beta}$:

$$R_{m}^{n} = \sum_{k \ge 0}^{\Phi} \sum_{\alpha = (\alpha_{1}, \dots, \alpha_{m}) \models k}^{\alpha \beta} R_{\alpha \beta}$$

$$\beta = (\beta_{1}, \dots, \beta_{n}) \models k$$

where $R_{\alpha\,\beta}$ is defined to be the span of the monomials of content $(\alpha\,,\beta)\,.$

(In the sequel V = B R means: B is an R-basis of V.) Example.

$$\mathbb{R}_{(1,2,1)(2,2)} = \ll \begin{pmatrix} 1 & | & 1 \\ 2 & | & 2 \\ 3 & | & 2 \end{pmatrix}, \begin{pmatrix} 1 & | & 1 \\ 2 & | & 2 \\ 3 & | & 2 \end{pmatrix}, \begin{pmatrix} 1 & | & 2 \\ 2 & | & 2 \\ 3 & | & 1 \end{pmatrix}, \begin{pmatrix} 1 & | & 2 \\ 2 & | & 1 \\ 3 & | & 2 \end{pmatrix}, \begin{pmatrix} 1 & | & 2 \\ 2 & | & 1 \\ 2 & | & 2 \\ 3 & | & 1 \end{pmatrix} \gg_{\mathbb{R}}$$

The general linear group GL(m,R) acts from the left, and GL(n,R) acts from the right on R_m^n , and these actions induce algebra-automorphisms of R_m^n :

For all
$$(a_{rs})$$
 in $GL(m,R)$, all (b_{uv}) in $GL(n,R)$ and all
monomials $\prod(i|j)^{C_{ij}}$ in R_m^n put
 i,j
 $(a_{rs}) \cdot \prod_{i,j} (i|j)^{C_{ij}} := \prod_{i,j} (\sum_{k=ki}^{n} a_{ki}(k|j))^{C_{ij}}$
 $\prod_{i,j} (i|j)^{C_{ij}} \cdot (b_{uv}) := \prod_{i,j} (\sum_{k=ki}^{n} b_{jh}(i|h))^{C_{ij}}$.

REPRESENTATION THEORY OF SYMMETRIC GROUPS

Moreover this yields a (GL(m,R),GL(n,R))-bimodule structure on R_m^n .

The symmetric group S_n is embedded into GL(n,R) via permutation matrices.

The spaces $R_{\alpha\beta}$ can be interpreted in a representation theoretical way.

Theorem [Cl I, p. 168]

$$\mathbb{R}_{\alpha\beta} \stackrel{\simeq}{=} \mathbb{H}_{R} \mathbb{H}_{R[S_{k}]} (\mathbb{R}[S_{k}] \mathcal{Q}_{R[S_{\alpha}]}^{R}, \mathbb{R}[S_{k}] \mathcal{Q}_{R[S_{\beta}]}^{R})$$

Here S_{α} (resp. S_{β}) denotes the Young-subgroup to $\alpha \models k$ (resp. $\beta \models k$).

Hence the $R_{\alpha\beta}$ are intertwining spaces, and Mackey's Intertwining Number Theorem (see e.g. [CR, § 44]) suggests to deal with the question:

Are there any R-bases of $R_{\alpha\,\beta}$ which are of representation theoretical interest?

Before I start answering this question, let me recall some notations.

 $\begin{array}{l} \lambda \ = \ (\lambda_1,\ldots,\lambda_h) \ \text{is a } (\underline{\text{proper}}) \ \underline{\text{partition}} \ \text{of } n \ (\text{for short:} \\ \lambda \ \vdash \ n), \ \text{if } \lambda \ \text{is a non-increasing sequence of strictly positive integers which sum up to } n. \ \lambda' \ = \ (\lambda'_1,\lambda'_2,\ldots), \ \text{the} \\ \underline{\text{associated partition}} \ \text{to } \lambda, \ \text{is defined by } \lambda'_i \ := \ |\{j/\lambda_j \ge i\}|. \\ [\text{It is well-known that the (proper) partitions of n parametrize the conjugacy classes of } S_n \ \text{as well as the classes} \\ \text{of ordinary irreducible representations of } S_n.] \end{array}$

h (λ) := $\bigcup_{i=1}^{h} \{(i,1),\ldots,(i,\lambda_i)\}$ is the <u>Young-diagram</u> associated to the partition $\lambda = (\lambda_1, \dots, \lambda_h)$. A <u> λ -tableau</u> T (or a tableau of shape λ) is a mapping T : $(\lambda) \longrightarrow \mathbb{N}$. One can illustrate such a tableau T in the following way $t_{11} t_{12} \cdots t_{1\lambda_1}$ $T = \begin{bmatrix} t_{21} & t_{22} & \cdots & t_{1\lambda} \\ t_{21} & t_{22} & \cdots & t_{2\lambda_2} \\ \vdots \end{bmatrix}$ (t_{ij} := T((i,j))), $t_{h1} t_{h2} \cdots t_{h\lambda_h}$ and it is clear how to define the i-th row and the j-th <u>column</u> of a tableau $T = (t_{ij})$. T is said to be standard if the elements in each row of T are strictly increasing from left to right and are non--decreasing down the columns. $c(T) := (c_1(T), c_2(T), ...), c_k(T) := |\{(i,j) / t_{ij}=k\}|, is$ the content of T. Example. The tableau T = 123 is standard and 2 $c(T) = (2,3,1,1,0,\ldots).$ Let $ST^{\lambda}(\alpha)$ denote the set of all <u>S</u>tandard <u>T</u>ableaux of shape λ and of content α .

To get a representation theoretical description of the R-dimension ($R_{\alpha\beta}:R$) of $R_{\alpha\beta}$ let me remind you of

Young's Rule.

The multiplicity of the irreducible representation $[\lambda]$ of S_k , $\lambda \vdash k$, in $\mathbb{C}[S_k] \otimes_{\mathbb{C}}[S_{\alpha}]^{\mathbb{C}}$ is just $|ST^{\lambda'}(\alpha)|$, i.e.:

$$\mathbf{C}[\mathbf{S}_{\mathbf{k}}] \boldsymbol{\mathbf{\otimes}}_{\mathbf{C}}[\mathbf{S}_{\alpha}]^{\mathbf{C}} \sim \sum_{\lambda \vdash \mathbf{k}}^{\boldsymbol{\oplus}} |\mathbf{S}\mathbf{T}^{\lambda'}(\alpha)| \cdot [\lambda]$$

As $(R_{\alpha\beta}:R) = (C_{\alpha\beta}:C)$ (monomials!), one gets $(R_{\alpha\beta}:R) = i(\Sigma^{\bigoplus} | ST^{\lambda'}(\alpha)| \cdot [\lambda], \Sigma^{\bigoplus} | ST^{\mu'}(\beta)| \cdot [\mu])$ $= \sum_{\lambda, \mu} |ST^{\lambda'}(\alpha)| \cdot |ST^{\mu'}(\beta)| \cdot \delta_{\lambda\mu}$ $= \sum_{\lambda \vdash \mathbf{k}} | \mathbf{ST}^{\lambda^{\dagger}}(\alpha) \times \mathbf{ST}^{\lambda^{\dagger}}(\beta) | .$

($i(D_1,D_2)$ denotes the intertwining number of the two representations D1 and D2.) Thus pairs of tableaux of the same shape will be of importance.

A bitableau is a pair (S,T) of two tableaux of the same shape. If S (resp. T) has content α (resp. β) then (S,T) is said to have content (α,β) . (S,T) is standard if both S and T are standard.

Let BT(α , β) (resp. SBT(α , β)) denote the set of all (resp. all standard) bitableaux of content (α, β) .

So the main problem of this section will be to determine "natural" functions $F : BT(\alpha, \beta) \longrightarrow R_{\alpha\beta}$

such that SBT(α, β) is mapped by F onto an R-basis of $R_{\alpha\beta}$.

One can look upon these functions as a kind of alternation or symmetrization process, or suitable combinations of these processes. Let me begin with a pure alternation process.

M. CLAUSEN

I. Bideterminants.

Call

$$\begin{pmatrix} \mathbf{s}_{11}\cdots\cdots\mathbf{s}_{1\lambda_{1}} \\ \vdots & \mathbf{s}_{1}\cdots\mathbf{s}_{1\lambda_{1}} \\ \mathbf{s}_{i1}\cdots\mathbf{s}_{i\lambda_{i}} \\ \vdots & \mathbf{s}_{h1}\cdots\mathbf{s}_{h\lambda_{h}} \end{pmatrix}^{\mathsf{t}_{11}\cdots\cdots\mathbf{t}_{1\lambda_{1}}} = (\mathbf{S}|\mathbf{T}) := \\ \frac{\mathbf{h}}{|\mathbf{I}|} \det \begin{pmatrix} (\mathbf{s}_{i1}|\mathbf{t}_{i1})\cdots(\mathbf{s}_{i1}|\mathbf{t}_{i\lambda_{i}}) \\ \mathbf{s}_{i1}\cdots\mathbf{s}_{h\lambda_{h}} \end{pmatrix}^{\mathsf{t}_{i1}\cdots\mathbf{s}_{h\lambda_{h}}} \end{pmatrix} = (\mathbf{S}|\mathbf{T}) := \\ \frac{\mathbf{h}}{|\mathbf{I}|} \det \begin{pmatrix} (\mathbf{s}_{i1}|\mathbf{t}_{i1})\cdots(\mathbf{s}_{i1}|\mathbf{t}_{i\lambda_{i}}) \\ \mathbf{s}_{i1}\cdots\mathbf{s}_{i\lambda_{i}} \\ \mathbf{s}_{i\lambda_{i}}|\mathbf{s}_{i1}\cdots\mathbf{s}_{i\lambda_{i}}|\mathbf{s}_{i\lambda_{i}} \end{pmatrix}$$

the <u>bideterminant</u> associated to the λ -bitableau (S,T). If SBD(α , β) denotes the set of all bideterminants which correspond to the standard bitableaux of content (α , β), the following theorem holds.

<u>Theorem</u> (Doubilet, Rota, Stein) Let R be any commutative ring with unit element $1_R \neq 0$. Then

$$R_{\alpha\beta} = \ll SBD(\alpha,\beta) \gg_{R}$$

(See [DRS, DKR, CP, CEP, Cl III].)

The fact that SBD(α,β) spans $R_{\alpha\beta}$ follows from a straightening algorithm, based on a generalized Laplace expansion. The linear independence of SBD(α,β) results from certain nice properties of the so-called Capelli operators. These Capelli operators are suitable products of (set) polarization operators. After this pure alternation process I now mention a pure symmetrization process.

II. Bipermanents.

To every λ -bitableau (S,T) of content (α , β) corresponds the following element of R_{$\alpha\beta$}, which I would like to call the bipermanent to (S,T):

$$\begin{pmatrix} \mathbf{s}_{11} \cdots \mathbf{s}_{1j} \cdots \mathbf{s}_{1\lambda_1} \\ \mathbf{s}_{21} \cdots \mathbf{s}_{2j} \cdots \mathbf{s}_{2\lambda_2} \\ \vdots \\ \mathbf{s}_{h1} \cdots \mathbf{s}_{h\lambda_h} \end{pmatrix}^{\mathbf{t}_{11} \cdots \mathbf{t}_{1j} \cdots \mathbf{t}_{1\lambda_1} \\ \mathbf{t}_{21} \cdots \mathbf{t}_{2j} \cdots \mathbf{t}_{2\lambda_2} \\ \vdots \\ \mathbf{t}_{h1} \cdots \mathbf{t}_{h\lambda_h} \end{pmatrix}^{\mathbf{t}_{h1}} = (S|\mathbf{T})^{\mathbf{t}} :=$$

$$\overset{\lambda_{1}}{\underset{j=1}{\square}} \operatorname{per} \begin{pmatrix} (s_{1j}|t_{1j}) & \dots & (s_{1j}|t_{\lambda'_{j}j}) \\ \vdots & & \vdots \\ \vdots & & \vdots \\ (s_{\lambda'_{j}j}|t_{1j}) & \dots & (s_{\lambda'_{j}j}|t_{\lambda'_{j}j}) \end{pmatrix}$$

Again there exists a generalized Laplace expansion, but some terms appear several times, so a straightening algorithm works only under suitable assumptions on R. To be more precise let r and t be non-negative integers, $r \leq t$. Define the natural number c_{rt} by

$$c_{rt} := \Sigma_{s=0}^{r} {r \choose s} \cdot {t \choose s}$$
.

Theorem.

If all c_{rt} -multiples of 1_R with $r+t \le \max\{\alpha_i, \beta_j\}$ are invertible in R, then the standard bipermanents of content (α, β) form an R-basis of $R_{\alpha\beta}$.

M. CLAUSEN

Corollary

If Q is a subring of R s.t. $1_Q = 1_R$ then the standard bipermanents form an R-basis of the letter place algebra R_m^n .

A proof of the above theorem and more details about bipermanents can be found in [Cl IV].

In contrast to the results for bideterminants, the straightening of bipermanents is not "characteristic-free". The same is true for the following

III. Combinations of Symmetrization and Alternation Processes.

Let $\lambda = (\lambda_1, \dots, \lambda_h) \vdash n$. $H(\lambda) := \{\sigma: (\lambda) \rightarrow (\lambda) / \forall_i \forall_{j \leq \lambda_i} \exists_j, \sigma((i,j)) = (i,j')\}$ is the group of <u>row (=horizontal) permutations</u>, and $V(\lambda) := \{\sigma: (\lambda) \rightarrow (\lambda) / \forall_j \forall_{i \leq \lambda_j} \exists_i, \sigma((i,j)) = (i',j)\}$ is the group of <u>column (=vertical) permutations</u> with respect to (λ) . Recall that a λ -tableau is a mapping $T: (\lambda) \rightarrow N$. Hence the composition $T \circ \sigma$, σ any permutation of (λ) , is again a λ -tableau. Two λ -tableau S and S' of the same content are said to be <u>column-equivalent</u> (for short: $S \gtrsim S'$) if there is a $\sigma \in V(\lambda)$ such that $S' = S \circ \sigma$. Now I can define to a λ -bitableau (S,T) (1) the <u>L-symmetrized bideterminant</u> $([\overline{S} | T) := \sum_{S' \atop C} (S' | T)$,

(2) the <u>P-symmetrized</u> <u>bideterminant</u>

$$(S | T) := \sum_{T_{C} T} (S | T') ,$$

$$(3) the LP-symmetrized bideterminant$$

$$(S | T) := \sum_{S'_{C} S} T'_{C} T (S' | T') ,$$

$$(4) the L-alternated bipermanent$$

$$(S | T)^{\ddagger} := \sum_{\sigma \in H(\lambda)} sgn(\sigma) (S \circ \sigma | T)^{\ddagger} ,$$

$$(4) the P-alternated bipermanent$$

$$(S | T)^{\ddagger} := \sum_{\tau \in H(\lambda)} sgn(\tau) (S | T \circ \tau)^{\ddagger} , and$$

$$(6) the LP-alternated bipermanent$$

$$(S | T)^{\ddagger} := \sum_{\sigma \in H(\lambda)} sgn(\sigma \tau) (S \circ \sigma | T \circ \tau)^{\ddagger} .$$

By a simple computation one gets the following

Lemma

Let (S,T) be a λ -bitableau. Let V(λ)_T := { $\sigma \in V(\lambda)/T \circ \sigma = T$ }; so V(λ)_T is the stabilizer subgroup of T in V(λ). Then

$$(\mathbf{S} | \mathbf{T})^{\texttt{\#}} = | \mathbf{V}(\lambda)_{\mathbf{T}} | \cdot (\mathbf{S} | \mathbf{T}) ;$$

i.e. the L-alternated bipermanent to (S,T) equals (up to the factor $|V(\lambda)_T|$) the P-symmetrized bideterminant to (S,T).

According to [Cl I] straightening algorithms exist for all six classes of polynomials.

Now using Corollary 3.4 in [CEP] and results of section 4 in [Cl I] one easily gets the following

Theorem

If Q is a subring of R such that $1_Q = 1_R$, then the elements of type (1), (2), (3), (4), (5) or (6) which correspond to the standard bitableaux form an R-basis of the polynomial ring R_m^n .

§ 2 Applications in the Representation Theory of S_n

I. The Group Algebra of S_n.

Note that
$$S_n \ni \sigma \longmapsto \begin{pmatrix} \sigma(1) & | \\ \vdots & | \\ \sigma(n) & n \end{pmatrix}$$
 (resp. $\sigma \longmapsto \begin{pmatrix} 1 & \sigma(1) \\ \vdots & \vdots \\ n & \sigma(n) \end{pmatrix}$)

yields an isomorphism $R[S_n] \xrightarrow{\simeq} R$ of left (resp. (1ⁿ)(1ⁿ) right) $R[S_n]$ -modules. Thus one can interpret elements of R as elements of the group algebra. (1ⁿ)(1ⁿ)

Theorem

(No further assumptions on R are necessary!)

Now let R be a field, char R $\not|$ n!. Then R[S_n] is semisimple and the following holds:

- (2) $R[S_n] = \sum_{\lambda \vdash n} \sum S \in S^{\oplus} \langle (S \mid T) / T \in ST^{\lambda}(1^n) \rangle_R$ is a direct decomposition of $R[S_n]$ into minimal right ideals $\langle (S \mid T) / T \in ST^{\lambda}(1^n) \rangle_R$,
- (3) $R[S_n] = \sum_{\lambda \vdash n}^{\Phi} \sum_{T \in ST^{\lambda}(1^n)}^{\Phi} \ll (S \mid \underline{T}) / S \in ST^{\lambda}(1^n) \gg_{R}$ is a direct decomposition of $R[S_n]$ into minimal left ideals, and

(4) $R[S_n] = \sum_{\lambda \vdash n} \Phi \ll (S \mid T) / S, T \in ST^{\lambda}(1^n) \gg_R$ is a direct decomposition of $R[S_n]$ into minimal two-sided ideals.

More details can be found in [CL III, §7].

II. The Ordinary Irreducible Representations of S_n.

The map $(i|j) \longrightarrow (X_j)^{i-1}$ extends to an epimorphism $F : R_m^n \longrightarrow R[X_1, \dots, X_n]$ of (right) $R[S_n]$ -algebras and the right $R[S_n]$ -module

$$\boldsymbol{\mathcal{Y}}_{\lambda}(\mathbf{R}) := \begin{pmatrix} 1 & 2 & \cdots & \lambda \\ 1 & 2 & \cdots & \lambda \\ \vdots & & & \\ 1 & 2 & \cdots & \lambda_{n} \\ \vdots & & & \\ 1 & 2 & \cdots & n \end{pmatrix} \cdot \mathbf{R}[\mathbf{S}_{n}]$$

is mapped isomorphically onto the classical Specht module involving Vandermonde determinants.

Theorem

Let R be a field, char R / n! . Then $\{\mathbf{J}_{\lambda}(R) / \lambda \vdash n\}$ is a full set of pairwise inequivalent irreducible $R[S_n]$ --modules.

III. The Modular Irreducible Representations of S_n.

Let R be a field of prime characteristic p, p $\mid n!$.

Theorem

If $\lambda \vdash n$ is <u>p-regular</u> (i.e.: no p of the λ_i 's are equal) then $\mathbf{y}_{\lambda}(\mathbf{R})$ has a unique minimal (non-zero) submodule:

and { $\mathfrak{Z}_{\lambda_{I}}(\mathbb{R}) / \lambda \vdash n p-regular$ } is a full set of pairwise inequivalent irreducible right $\mathbb{R}[S_{n}]$ -modules.

Theorem [J]

If λ is p-regular then the Specht module $\mathcal{Y}_{\lambda}(R)$ has a unique maximal submodule $\mathcal{F}_{\lambda}(R)$ (\neq $\mathcal{Y}_{\lambda}(R)$) and $\{\frac{\mathcal{Y}_{\lambda}(R)}{\mathcal{F}_{\lambda}(R)}/\mathcal{F}_{\lambda}(R)$ / $\lambda \vdash n$ p-regular} is a full set of pairwise inequivalent irreducible right $R[S_n]$ -modules.

In [Cl III] an algorithm for the computation of the matrices for the modular irreducible representations of the symmetric groups S_n has been developed. By hand I computed the matrices up to n = 5 for all relevant primes. At the present we are writing a computer program for this algorithm.

IV. Various Module Constructions in the Language of Letter

Place Algebras

In this subsection I want to indicate how classical $S_n^$ module constructions can be expressed very naturally in terms of letter place algebras. Let me illustrate these constructions by examples.

(i) inner tensor products of Specht modules:

Example.

(ii) <u>some induced modules</u>:

$$\begin{array}{c|c} R & \boldsymbol{\mathfrak{Q}}_{R[S_{\alpha}]} R[S_{n}] & \text{is isomorphic to } R \\ & & \alpha(1^{n}) \end{array} & \text{as well as to} \\ \\ \begin{pmatrix} 1 & \alpha_{1}+1 & \cdots & \cdot \\ 2 & \vdots & \vdots \\ \vdots & \alpha_{1}+\alpha_{2} & n \\ \alpha_{1} & \alpha_{1} & \alpha_{1} \end{array} & \begin{array}{c} 1 & \alpha_{1}+1 & \cdots & \cdot \\ 2 & \vdots & \vdots & \vdots \\ \vdots & \alpha_{1}+\alpha_{2} & n \\ \alpha_{1} & \alpha_{1} & \alpha_{1} \end{array} & \begin{array}{c} R[S_{n}] & \text{; here and in} \end{array} \\ \end{array}$$

the following example $\alpha = (\alpha_1, \alpha_2, ...)$ is an improper partition of n.

If AS_{α} denotes the sign-representation of the Young subgroup S_{α} then $AS_{\alpha} \otimes_{R[S_{\alpha}]} R[S_{n}]$ is isomorphic to (1 2 ... n|1 2 ... n) $R_{\alpha(1^{n})}$ as well as to

.

$\begin{pmatrix} 1 & 2 & \cdots & \alpha_1 \\ \alpha_1 + 1 & \cdots & \alpha_1 + \alpha_2 \\ \cdots & \cdots & \cdots \end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & \cdots & \alpha_1 \\ \alpha_1 + 1 & \cdots & \alpha_1 + \alpha_2 \\ \cdots & \cdots & \ddots \end{pmatrix} \cdot \mathbb{R}[S_n] \cdot R$
	n/

In an extrem simple way one can define

(iii) $R[S_n]$ -modules to skew tableaux:

Let $\lambda \vdash n_1$ and $\mu \vdash n_2$. If (λ) is a subset of (μ) , $(\mu) \setminus (\lambda)$ is called a skew diagram, and a mapping T : $(\mu) \setminus (\lambda) \longrightarrow \mathbb{N}$ is a <u>skew</u>

M. CLAUSEN

tableau of shape $\mu \setminus \lambda$. The notion of bitableau (resp. bideterminant) is easily generalized to skew bitableau (resp. skew bideterminant).

To every skew tableau with n entries belongs an $R[S_n]$ -module.

Example.

$$\begin{pmatrix} 2 & 6 & 8 & 9 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & & 1 & 2 & \\ 2 & 4 & & 3 & 4 & \end{pmatrix} \cdot R[S_9] = \begin{pmatrix} 2 & 6 & 8 & 9 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & & 1 & 2 \\ 2 & 4 & & 3 & 4 & \end{pmatrix} \cdot R[S_9]$$

$$= \begin{pmatrix} 1 & 3 & 4 & | & 1 & 2 & 3 \\ 1 & 2 & | & 4 & 5 \\ 2 & 4 & | & 6 & 7 \\ 2 & 6 & | & 8 & 9 \end{pmatrix} \cdot \mathbb{R}[S_9] .$$

As a special case of (iii) let me mention

(iv) Littlewood-Richardson products:

These are modules of the following type. If $\lambda \vdash n_1$ and $\mu \vdash n_2$ then $(\mathscr{I}_{\lambda}(R) \# \mathscr{I}_{\mu}(R)) \otimes_{R[S_{n_1} \times S_{n_2}]^{R[S_{n_1} + n_2}]$ is the <u>Littlewood-Richardson product</u> with respect to the partitions λ and μ . (# denotes the outer tensor product, see [CR].)

Example.

$$\begin{pmatrix} 4 & 5 & 6 & 7 \\ 4 & 5 & 8 & 9 \\ 4 & 5 & 10 & 11 \\ 1 & 2 & 3 & 1 & 2 & 3 \\ 1 & 2 & 4 & 5 \end{pmatrix} \cdot \mathbb{R}[S_{11}] \cong (\mathcal{Y}_{(2,2,1)}(R) \# \mathcal{Y}_{(3,3)}(R)) \otimes_{\mathbb{R}[S_5 \times S_6]}\mathbb{R}[S_{11}]$$

V. Specht Series.

A <u>Specht series</u> of an $R[S_n]$ -module M is a chain $M = M_1 > M_2 > \dots > M_{r+1} = 0$ of $R[S_n]$ -submodules M_i , where each factor M_i/M_{i+1} is isomorphic to a Specht module $\mathcal{Y}_{\lambda}(i)$ (R) $(i=1,\dots,r)$.

Letter place algebras are an efficient tool to construct Specht series for some classes of $R[S_n]$ -modules in a very homogeneous and systematic way (see [Cl II]); examples are certain induced and subduced $R[S_n]$ -modules, tensor spaces, and last but not least one gets a characteristic-free version of the classical Littlewood-Richardson rule in a module theoretical setting.

Theorem [Cl II] Specht series for Littlewood Richardson products can be constructed explicitly.

The proof of this theorem shows a close connection between

- (i) lattice permutations,
- (ii) symmetrized bideterminants, and
- (iii) Capelli operators to skew tableaux.

Final Remarks

Similar results hold for the general linear groups.

Extending the letter place algebra concept to letter place spaces of formal power series one can construct series of infinite-dimensional irreducible representations for the countable infinite symmetric group (see [Cl V]).

References.

- [Cl I] M. CLAUSEN, Letter Place Algebras and a Characteristic--Free Approach to the Representation Theory of the General Linear and Symmetric Groups, I, <u>Advances in</u> Math. 33 (1979), 161-191.
- [Cl II] dto., II, <u>Advances</u> in <u>Math.</u>, to appear.
- [C1 III] M. CLAUSEN, Letter-Place-Algebren und ein charakteristik-freier Zugang zur Darstellungstheorie symmetrischer und voller linearer Gruppen, <u>Bayreuther Mathema-</u> tische Schriften, Heft 4 (1980).
- [Cl IV] M. CLAUSEN, Straightening Formulae for Ordinary and Alternated Bipermanents (in preparation).
- [C1 V] M. CLAUSEN, On the Representation Theory of the Countable Infinite Symmetric Group (in preparation).
- [CEP] C. DE CONCINI/ D. EISENBUD/ C. PROCESI, Young Diagrams and Determinantal Varieties, <u>Inventiones math.</u> <u>56</u> (1980), 129-165.
- [CP] C. DE CONCINI/ C. PROCESI, A Characteristic-Free Approach to Invariant Theory, <u>Advances in Math. 21</u> (1976), 330-354.
- [CR] C.W. CURTIS/ I. REINER, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers; New York, London, Sydney, 1962.
- [DKR] J. DÉSARMÉNIEN/ J.P.S. KUNG/ G.-C. ROTA, Invariant Theory, Young Bitableaux and Combinatorics, <u>Advances</u> <u>in Math.</u> <u>27</u> (1978), 63-92.

REPRESENTATION THEORY OF SYMMETRIC GROUPS

- [DRS] P. DOUBILET/ G.-C. ROTA/ J. STEIN, On the Foundations of Combinatorial Theory: IX. Combinatorial Methods in Invariant Theory, <u>Stud. Appl. Math.</u> <u>53</u> (1974), 185-216.
- [J] G.D. JAMES, The Irreducible Representations of theSymmetric Groups, Bull. London Math. Soc. 8 (1976), 229-232.
- [RD] G.-C.ROTA/ J. DÉSARMÉNIEN, Théorie Combinatoire des Invariants Classiques, Series de Mathématique Pures et Appliquées, IRMA, Strasbourg, 1977.