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DIFFERENTIAL OPERATORS ON THE FLAG VARIETIES 

by J. L. BRYLINSKI 

Lecture given at the Conference on "Young tableaux and Schur functors 

in Algebra and Geometry", held at Toxun (Poland ) (27 August-3 September 

1980). 

Let G be a connected semi-simple algebraic group over a field k of 

characteristic O. Let X be the flag variety of G, also called the variety of 

Borel subgroups of G. It is well known that X is a projective variety over k^that 

G operates on X on the left, in such a way that X = G. x for any x € X, and that 

the stabilizer of x € X is a Borel subgroup. We let 2) ^ be the sheaf of algebraic 
differential operators of finite order on X ( a sheaf for the Zariski topology). In 

this paper, we determine the algebra structure of T(X ,2^) , th e algebra of global 

differential operators on X. 

It is easy to convince oneself that this algebra should be expressed in 

terms of the Lie algebra ^ o f G. Indeed, if G^ - * G is an isogeny, then G^ and G 

have isomorphic flag varieties. Viewing 0£ as the Lie algebra of right-invariant 
vector fields on G, one defines a Lie algebra homomorphism ^  ^ >r (X, )̂ , whence 
an algebra homomorphism U(^f)—i£_^r(X,^), where U (̂) is the enveloping algebra. 
Let Z be the center of U(S|), J = Z f l U(J.0| . One first shows that cp(J ) = 0. 

In other words : every global differential on X, invariant under G, is of order 0. 

Therefore, defining I = U (<̂p . J and R = U(^)/l, one gets an algebra morphism : 
$ :  R - * P(X,#x ) . 

Theorem :  $  is an isomorphism; $ is also G-equivariant. Note that G acts on R 

via the adjoint action. 

The method of the proof is to use the action of T(X ,2^) o n local cohomo-

logy groups E*L(X,&) o r HX ,  (X,^ ) , together with the description of these groups 
1 2 
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as U(^)-modules given by Kempf [ll] , [12] , in case Z, z , Z2 are Schubert varieties 

in X. One then applies results of Duflo and of Conze-Berline on Verma modules. 

It would be very difficult to compute directly H X , ^ ) . The method of 

filtering &x in such a way that the quotients are of rank one only lead to a 

despairing mess. Let me now hazard the following 

Conjecture : (X,2 ) = 0 for i > 0. 

[ After this was written, I learnt that Beilinson and Bernstein had a 

different proof that $ i s an isomorphism. They also showed that E1(Xrni) =  0 for 
i > O, and any ^  -modul e ffi which is a quasi-coherent &  -module. This plays an 

important part in their solution to the Kazhdan-Lusztig conjecture, which they 

found independently, in the same time as we devised our proof. Also, I learnt from 

Renee Elkik-Latour that a few years ago, she proved the vanishing of higher 

cohomology of symmetric powers of the tangent bundle to X, which in particular 

implies H1(X,2^(m)) = 0 for i > 0 and therefore H1(X,^) = lim H1(X,^(m)) = 0.] 
re 

One may generalize the theorem as follows. For £ an invertible sheaf 

on X, we consider the sheaf of algebra £ ® &x \  This maybe called the sheaf 

of algebra of differential operators o n *C . Then a morphism analogous to $ is 

shown to be an isomorphism. 

One should point out that the morphism $ plays an important part in the 

proof of the Kazdhan-Lusztig conjecture, found by Kashiwara and myself [ ]  / [ ]  -

However, in this proof, we do not need the fact that $ is an isomorphism. As a 

conclusion to this lecture, I give a conjectural generalization of the main 

theorem of [4] where i s replaced by an invertible sheaf, and attempt to describe 

an action of the Weyl group (k = <C) on the K-groups of the following categories : 

the derived category of the cohomology of bounded complexes of U (̂ f)-modules, 

with a given infinitesimal character, the cohomology spaces of which belong to the 

category P^ri v of t3 l » f4l 

- the derived category of the category of bounded complexes of sheaves, whose 

cohomology sheaves are constructible. 
It would be desirable to make w act on the derived categories themselves, 

but this does not seem possible, as the example G = SL (2) shows. Perhaps one would hope 

to make a suitable covering w of w act. 

I would like to thank Michel Demazure for several interesting ideas on 

how to understand Kempfs article [ll ] and Michel Duflo for a very useful phone 

conversation (h e suggested the use of a theorem of Nicole Conze in order to prove 

that $  is surjective). Also, I benefited from a conversation with Fedor Bogomolov 

and Pierre Deligne. 
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DIFFERENTIAL OPERATORS 

§ 1• Collectio n of facts on enveloping algebras and Verma modules 

For any Lie algebra CXs, we denote by U (0} its enveloping algebra. Any 

Lie algebra homomorphism from d to an associative algebra B uniquely extends to an 

algebra homomorphism from U(<Z) to B. It follows that one may identify ¿2-modules 

and U (CI) -modules. 

Recall the Poincare-Birkhoff-Witt theorem (i n short P-B-W). Let S be a 

totally ordered set, (xa)a £ s a basis for a Lie algebra over a field k. Then the 

elements x . X X  wher e n is any integer a, < a^<...< a ,  form a basis of 
1 2 n 

U {(L) . This has the following consequence : if (X^ and Q. are Sufcr L4.e-algebras of CL 

such that Cl = <L^& <L on e has . u(O) a  u  (̂  ) <& U (<̂) (isomorphism of (U(^) , 

U (£Lj)) -bimodules) . Similarly, if h is a Lie subalgebra of & ,  U (¿2) is free, as a 

left or right U(U)-module. 
Specialize these considerations to the case of a semi-simple Lie algebra 

^ ove r a field k of characteristic 0. Choose a Borel subalgebra h , a Cartan 

subalgebra t. One has the usual decomposition :  i f = t 0 n . Also one can choose 

a nilpotent subalgebra n suc h that £ ^ = n £p £i = n 3 ) t  ̂n+. From P-B-W, one 

has a decomposition :  U (<Sp =  U(t) ® ( n .U(^) + U(Op.n+), which gives a projection 

p : U@p - + u(t) . 
* 

Now let p € t b e half the sum of positive roots (= eigenvalues of the 
adjoint action of t on n+). Let W be the Weyl group. W operates on U(t) as follows. 

* 

First U(t) = S(t) is the algebra of regular functions on t .S o to define the 

action of W on U(t) , it suffices to make w act on the affine space t . There is 

a natural linear action of W on t . One just conjugates this action by the transla-

tion of vector +p , so that - p i s the common fixed point of all elements of W. 

This "twisted'1 action is denoted by (w,A) -> w*A. With these preparations, one can state the : 

Harish-Chandra1s theorem :  Le t Z(^) be the center of U (̂) the n p induces an 

algebra homomorphism from Z (£|) to U(t)W, the algebra of invariants of W operating on 

U(t) . 

Corollary : If £ = dim^(t), i s isomorphic to a polynomial algebra in I 

variables over k. 

Let p  : U(̂ f) - > End(V ) be a representation of U (̂0 i n a k-vector space 

V. Then p is said to have infinitesimal character x( X a  homomorphism 

Z k ) if one has : 

p (z) . v = x (z) •v fo r a11 2 € Z (̂) , v € V. 
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/. L. BRYLINSKI 

Remark that characters of Z(&p correspond bijectively to orbits of W operating 

on t (b y the action explained above). 

Now fix a character X of t. Extend X t o a character on h, o o n n+, 

which is still called X . Then extend X : ¿3 y k to a ring homomorphism : 

X : U&)-*k. Then =  U (̂) ® u (^ ^  ( U (b) operating on k^ via X ) is a left 

U(£jp -module, which is called the Verma module with highest weight X. Sinc e 

U(̂ f) =  U(n" ) tS U(fa), it follows that i s free of rank one as a U (n")-module, 

with generator 1 ® 1^ ; ha s the following properties : 

1) fo r any u € ,  dimk(U(tr) .u) < °° 

2) on e can write a direct sum decomposition : 

(ML)u, dim (ML)u < + 00 

|i € t 
y y < X 

where (M̂ ) i s a U(t) submodule on which U(t) operates through the character y . 

Here y < X means that X - y = E n  . a , a € IN . 
a € R 

3) M- ^ ha s inifinitesimal character corresponding to X . One defines the 

character of t o be the formal sum 

ch(Mx) = E di m (Mx) y ey 
y 

A U ((̂) -module M is called t-diagonalizable i f one can write a decomposition 

M = 6 ^ +M y suc h as in 2). One has the following lemma, which will be used later, 
y € t 

Lemma 1 :  Le t M a U(̂jf) submodule of M^, such that ch(M) = ch(M^). Then M is 

isomorphic to 

The homomorphisms from M t o ar e known. We will only need the 

following 

First theorem of Verma :  I f HomTT//QA (M ,M , ) ^  0, then y  €  w  * X .I f further-

more X i s antidominant, then y  = A .I n that case, i s an irreductible 

U ($p -module. 

I must define wha t is the condition for X t o be antidominant. For any 

simple root a , there is a corresponding element s^ € W  of order 2. One has 

s (X) =X - c . a. Then X is antidominant if no c i s equal to 0,1,2,... 
a a a ^ 

Second theorem of Verma :  An y homomorphism from M t o i s either zero or 

injective. 
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DIFFERENTIAL OPERATORS 

Finally there is an interesting category 0 o f U-modules which 

contains all Verma modules. A module M is in & if f 

1) fo r any u € M,dimk(U(b) .u) < «* 

2) on e can write M = ®  -M̂ / dim(M^)< 00 a s above. 
u € t* 

3) M  is a finitely generated U((9p-module. This category was introduced by 

Bernstein-Gelfand-Gelfand [ll . For A € t , there is a corresponding character 
of Z (6|) . Let 0 ^ b e the full subcategory of O mad e of modules which have 

the infinitesimal character X^ • For A = o, this category is denoted by ^^riv * 

For any module M in O , M is a union of sub-U(fcl)-modules of finite 

dimension. 

Finally, let us compute ch(M^). 

A 
e — 

Lemma 2 :  c h (M, ) = —— .  Indeed M, i s isomorphic to U (n ) (2) k-v a s a X p | d.e-aj A A 
a€R+ ^  _  x 

U(t)-module. So one has ch(M^) = e .  ch(U(n )) = e .  ch (S (n )). Writing 

n =  &  n  ,  one has : 
a € R+ "A 

ch(M ) = eX . Tl ch(S( n )) = eX . F ] (1 + e °* + e 2°+ .. . ) . 
A a  € R+ a G R+ 

Q.E.D. 

For the results in this paragraph, one may refer to [ 7 ] . 

§ 2. Cohomology with support and differential operators 

Let X be a topological space, Z a X a closed subset, a  sheaf of 

abelian groups on X. 

Definition 1 :  i) (X,̂ ) = ker T(X,^)__^r(X - z/) 

ii) ^ , ^H^(X,C^) is the i-th right derived function of (X,- ) 

iii) on e has a long exact sequence  

^(X,^) >Hi(x/ ) •  Hi(X - z/) - 3 > H*+1(x/) > 

iv) i f c  Z ^ are closed subsets of X, there is a natural map 

(X,̂ ) -* (Xt{f) an d a morphism of the two exact sequences described in (iii) . 
2 1 

v) le t U be an open subset of X containing Z. Then the restriction 

map : H^(X,i) -+ ^ y(U, i/| ) is an isomorphism.. 
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Now we let X be a smooth algebraic variety over a field k. Let b e the 

structural sheaf. Let 3^ be the sheaf of differential operators of finite order on 

X. One has :  =  A  (m ) , where £)v(m ) is the sheaf of differential opera-
X _ __ X X m £ H 

tors of order <  m. 

Proposition 1 :  Let b e a coherent sheaf of left ^-modules . Then r(x,2^) 
operates in a natural way on H^(Xf//0. Thi s operation is natural with respect 
to JL , and with respect to Z (see (iv) of Proposition 1). All maps in the exact 

sequence (iii ) are r(X,5^)-linear. 

To describe, for instance, the action of r (X, )̂ on H1(X,/Q/ one notices 

that JJi is quasi-coherent as a ^-modul e (thi s is because «2^ is a union of cohe-

rent ^-submodule s) . Then choose an affine open covering 'U = ( u ^  ̂o f X. 

Then H1(X,-Î() =" H1 (ti,/() , which is the i-th cohomology group of the Czech complex 

^* tfl,A)• It suffices to descrive an operation of T(X,j^)o n T ( P) u a / ^ 6 f o r 

B a finite subset of A. One has a restriction map : a € B 

T(X,2)) -> T( p U , 8) and the latter ring operates on r ( P) U  ,Jif) 
a € B a  € B 

because JL is a sheaf of 2 ^-modules. This operation is obviously compatible with 

differentials in kH,Md • 

Since J8 operate s on Ôv, this Proposition applies to /é(= ô~ . 
X X X 

Now let us define cohomology with relative support. Let Z ,c= Z\ ê 

closed subsets of X (X is again any topological space). 

Definition 2 :  i) T . ($) = coker (r (x/f) -> T„ (x/)) 
Z1,Z2 Z 2 Z l 

ii) (£ *—* »  (x/) is the i-th right derived functor of 
V 2 

\ l«2(X'"} 
iii) ther e exists a long exac t sequence 

. . . . — ( X , / ) > H £ ( X , / ) ^H": . (x,/) )i£+\x,4)—•> 
Z2 * Zl ZllZ 2 Z 2 

iv) a s in Definition 1, one has functoriality with respect to the 

pair (Z ,Z2) . 

v) ther e is an "excision" isomorphism . (X,d) 
Z1|Z2 

Eiz1-z2 (x-1, I) 

(first one checks this for i = O and (f flasque; the general case follows by 

considering a flasque- resolution). 
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DIFFERENTIAL OPERATORS 

Now X is again an algebraic variety. 

Proposition 2 :  I f JUi i s a sheaf of 2^-modules, r (X,%^) operate s naturally on 

K , 7 < etc... 
Zl'Z2 

Remark that there is now a very good reference for cohomology with support 

namely [121, § 7 and 8. 

§ 3. Differentia l operators on the flag variety 

Now X is the flag variety of G (see the introduction). One has 

r(X,2> ) = r(X,2l(m)) and each r (X.,2> (m)) is a finite-dimensional k-vector 
X m  c IN X  X 

space, since X is projective and $ x i s a coherent (^-module . 

The Lie algebra Of of G will be viewed as the Lie-algebra of right inva-
riant vector fields on G. To each £  € (Sj, we associate a vector field £  o n X. 

To do this, one first chooses a base point x of X, of stabilizer B (if such a point 

does not exist on k, one just performs a finite extension of k; the construction 

of £  wil l anyhow be independent of the choice of x, so the mapping wil l 

be defined over k). Now consider the map p : G > X , p(g) = g.x . Then £  i s 

such that dp (£ ) = £ .  . . This is well-defined because £ i s right invariant. Now ^ g p(g ) 

show that £ does not depend on the choice of x. Consider x  = y.x ( y €  G) . One 

has a commutative diagram 

-1 
Y 

G P X 

p' 

G 

-1 ~ 
where R .  is right translation by Y .  Then £  .  . = dp (£) = dp' _i * (d[R J  (£ ) ) 

y_1 p(g ) g  g Y y -i g 
= dPgY-l(S' 

= S > ' (gy_1) 
= V 

where right-invariance of £ ha s again been used. 

One has therefore a Lie algebra homomorphism — >T(x,^) sendin g £ to £. 
V7hence an algebra homomorphism n fdp * P y V ( y. 

Now let J be the kernel of the character of X Q : z (̂) — k̂ (on e can 

also describe J as the intersection of Z (Pp wit h U(5p.^p. 
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Proposition 3 :  tp(J ) = 0 

We will later give a nice proof of this Proposition. Let us briefly 

outline another, not so nice, proof. One has to show that every element in 

r(X,S^) which is G-invariant is of order 0 (i.e. a constant). It suffices to show 
that for m > 1, r(X,2^(m)(2^(m-l)) has no non-zero element invariant under G. 
But the sheaf 2 ^ (m ) /2^ {m-1) is isomorphic to s m(Tx), where Tx is the tangent 
bundle. 

Now T admit s a filtration (f = o c c . . .c & c  .  . . & =  TX 
X o  1  l- l l  N 

(N = dim X) , with vJ$^_^ ,  locally free of rank one. 

The corresponding characters of T (o r of B) are precisely the positive 

roots. 

One deduce for a  similar filtration; the associated characters of 

T are o f type )  :  na* a '  na ^  W  ' a  na ^ 1  * But the theorem of Borel-

Weil-Bott (se e [ 13 ]) +implies that H°(X,<€) =  0 for invertibl e unless 

Since no element 2  .  n  .a a s above can be 0, we are done. 
a € R A + 

Let I be the ideal U (0p . J of U (<p> . One gets a factorization of <p 
through <£> : U(^)/l ^ ( X , ^ ) . 

Theorem 1 :  $  is an isomorphism. 

Corollary :  T(x,^) is generated, as an algebra, by the Lie algebra €jf , whicft 
is the space of vector fields on X. 

Remark :  $  is G-equivariant, G acting on U (̂ )/1 vi a adjoint action and on 

T(X,2^) vi a its action on X. In particular, as a G-module, T(x,^) is isomorphic 
to the space of regular functions on the nilpotent variety of Of (put together 
Proposition 2.4.10 and Theoreme 8.1.3 of [7]). This was pointed out to me by 

Procesi. This remark receives a fine explanation in the work of Beilinson and 

Bernstein. 
To prove this theorem, we will make T(X,^)operate on cohomology groups of 

0^ with support in well chosen closed subsets of X. To define these subsets, let B 

be the Borel subgroup of G with Lie algebra b. Recall that the orbits of B in X 
are narurally indexed by W. Indeed, let x be the unique point of X such that 

B.x = x. Then the Bruhat decomposition G B  w B gives 
w G W 

X = G.x = I I (BwBx ) = X L Bw x = X L X . Each X i s a locally closed subset of X 
w € w w  € w w  € W W W 

The following facts are known : 

- the dimension of zwis the length &(w ) of w ( w -is a product of I(w) 
elements s ,  a a simple root, but not of k such elements, for k <  &(w)) . 
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- Z i s an affine space 
w 

- Z is Cohen-Macaulay 
w 

We will be interested in the T(X,2^)-modules H 
X 
W 

3(x )(X'Ç>-
V7 

Proposition 4 :  (i ) H | ^ ( x } (X, = 0 for k ^ N - H(w) 

W W  N- S (w) 
(ii) U(âf)/I acts on Nw = H - /av ' (X,<%) via $ .  N^ is the 

w w 

union of finite dimensional sub U ( ̂ -modules, on which the action of ¿3 is the 

differential of an algebraic action of the algebraic group B. 

All this is proved by Kempf [12] . One needs only to remark that, 
putting Z. = I J  Z  , one has a filtration Z c z Z.cr...c z z % = X, and the 

I (w) < 1 
excision isomorphism of Proposition 2, (v) implies : 

< / z . " U ^ = i - H l / 3 ( Z )(x' ^ • 
1 1- 1 W W 

Furthermore, Kempf proves (§11 and £ 12) that N^ is t-diagonalizable. 

and commîtes the character ch (11 ) . He shows that eh (N ) = 
W W 

e-w(p) - p 

Using lemm a 2, we get : 

Proposition 5 :  eh(N ) = eh(M ), where M is the Verma module M 
â w w w  -w (P)-p 

Now we want to identify the U(^)-modules N^. We first begin with w = wq, 

the element of longest length in W. Then X i s open in X, and we have : 
w 
O 

N =  H^ (X,er ) * H°( X ,  Ov ) 
w X  /r . x  X  w  X 
o w  Id (X )  o  w 

o w  o 
o 

Now, inside Horn, (N ,k ) let N be the space of elements £ such that 
k w w 

o o 
A * X * 

dim, (U(t) I) < +0 0 . So if N =  ® M ,  then N =  3> (M ) .  Then define a 
k w  ,  w " \ 

O A o A 
"twisted" action of U(<̂ [) on N* , twisting the natural action by an automorphism 

T of fit , which induces -1 on°t and sends X t o X (fo r a given choice of o 01 — oc 

X^ ( a € R) in an "épinglage" of C^). Then one has the following result, which 

was announced by Kempf [12] ,  but without details. 

* 
Proposition 6 :  (N ) is isomorphic to M .  Indeed, one has X = N .x — N 

c w  * w w +  o + 
o 0 0 

(N i s the unipotent radical of B). Before N had a twisted U (Oh -module structure, 
+ W o <? 
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* + 
(N )  wa s therefore a free U(n )-module generated by the element of Horn, (N ,k ) 
w J  k  w 
° *  o 

which sends F to F (w ) . After the 13 (Of) -module structure is twisted, N i s a free 

U(n )-module of rank one. The generator is easily seen to be invariant under T. 
* 

One deduces that ( N )  i s the Verma module with highest weight 0 = -w (p ) - p . 
W O 

One can reformulate this as N =  ( M )  .W e want to prove that 
w w 

* o  o 
N =  ( M ) fo r all w € W. To do this, we will find an injection of N i n N .  For 
w w w  w 

o 
any i, there is a boundary operator : 

x l- l i- l i- 2 

this gives, for each pair of elements w, w' € W with &(w ) = i, £(w') = i-l, an 

operator : 

9 w,w' '  HX /3(X )(X' x} w w 

HN-£(w) + 1 

W / 3 ( x .) x 
w 

Lemma 3 : 3 .i s surjective whenever w = s .w'. with o t a  simpl e root.  w,w' J a ' x 

Let U be the open set of X, obtaining by deleting all X^ included in X^ 

and different from X , . One has the following diagram where the first line is 

exact 

w H-lw(jw w* wNw H-lw(jw 
Э í l l w ) + 1 ( o ^ ) 

w' 
w w H-lw(jw w 

/3(x )  (X,CV 
w w 

3 
w,w' 

N-£(w)+l ( 
" x / 3 ( x .) ( x , e V 
w* w ' 

the top line is exact by Definition 2 (iii) ; the vertical maps are excision isomor-

phisms. It suffices therefore to show HN '^W^+*(U,CM =  0 . Notice 
X U X . U 
w w ' 

X U X , = B w ' x U B S w , x =  (Bw' B U BS^w'Bjx = p .w'x , where P„ i s the parabolic 
w w 1 a  *  S 

a a 
subgroup of rank 1 , containin g B, associated with the simple root a. Then Pg i s 

a 
generated by B and by a subgroup L ,  isomorphic to SL(2). The geometric quotient 
of X U  X  . b y the action of SL(2) exists, and it is isomorphic to X .. It is 

w w * *  w * 
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DIFFERENTIAL OPERATORS 

not difficult to find a neighborhood V of X U  X , in U such that 
W W 

V — A „  , x x  ( X U  X , ) . I t suffices to take for V the set U . (X U  X ,) with N-l (w ) w  w ' w w w ' 
~> -  -  -1 
U =  N f \ (wN w )  . 
w 

Using a Kiinneth formula for cohomology with support, one gets : 

N-£(w) + l (uCr) ^  N-£(w ) ^  A H 1 fx U X Ct ) 
HX U  X ,(U'V ~ H{0 } % - U w ) A  q . » *  H  (X w U Xw" X  U X 
w w ' N- £ (w) w  w ' 

I claim that H ( X U  X ^  , , „ )  = 0. Indeed ther e is a smooth and proper 
w w ' X  V X > 

w w 
morphism p : X U  X  ,  * . X , such that each fibre is a projective line. In the 

w w  w 
Leray spectral sequence 

Ep2q = Hp(rpp* (Oxwuxw)) . н ^ ч х и X w e- Ux ) 
w w  Х и л , 

all terms E?'^ are zero for p > O, since X . is affine.Also I claim that 2 w 

R^p* (& .. „ )  = 0 Indeed its fibre at a ooint y of X . is 
* X  '. J X . w X 

w w 
H1 (p 1  (y) , ô ) s H 1 ( P \ Ct x ) =  O  . 

- p 

Therefore H ( X •. ; X , , ^ . . „ )  =  O  and th e lemm a i s prove d . 
w w ' X  U  X . 

w w 

Lemma 4 :  For an y w €  W , there i s a surjectiv e T ( X , ^ ) - l i n e a r - m o r p h i s m 

N .  N  . 
w T  w 

For, le t w w  =  s  .... s be a reduced decompositio n (th e a. 

1 N - <(w) 

being simple r o o t s ) . Using lemma 3, one ha s surjection s 

N _ 
w 
o 

.N 
s 

a2 

S 

aN-£(w) 

w 

N-£ (w) 

w N 
w 

Proposition 7 :  N  is isomorphi c t o M .  Indeed th e surjectio n N ^> N of 

1 w  +  w  ^  -> w w 
lemma 4 dualizes t o a n injectio n N C > M . One know s N —  M  by Propositio n 

w w w w 
o o  o 

6, and ch( N ) =  ch(M ) bv Propositio n 5. One conclude s usin g lemm a 1. Notice 
w w 

Proposition 7 is give n b y Kemp f [ l l ] , but onl y wit h sibyllin e indication s o f proofs . 

Note tha t N ^ i s isomorphi c t o an d tha t i s a  Verm a modul e wit h 

highest weigh t - 2 p ,  which i s antidominant . S o i s irreductibl e a s a n U(^Q -

module (firs t theore m o f Verm a ),and =  . 
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Proposition 8  :  T (X,2^) operates faithfully on each space /g^X ) ̂ X'^x) * 
w w 

Analogously to lemma 4 , ther e is a surjective Y(X,2^)-linear morphism 

Hx" /(MX ) ^X '̂  *H{x}^X'^X^ ' S° °ne "*"S reduce<̂  to the cas e w = 1 . Notice that 
N -

x has a neighbourhood U isomorphic to /A (e.g . its orbit under N ). The operation 

of T(Xr?T) factor s through r(U,/&) and the restriction map T(X,x^ ) ^r(U,2^) i s 

injective. So it suffices to prove that r(U,j&) operates faithfully there. But 

this is trivial since T(U,^) has no proper two-sided ideal [ 1 4 ] , page 3 . 

At this point, I can give the nice proof of Proposition 3  which was promi-

sed earlier. For let z € J, then z operates trivially on N —̂ ,  because i s in 

the category ^ri v •  So <P(z ) = 0  by Proposition 8 . 

Proposition 9 :  ker (cp ) = I (or $ is injective) . 

Indeed, if cp(z ) = 0 , the n z annihilates the U(^)-module .  But this 

implies z € I by a theorem of Duflo [ 8 ] (se e also [ 7 ] ) . 

Proposition 10 :  $  is surjective. 

By Proposition 8, it suffices to show that given £ € T (X,^) , there 

exists z G U(^f), I such that $(Z ) induces the same action on N̂  as £ .  But £ 

belongs to a finite dimensional G-invariant subspace r(X, 2>x (m) ) . It follows easily 
that £ gives a ^-finite endomorphism of N^. Since N̂  is an irréductible U(6$-

module, the conclusion follows from a theorem of Nicole Conze [5] ,  corollaire 6 . 9 . 
So the theorem is proved. 

§4. A generalization 

We assume k is algebraically closed. 

Let b e an invertible sheaf on X (= ^-module , locally free of rank 

one).Then instead of 5 L , on e may consider the sheaf of algebras 
. 1 

= ® ̂  & m^®& •  of course, locally on X, Sb. i s isomorphic to 0 . 
X X 

Also notice that ^ i s in a natural way a left 2^ (<6 -module. Indeed, a section 

f <& D $ g of &XQ$ o n an open set operates on a section h of ^ a s follows : 

(f &D #g).h = D(<g,h>).f 
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where <g,h> i s the section of &  obtaine d using b£ =  Horn Ox (l,Ox). so Dx (L) 

may rightly be called the sheaf of algebras of differential operators on the 

sheaf 2 $ . This construction was shown to me by Kashiwara. 

Analogous results as Propositions 1 and 2 hold for /2)^ £?) -coherent 
modules. Now recall that the invertible sheaf £ correspond s to a character of T 

as follows. Given a character A of T, one extends it to a character A : B - * (B 
m 

such that A (N ) = 1. Let «E §(A) be the coherent sheaf such that for any open set 
U of X, denoting p : G -> X the projection defined in § 3, one has : 

X 

r(U,^A)) = {regular functions f on p * (U) ,such that 

f(g.b) = A(b)_1.f(g) for any b G B> 

Then J &A) is an invertible sheaf on X, and there exists exactl y one character A 
such that *$(A) is isomorphic to & .  In other words, the Picard group of X is 

isomorphic to the character group X(T) (see [6] fo r details). 

We identify X(T) with a subgroup of t* (associatin g to each character 

of T its differential, which is a linear form on t). Given A G X(T), one has 
a corresponding maximal ideal o f Z (̂  (se e § 1) and we let 1^ =  U^. Ĵ  . 

In the same way as Theorem 1, we can prove 

Theorem 2 :  Ther e is a natural algebra isomorphism : 

$x : Uffl/IA >r(X , ^ U S A ) ) 

In the proof, one must take car e that Proposition 6, Lemmas 3 and 4, 

and Proposition 7 are no longer valid. 

Instead, one uses the fact that ch(N ) = ch(M .  ,,).There exists w € W 
w w *(-k) 

such that i s antidominant. One deduces that N i s isomorphic to M ,  x 
w e w*(-A) 

and that T(X,2>) operates faithfully on N . Then the argument goes through. X w 

Let me remark that the U (^f) -modules N* are elements of the category 
defined in § 1. They have the same character as Verma modules, but in general are not 

Verma modules. If A i s dominant (i.e . s (A) =A- n .a wit h n G  IN T ), it is 
a a a+ 

stated in [11] (and can be proved by the methods in § 3) that N i s a Verma module. 
w 

In general, the structure of these modules depends only (sa y for a regular weight A ) 
on the Weyl chamber to which A belongs (thi s is seen easily, using "translation 
functors").However, it is a great mistery what happens when reaching or crossing 

a wall. This seems to be a very deep problem, to which we will deviously return in 

the next paragraph. 
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Note that one can define holonomic . 9 (¿5)-modules with regular singulari-

ties (R-S) just as in the case * 0 = b , because this definition is of local nature. 

However, the category of holonomic /^-module s with R.S is equivalent to that of 

holonomic 2)x 03$) -modules with R.S., by the functor : 

M — LoOX M 

this is trivial to verify. So for any X,y £ X(T) , one gets an equivalence 

between the categories relative to -^(^(X)) and to Ĵ ^CU)), which we may call 

a geometric translation functor. Applications of this will be hinted a t i n the 

next paragraph. 

§ 5. Open questions 

Now the base field k is <D. I first state the main theorem of [4] . Let 

be the category of holonomic lb -modules with R.S. whose charactersitic varietie s 
if if. 

are contained in I  J T X , where T* X  c t X is the conormal bundle of X i n X. 
Vr, XX w w c W w  w 

Let ^.r^ v ke the full subcategory of the category of U-modules, 

whose objects M admit the "trivial" infinitesimal character and admit a filtration 

O = M c M„... c M =  M such that M./M. „ is an object of & .  . o 1 n l i - l J  tri v 

Then an d ̂ rj_ v are equivalent, via the following quasi-inverse functors : 

F =  Jt— 

F (M) = T(X,M) 
G O triv —> u 

G(M) = 2x®u(^M 

Now, it seems reasonable to expect the following generalization for arbitrary 

X € X(T) satisfying the regularity condition <X -p,a> ^ O for any root a .First 

define a category £ ^ similarly to ^riv> bu t using the character of Z( )̂ 

associated to X. Then let $ (^5^ b e tne derived category o f the category of 

bounded complexes of U (^)/i^-modules, with cohomology in ¿7̂ . Now let 

D(X-h.r) be the derived category of the category of bounded complexes of sheaves 

of 2 ^ $(X))-modules, th e cohomology of which are holonomic with R.S. Then the 

following functors F^ an d shoul d be quasi-inverse triangulated equivalences: 
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: D (X-h.r)_>D(^)x 

_M , T (X ,JM * ) 

Gx :  D (̂  >D (A- h.r) 
n I L 

m', ^ 2>v ( W ) ) <2> m. 
u ( J ) / i x 

Note that for A dominant, one may define an d withou t using derived 

categories (an d get an equivalence of categories).If A  is not dominant, this is 

not possible, because of the non-vanishing of higher cohomology groups of 

holonomic 2> x OS(A) ) -modules with R.S. (fo r instance Hi(Xl*^(A)) will often be non-

zero, for suitable i ) . 

Now, for any A,y£X(T), w e have (se e § 4 ) a n equivalence of categories 

between holonomic 2)^ (<$f(A)) -modules with R.s. and holonomic (̂ (y) )-modules with 
R.S. 

T, :  Mi > J&J-A) <g> M 
A,y -

this also gives an equivalence of D(A- h.r) and D(y- h.r) 

T, :  D(A-h.r) ^D(y-h.r ) 
A ,y 

X 

(notice that y-A) i s flat as an ^-module). Therefore one has the following 
diagram, which defines x, 

A ,y 

° $ A 
FA D(y-h.r) 

A,y A,y 

D(y-h.r) 

Remark again that if A and y  are dominant, then T^ , i n fact will come from 

an equivalence of the categrories 3^ and ^  .  This is probably also true whenever 

A and y belong to the same Weyl chamber. We call again T, th e geometric 
A ,y 

translation functor. It should be interesting t o compare it with the translation 

functor, which is used for instance by5 Bernstein-Gelfand-Gelfand [  2 ] an d in 

Jantzen1s Habilitationschrift [  9 ]  .  57 
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Now, for w € W, X and w * X give the same character of ZM . Therefore 

the categories 0 ^ and 0^ ^  are the same, and the derived categories DC^-^ 
and D(&h , ar e the same. So T, ,  ca n be interpreted as an automorphism a w * X X,w * X 
of the category D^)^ ,  which we denote by w'. There is an obvious question : 

does this define an action of W on D^f)^ ?  The answer is no, as explained below 

in the example G = SL(2) However, it is interesting to compute how w'operates in 

the K^-group of '  which is an abelian group generated by the classes 
[M .  ] of Verma modules, 
y * X 

One has simply [w( M y) ] =  [M . .  ,  ] so at least one has a 
y * X (yw ) * X 

representation of W in K Q ( D^ ) * which coincides with the one introduced by 

Bernstein-Gelfand-Gelfand [ 2 ] . 

I come no w to the case G = SL(2). Let s be the non trivial element on W. 

We want to see how s acts on D(@f)^ (sa y for X dominant), and to check whether 
is the identity. To simplify things, we identify weights with integers, so that 

p = 1 and X = n,n > 0; one has s * X = -2-n. We take the Verma module Mn G D ^ n * 
Then F ( M ) is the holonomic S ) («$n)) -module <^/r (<*£(n) ) . Applying T _  , 

n n  X  X/{x } n,-2- n 
we get the holonomic 2 x 2-n) ) -module ^?x^^x ^ Co(-2-n) ) . And applying G_^ n> we 
get th e Verma module M _ ,  which is irreductible. Therefore ŝ M ) = M _ 3 -2- n n  -2- n 
Now start from the object M _ o f D ((9ft .  Then F ( M _ )  is the 3 „ (*f(n))-module 

^ -2- n ( 7 n n  -2- n X 

$4>f (<̂>(n ) ) ; applying T ,  we act i&(-2-n)). Applyin g now G ,  we get •jxJ* ^  n,— ^ n ix j z  n 
the "twisted dual"M o f M . So we have s"2 (M ) = M* an d M an d M* are different 

n n  n  n  n  n 
objects of D((9ft sinc e Horn (M ,L ) an d Hom(M*,L ) = O A n n  n  n  n 

0 

Notice however tha t E x t 1 ^ (s(M ) , sf(M _ ) ) 
D FT) n  -2- n i n  | | 

Ext (M 0 ,M* ) 
D iyu -2- n n 

E X t D $ > <Mn'M*-2-n > 

ExtiDop(Mn'M-2-n) 

as we know already. 

Still, it might possible that a more clever choice of an identification 

of D(€^^ t o D(̂ f)g ^  would turn the action of W into a group action. 

One can do the above constructions in reverse order, define an action 

\f on D(X-hr) by the following diagram 
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D(X-h-r) D (#K 

W Id 

D(X-h.r), D(s*X- h.r) 

T 
s * X,X 

Fs *X 

(the vertical map is the natural identification of D (̂  ^ wit h D ^w ^  ^) • At 

least for X = 0 (th e general case is not much different), one has a triangulated 
equkvalence from D(X-h-r) to the derived category of bounded complexes of sheaves 
on X (usua l topology) with constructible cohomology sheaves, given by 

H x :  D(X- h.r) ^D(X ) HX( M ) = 3R Horn ̂  (X)(M-" ' } ) 

So H o w © Ĥ  * gives an automorphism of D(X) . It is a pleasant 
X À c 

exercice to compute this for G = SL (2), in which case X = HP* I t is an 

unclear question whether this automorphism comes from an automorphism of the 

derived category D^(x)c o f complexes of sheaves o f abelian groups on X, with 

cohomology constructible sheaves with fibres of finite type as 2Z -modules. Of 

course, one should look for some topological interpretation. 

In any case it would be most interesting to bring the group structure 

of w to Jiear upon the topology of X or the structure of the categories . After 

all, Kazhdan-Lusztig polynomials were first defined merely using the Coxeter 

group W [lO] , page . One could expect connections with work of Slodowy 

Springer, Kazhdan and Lusztig on representations of W. 

I would like to thank warmly Michele Lavallette for her completing of a beautiful 

typing of a rough manuscript under difficult circumstances. 
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