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REPRESENTATIONS OF WEYL GROUPS OVER AN ARBITRARY FIELD 

A.O. Morris 

Introduction 

The représentation theory of symmetric groups over fields of character-

istic zéro is well developed and documented with a number of books devoted 

to the subject. The original approach was due to G. Frobenius and I. Schur 

followed independently by A. Young in a long séries of difficult but highly 

influential papers. Later, in the 1930's, W. Specht presented an alternative 

approach which led in an élégant way to a full set of irreducible modules, 

now called Specht modules. This approach has proved to be useful not only 

in developing a characteristic-free approach to the subject but also because 

of its suitability for generalization to the construction of irreducible 

modules for arbitrary Weyl groups. The position in the case of character-

istic p , although a great deal of important work has been done by several 

authors, Brauer, Nesbitt, Thrall, Littlewood, Robinson, Kerber, Peel, James 

and others, is far less developed. 

However, in 1976, G.D. James in a very important paper [8], gave an easy 

and ingenious construction of ail the irreducible modules of the symmetric 

groups over an arbitrary field which reduce to Specht modules in the case of 

fields of characteristic zéro. The ultimate aim of this lecture is to give 

a possible généralisation of the results to Weyl groups. 

Before proceeding to describe this work, a word about the position on the 

ordinary représentation theory of Weyl groups may be useful. The irreducible 

characters of ail the individual Weyl groups have been known for some time. 

What we are concerned with is to provide a unified approach to the représenta

tion theory. S.D. Mayer in his 1971 Warwick Ph.D. thesis [13] has presented 

such an attempt for the irreducible characters of Weyl groups, his work 

appearing in a séries of papers [14,15,16]. In 1972, I.G. MacDonald [12] in 
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A. O. MORRIS 

the now surprisingly obvious way, generalised the Specht approach to give 

irreducible représentations of Weyl groups, but however, without giving ail 

of the irreducible représentations in gênerai. Since then T.A. Springer [20] 

has given a complète construction of ail the irreducible représentations of 

Weyl groups, the représentation spaces being the £-adic cohomology groups of 

a Borel variety of a connected reductive algebraic group. He later [21] 

simplified this work so that the représentation spaces of the earlier work 

go through also over the complex field and lead to représentations over the 

rational field. Référence should also be made to papers by T.A. Springer 

and R. Hotta [22], T. Shoji [9] and G. Lusztig [11], the latter paper in 

particular generalising I.G. MacDonald's work. 

In this lecture, however, we shall attempt to obtain the irreducible 

représentations in the more, at least to the author, simple minded and 

combinatorial language of the classical theory. The structure of the lecture 

will be as follows. The first section will give a description of G.D. James' 

construction mentioned earlier. Our approach will follow closely that due to 

James [ 8 ] , his method being far more suggestive for a possible généralisation 

to arbitrary Weyl groups. The next section will présent a généralisation ôf 

James* work to the hyperoctahedral groups, that is, Weyl groups of type 

due to the author, Al-Aamily in his Ph.D. thesis [1] and their joint work 

with M.H. Peel [2]. In a final section, progress on a possible généralisa

tion of thèse ideas to arbitrary Weyl groups is considered. The familiar 

concepts of Young diagrams, Young tableaux, standard tableaux etc. which 

are so crucial in the development of the représentation theory of the 

symmetric groups, are seen to have equally familiar counterparts in the 

context of roots Systems and Weyl groups. It should be emphasised that this 

section had not reached its final form with some problems still to be overcome. 
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REPRESENTATIONS OF WEYL GROUPS 

1. The irreducible représentations of the symmetric groups (Weyl groups of  

type A^) 

As noted earlier, the approach given here is the crucial one given by 

James [8,9,10]. Alternative approaches, one more reminiscent of that used 

by Specht is given in Peel [17,18] and another in Farahat and Peel [7] 

develops a more gênerai setting in which the construction works. 

Let K be an arbitrary field and S be the symmetric group on n letters. 

Let X = (X^,À 2,X 3,...) be a partition ôf n, that is, 

oo 

n = y X. 
i-1 1 

with 

*1 1X2 i X 3 

1.1 Définition The Young diagram [X] associated to X consists of n squares 

arranged in consécutive rows so that the first row has X 1 squares, the second 

has X^ squares and so on. The rows are counted from top to bottom and 

arranged so that they ail start from the same left extremity. If [X] is a 

Young diagram, the dual Young diagram [X'] is obtained by interchanging the 

rows and columns in [X], X* is the partition conjugate to X. If [X] and [y] 

are Young diagrams associated to partitions X and y of n, we say that [X] 

dominâtes [y] (written [X] [y]) provided that 

j 

ï 
i=l 

X. > î — 

j 

I. 
i=l 

df 

for j=l,2, This is a partial order on Young diagrams. 

A X-Young tableau or X-tableau is one of the n! arrays of integers 

obtained by replacing each square in [X] by one of the integers l,2,...,n, 

with no répétitions. We say that a X-tableau is a standard X-tableau if the 

numbers increase from left to right across along each row and from top to 

2 
bottom down each column. For example, if X = (3,2 , 1 ) , 
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[X] = [X'] = = [4,3,1], 

5 3 8 
1 2 
4 6 
7 

and 

1 3 7 
2 5 
4 8 
6 

2 
are ( 3 , 2 ,1)-tableaux, the second of which is a standard 

( 3 , 2 2 , 1 )-tableau. 

If t is a tableau and O e S , 
n 

define at in the obvious way; for example, if 

a = 
[1 2 3 4 5 6 7 8 
[5 1 3 4 2 7 8 6 

= (1 5 2) (6 7 8) , then O 

1 3 7 
2 5 
4 8 
6 

5 3 8 
1 2 
4 6 
7 

. Let Rt be 

the subgroup of Sn fixing the rows of t and C be the subgroup of Sn fixing the 

columns of t, i.e. S^/ and S^/ are the row- and column-stabilizer of t respectively. 

Note that R = ORo'1 and C.. = CTCcT1. 

at t at t 

1.2 Définition An équivalence relation ^ is defined on the set of X-tableaux 

by t^ ̂  t2 if there is a e Rfc such that t2 = crt̂ . The équivalence class 

containing t will be called the tabloïd {t}. Thus, a tabloid may be regarded 

as a "tableau with unordered row entries", for example. 
1 2 3 2 3 1 

5 4 4 5 
and a 

full set of (3 2)-tabloids is given by 

/ X 2 3 \ / l 2 4 l / l 3 4 \ / l 3 5 \ / l 2 5 \ / l 4 5 l / 2 3 4 ) / 2 3 5 ) / 2 4 5 ) / 3 4 5l 

J4 5 ) { 3 5 fU S }U* / \ 3 4 Ma 3 M l 5 M l * M l 3 M l 2 / ' 

Sn acts on the set of X-tabloids by o{t} = {at}; this action is easily 

shown to be well-defined. 

1.3 Définition If X = (X_,X0,...,X ) is a partition of n, let S^/ be the vector 
1 2 m 

space over K spanned by X-tabloids. By extending the above action linearly to 

KS we have that S^/is a KS -module. It is easily verified that 
n n J 
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REPRESENTATIONS OF WEYL GROUPS 

1.4 Theorem S^/ is the permutation module of S n on the Young subgroup 

s x = X x V - " x sx • 
1 2 m 

M is a cyclic KS -module generated by any one 
1 , n — • 

X-tabloid and dirr^ 
j 

ï 
i=l 

n! 

1 2 m 

1.5 Définition If t is a X-tableau, define K f c e KS^ by 

j 
ï l 

O C C t 

(sgn 0)0. 

The \-polytabloid e f c associated with the tableau t is given by 

e t = K t { t } . 

We shall say that e f c contains the tabloid {t*} if it appears in e f c with non-zero 

coefficient. 

X ^ * 
The Specht module S for the partition X is the submodule of M spanned by 

X-polytabloids. Since aK f c =
 K

a t

a / w e have Oe^ = e ^ t and it follows that 

1.6 Theorem S is a cyclic KS^-module generated by any one polytabloid. 

The following combinatorial results are crucial in the représentation 

theory of the symmetric group. 

1.7 Le mm a Let t be a X-tableau and let t' be a y-tableau. Suppose that a,b 

belong to the same row of t implies that a,b belong to différent columns of t'. 

Then y X. 

1.8 Lemma Let t and t* be X-tableaux. The following conditions are équivalent: 

(i) {t*} is contained in e t , 

(ii) there exist p e S^/ , , y e S^/ such that pt 1 = yt, 

(iii) a,b belong to the same row of t* implies a,b belong to différent columns 

of t. 

Proof By définition, {t*} is contained in e f c if and only if {t*} = y{t} for 
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some Y £ C^; hence if and only if pt' = y t. for some p e R , , y e C^, proving 

the équivalence of (i) and (ii). The équivalence of (ii) and (iii) is proved 

by the usual combinatorial argument. 

1.9 Lemma Let t' be a X-tableau and t a µ-tableau. If there exist a,b in 

the same row of t' and in the same column of t then K^Ct'} = 0. 

Proof If t' is a X-tableau and a,b are in the same column of t (and hence in 

the same row of t•) 

(l-(ab)){f } = 0. 

Select signed coset représentatives Q ^ , . . . , ^ for the subgroup of ct consisting 

of 1 and (ab) ; then K ^ t ' } = (o±+ - - - +0^) (1- (ab) ) {t ' } = 0. 

We can now prove 

1.10 Lemma Let t and t' be X-tableaux. 

(i) If {t*} is not contained in efc then Kfc{t'} = 0. 

(ii) If {t1} is contained in efc then K ^ t ' } = ±et« 

Proof (i) follows immédiately from 1.8 and 1.9. 

To prove (ii), if {t1} is contained in efc, then by 1.8, there exists p e Rfc, , 

Y s Cfc such that pt' = yt and hence 

K t { f } = Kt{pt»} = KtY(t} = ±Kt(t} = ±et. 

Similarly, we can also prove 

1.11 Lemma If y J ^ X , then for any X-tableau t* and any y-tableau t 

Kfc{f } = 0. 

A bilinear form is defined on S^/ hy <Jt},{t'}^> = 1 if {t} = { f } 

= 0 if {t} ï { f } . 

This bilinear form is a symmetric, non-singular, Sn~invariant bilinear form on 

X 
M . 
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REPRESENTATIONS OF WEYL GROUPS 

1.12 Theorem Let U be a submodule of S^/. Then either U 3S^/ S^ or U ç S^ 

Proof Suppose u e U and t is a X-tableau. Then 

(u, et) = u,kt (t)u,kt (t - I 
a e C t 

u, (sgn a ) a {t} - î 
a e c t 

<sgn a ) a ,{t> 

a e C t 
(sm o) ou , (t) = < K T U , { t p But by 1.10, K ^ U is a multiple of efc, 

say Ktu = Bet. If 3 ¥ 0 for some u e U, then ê _ e U and so S^ O U. However, 

if B = 0 for ail u e U, then < ^ ' e t ^ > = 0 for a11 u e U' that is u ^ s ^ ^ " -

From this we have immediately 

1.13 Theorem S^/S^r\ S ^ is zéro or absolutely irreducible. 

Proof By the above theorem, any submodule of S^ is either S^ or is contained 

in S^ r\ s^~^~ . Therefore • S^/S^ n S^"^"is irreducible or zéro. The absolute 

irreducibility can be deduced by considering the rank of the Gram matrix 

(see [9]). 

1.14 Corollary When K = Q the S (X is a partition of n) give a complète 

set of irreducible KS -modules. n 

We now obtain a necessary and sufficient condition for S^~ to be contained 

in S^. To do this, we first require a définition. 

1.15 Définition A partition X is said to be p-regular if no positive integer 

is repeated p or more times in X, otherwise X is said to be p-singular. 

1.16 Lemma If the partition X has y ̂  parts equal to j, then 

(i) for every pair of X*-polytabloids e and ë , , IT y ! divides <Qe ,e r> ; 
" * * j = l 3 -t t / 

(ii) for every X-polytabloid e there is a X-polytabloid e , such that 

< e t ' e t > = n (y.Oj. 
i=l 3 

Proof For the détails see James [9] , but note that (i) is proved by defining 
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an équivalence relation ^ on the set of X-tabloids by {t^} ^ "C*̂ ^ if and only 

if, for ail i and j , i and j belong to the same row of {t^} when i and j belong 

to the same row of {t^-^' (ii) is proved by defining t' for any X-tableau t by 

rêversing the order of the numbers in each row of t. 

1.17 Corollary If S^/ is defined over a field of characteristic p then 

S^/S^ S^/ 0 i s non-zero if and only if X is p-regular. 

Proof If X is p-regular, then .et'et*. ? 0 for the À-polytabloids e f c and e f c, 

by (ii) of the above lemma, thus 
.et'et*. 

If X is p-singular. 
. et' et*. 

= 0 

for every pair of y-polytabloids by (i) in the above lemma, thus 
.et'et*. 

Now, if char K •= p (prime on 0) and X is p-regular, let S^/= S^/S^ fl S^~*", 

then James [9] proves 

1.18 Theorem As X varies over p-regular partitions of n the Dy gives a complète  

set of inequivalent irreducible KS^-modules. 

Furthermore, the dimension of each Specht module sy may be determined. 

We have 

1.19 Theorem {e^Jt is a standard X-tableau} is a K-basis for sy. The 

dimension of S^/ is the number of standard tableaux of shape X. 

The proof of this theorem involves the détermination of certain éléments 

of K S n , called Garnir éléments, which annihilate a given polytabloid e f c, see 

Peel [18] or James [9] for détails. 
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2. The irreducible représentations of hyperoctahedral groups (Weyl groups of  

type Bn) 

We now indicate how the construction described above can be adapted to 

cover hyperoctahedral groups. The détails may be found in Al-Aamily [1] or 

Al-Aamily, Morris and Peel [2], although neither of thèse sources prove their 

results in the précise form required here. 

The hyperoctahedral group O n is the group of ail permutations a of 

{±1,±2, ,±n} such that a(-i) = -a (i) for i=l,...,n. Let (X,y) be a pair 

of partitions of n such that X is a partition of |X| and y a partition of |y|, 

and |X| + |y| = n. Note that |x| or |y| may be zéro. A double Young diagram 

[ , ] is defined in the obvious way. A partial order on double Young diagrams 

called the dominance partial order may be defined as follows: if [X,y] and 

[X',y'3 are double Young diagrams with |x| + |y| = |X'| + |y'| = n, then 

[X,y] > [X',y•] if |X| > |X»|, or if |x| = |Xf | , |y| = |y ' |, X > X' and 

y > y• . 

A (X,y)-tableau is one of the 2 n.n! arrays of integers obtained by 

replacing each square in [X,y] by one of the integers ±1,±2,...,in, with i and 

-i (i=l,...,n) not appearing simultaneously. A (X,y)-tableau t will be some-

times written (t,,t ) . A (X,y)-tableau is called a standard (X,y)-tableau 
A y 

if ail the integers are positive and t^ and t^ are both standard tableaux. 

For example (21,22) is a pair of partitions of 7, 
2 - 1 -5 6 
7 ' 3 4 

is a 

2 
(21,2 )-tableau. 

' 1 2 3 5 
7 ' 4 6 

is a standard f21.2 2)-tah1e 

If t is a (X ,y) -tableau and O e O , then at may be defined in the obvious 

way, for example, if o = 
1 2 3 4 5 6 7 
-5 6 -4 3 7 -1 2 

then O 
2 -1 -5 € 
7 ' 3 - 4 

6 5 -7 -Il 
2 ' -4 -3 * 

A row permutation of t is an élément o which permutes entries in each row of t 

and may change the sign of éléments in t . Let R be the group of row permuta
is 

tions of t, thus R f c is isomorphic to S, x S, x...xS, x o x^a x x o 

X, X_ X. y, y, u 
A column permutation of t permutes the éléments in each column of t and may 

change the sign of any entry in t^. Let C t be the group of column permutations 
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of t. It can be verified that if O £ G*n , then R . = OR C 1 and C_. = ac.a 1. at t at t 

2.1 Definition An équivalence relation *\* is defined on the set of (X,y)-

tableaux by t^ t2 if there exists a e R f c such that t 2 = at^. The équival

ence class containing t will be called the tabloïd (t). O n acts on the set of 

(X,y)-tabloids by a{t} = {at} which again is easily shown to be well defined. 

2.2 Définition If (X,y) is a pair of partitions of n, let Me,o be the vector 

space over K spanned by (X ,y )-tabloids. By extending the above action linearly 

to KO , we have that ME is a KO -module and we have 
n n 

2.3 Theorem M is the "permutation" module of O^ on the subgroup 

S-, x x S, x o x ...x o . M^'P is a cyclic KO -module generated by any 
A i À £ y i y ™ TTj ... n  

one (X,y)-tabloid and dim M*'P = 2 n | A ' W(C0) are A. +...+A. 

2.4 Définition If t is a (X ,y) -tableau, define K G KO by 

t -aec t 

(sgn a)a. 

The (X,y)-polytabloïd e associated with the tableau t is given by 

e t = K t { t } . 

The Specht module S for the pair of partitions (À,1J) is the submodule of 

x x S 
spanned by (X ,\i ) -polytabloids. 

2.5 Theorem Sy,u is a cyclic KO^-module generated by any one polytabloid. 

The corresponding combinatorial resuit to 1.7 is 

2.6 Lemma Let t be a (X,y)-tableau and t' be a (X 1,y')-tableau such that for 

i 

ail a, ^ f a occurs in t^ then ± a occurs in t^ . Suppose that a,b belong to 

the same row of ty implies that c,d belong to the same column of t^ f , where 

c = ± a , d = ± b and y = X or y. Then (X1 ,y 1 ) t> (X,y) . 
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2.7 Lemma Let t and t 1 be_ (X,y)-tableaux. The following conditions are  

équivalent : 

(i) {t'} is contained in et , 

(ii) there exist p e R t , , Y e c

t such that pt' = yt, 

(iii) a,b belong to the same row of t implies that c,d belong to the same  

column of t , where c = ±a, d = ±b and y = X or y. 

2.8 Lemma Let t be a (X -tableau and t' a_ (X ' ,y ')-tableau. If there 

exist a,b in the same row of t^, such that c,d are in the same column of t^ , 

where c = ± a , d = ±b and y = X or y then K t ( t
1 } = 0. 

By a similar method to that used in the case of the symmetric group we 

can now prove 

2.9 Lemma Let t and t' be_ (X ,y ) -tableaux. 

(i) If_ { f } is not contained in e f c then ^ { t 1 } = 0. 

(ii) Ijf { t 1 } is contained in e f c then K ^ t 1 } = t e t -

2.10 Lemma If (X ',y ' ) (X,y) and |X*| >̂  |X| then for any (X ' , y ' ) -tableau t ' 

and any (X,y)-tableau t, K {t'} = 0. 

Having defined the obvious bilinear form < , > on M^'^, we can now 

prove with only a slight modification of 1.12 

X.y 
2.11 Theorem Let U be a submodule of M . Then either 

If (X ',y ' ) (X,y) W(C0) 

From this it follows immediately. 

2. 12 Theorem SX'V/SX,]À n (S , P ) - L is zéro or absolutely reducible. 

2.13 Corollary When K = Q, the S^'*1 ((X,y) is a pair of partitions of n) 

give a complète set of irreducible KO^-modules. 

We now adapt the définition of p-regular to cover this case. 
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2.14 Définition A pair of partitions (X,y) is said to be p-regular for 

p ^ 2 when both X and y are p-regular. The pair (X #y) is said to be 

2-regular when |X| = 0 and y is 2-regular. 

The corresponding resuit to Lemma 1.16 is 

2.15 Lemma If the pair of partitions (X,y) has m\ parts equal to j 

(y=X or y) then 

(i) for every pair of (X ry )-polytabloids e^ and e^, , n mAJ mV« 

3=1 3 3 

divides 

< J V e t £ > ' 

(ii) for every (X,p ) -polytab 1 oid e there is a (A ,\i ) -polytabloid e such 

that 
*?t' etV 

- 2M 
oo 

n 
j=i 

( m X ! m ^ ! ) j . 
3 3 

From this follows 

2.16 Corollary If S , y is defined over a field of characteristic p then 

S A , y / S A ' y H ( S A ' y ) X is non-zero if and only if (A,y) is p-regular. 

Now put D A ' P = S A , y / S A ' y A <S A' P) . Then we have 

2.17 Theorem As (X,y) varies over ail p-regular pairs of partitions of n, 

the D A , y give a complète set of inequivalent irreducible KO n-modules. 

Furthermore, in this case also, the dimension of each Specht module S A ' y 

may be determined. 

2.18 Theorem (e t|t is a standard (X fy)-tableau} is a K-basis for S A ' y . The 

jimension of S A ' y is the number of standard tableaux of shape (X,y). 
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REPRESENTATIONS OF WEYL GROUPS 

3. Irreducible représentations of Weyl groups 

We first briefly présent the basic requirements about Weyl groups. As 

gênerai références, we give Bourbaki [ 4 ] and Carter [5], 

Let V be an £-dimensional real euclidean space with positive definite 

inner product f. 

$ C V is a root System if 

(i) $ is a finite subset of V which spans V, 

(ii) for a e $, 1 ^ $ = $, where Ta is a reflection in the hyperplane ^ot^^ 

defined by 

. . 2f(g,x) „ 
T (x) = x - — — — a 
a f(a,a) 

for ail x e V, 

(iii) if a,3 e $, ther 
2f(a,B) 
f (a,a) 

e zz , 

(iv) for a £ $ and k ^ il, -a £ $ and ka E O. 

W($) =< t (a e) is a finite group called the Weyl group of the root 

System $. For a fixed ordering in V, each root System $ contains a simple 

System TT such that 

(i) TT is linearly independent over IR , 

(ii) if a £ $, then a is a linear combination of the éléments in TT in 

which ail the coefficients are either ail non-negative or non-positive. 

Thus $ = $ + U $ , where $ + contains the éléments with non-negative 

coefficients and is called the positive System relative to the ordering 

determined by T T. The following facts will be used:-

(i) W($) = t (a e) 

(ii) there are |W($) | simple Systems in $ given by WTT , w £ W($), TT any 

simple System in $ (i.e. W($) acts transitively on simple Systems). 
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(iii) Let £ (w) be the minimal length of any expression for w e W($) as a 

H (w) 

product of the T^, a e ÏÏ and define sgn(w) = (-1) , w e W($). 

(iv) To each group there corresponds a graph called the Dynkin diagram; 

the Weyl group is irreducible if its Coxeter graph is connected. Irreducible 

Weyl groups have been classified and correspond to root Systems of type 
Al 1 D , C£ (£ > 2 ) , D£ (£ > 4 ) , E6, E 7 , E 8 , F4, Gr (For example. 

W(A£) - S£+1 U _> 1) and W(C^) = 0£ (£ 2).) 

A subsystem ¥ of a root System $ is a subset of $ which is itself a root 

System in the space which it spans. A Weyl subgroup W(H/) of W($) corresponding 

to the subsystem ¥ is the subgroup generated by MA , Ot £ MA The graphs which 

are Dynkin diagrams of Weyl subgroups may be obtained by a standard algorithm, 

due independently to Dynkin [6] and Borel and de Siebenthal [3]. This 

involves the extended Dynkin diagram which is obtained from the Dynkin 

diagram by the addition of one further node corresponding to the négative 

of the highest root. The Dynkin diagrams of ail possible Weyl subgroups are 

obtained as follows: Take the extended Dynkin diagram of $ and remove one or 

more nodes in ail possible ways. Take also the duals of the diagrams obtained 

in this way from $ the root System obtained from $ by interchanging long and 

short roots. Then repeat the process with the diagrams obtained, and 

continue any number of times. For example, the Dynkin diagrams of Weyl 

subgroups of 

(1) W(A„) are A. +...+A. , 
1 m 

m 

l 
r=l 

(i +1) = £+1, i, >i0 >.-. > i > 0 . 

r x — ^ — — m — 

( 2 ) W(C0) are A. +...+A. +C. +...+C. , 

1 xl 31 ^n 

m n 

r=l s=l 

W(C0) are A. +...+A. +C. +...+C. , 

(3) W(G2) are G2, A 2 , A 2 , A ^ + A ^ A ^ A ^ W(C0) are A. +...+A. +C. +...+C. (j>. 

Suppose from now on that $ be a root System represented by the Dynkin 
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diagram T, and that ¥ is a subsystem of $ with Dynkin diagram A. Choose an 

ordering on $ (which will remain fixed from now on) and let $+ and ¥+ be 

the set of positive roots in $ and ¥ for this ordering. The subsystems 

of $ with Dynkin diagram A which are conjugate to ¥ are given by w¥, w e W ( $ ) . 

+ + + 
The positive roots in w¥ are taken to be w¥ , i.e. (w¥) = w¥ . Let MA be 

the collection of positive Systems of subsystems of $ with Dynkin diagram A, 

that is, MA= {wH^lw e W(<î>) }. The éléments of MA are called ^.-tableaux. We 

note that if w e W ( $ ) , W(w¥) = wW(¥)w since x = WT = W ^ for all a £ Y. An 
wa a 

équivalence relation is defined on X^ by ^ = w^l for some w e WfHj^)-

The équivalence class {¥+} containing V+ under this équivalence relation 

will be called a à-tabloid. W($) acts on the set of A-tabloids, if for 

w £ W($) we put 

w{¥+} = {w¥+}. 

This is well defined, for if {VF+} = ̂ 2̂ ' then ̂2 = a^l f°r some ° e W * ^ ) . 

Then, since waw 1 e w W ( ^ J w ) - 1 = w(Cw^^) and w^* = wo*¥̂  = (waw "S (w¥*), we 

have { w ^ } = ( w ^ ) - Let K be an arbitrary field and let MA be the vector 

space over K whose basis éléments are the various A-tabloids. Extend the 

action of W($) on A-tabloids linearly on MA , then MA is a KW($)-module. 

3.1 Lemma MA is the permutation module of W(¥) on the subgroup W(¥). MA is 

a cyclic KW ($) -module generated by any one A-tablôid and dirn^M^ = | W($) | / | w OF) | . 

Proof W($) is clearly transitive on A-tabloids, for if MA and MA are 

A-tabloids, then MA = w¥* for some w £ W($) and then {V*} = { w ^ } = w{¥*} and 

clearly W(4>) fixes {4>+}. 

3.2 Définition H" is called a dual subsystem to ¥ if MA is a maximal sub

system in $/F. It is easily seen that if MA is a maximal subsystem in <!>/¥ 

so is w4" , w £ W(¥) . 
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3.3 Définition A subsystem ¥ in 0 is called an admissible subsystem if 

its dual subsystem is unique up to an élément of W(¥). 

3,4 Lemma If ¥ is an admissible subsystem in $ with dual 4" , a S V/F+ then 

a e w(4" ) for s orne w e W(¥). 

Proof If a e {VF+} then {±a} is a root System in {VF+} thus a is contained in 

some maximal subsystem. As ¥ is admissible, the resuit follows. 

Note Not ail subsystems are admissible, for example, A2 and A1-̂ "41"̂  are dual 

to Â ĵ  in G2-

3.5 Définition If ¥ is an admissible subsystem, with dual H" , let 

K ' = J (sgn w)w. 
* wew(Y') 

If V" is also a dual subsystem to {VF+} then {VF+} = aV for some a e W(¥) and 

K " = £ {VF+}(sgn w)w = O l (sgn w)w 
*eW(H") 

a 1 = C T K ^ G 1 . 

Let ¥ be an admissible System with Dynkin diagram A and with dual 4"; the 

à-polytabloid associated with H* is defined by 

= K^a{¥+} =aK'{¥+} 

We note that if T' is also a dual to and T1 = a4", O e W(¥) then 

{VF+} = {VF+} = K^a{¥+} =aK'{¥+} = ae^ , 

that is, e^ is unique up to an élément of W(¥). 

Now, if a e W($), 
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= K^a J (sgn w) aw = 
wew(¥» ) 

I 
wew or ) 

(sgn w)awa a 

= 1 
(we^crt" ) 

(sgn w)w a = Ka^.a 

and thus 

i-f a e ¥+ then a £ X , + -sgn w)w a = Ka^.asgn w) 

Let sA be the submodule of Ma spanned by ail A-polytabloids, then sA is 

called a Specht module, and we have 

3.6 Theorem S is a cyclic module generated by any one A-polytabloid.  

Proof Follows directly from above. 

3.7 Lemma Let W and % be admissible subsystems of $ with Dynkin diagram A-

The following conditions are équivalent: 

(i) {VF+} appears with non-zero coefficient in e ^ ' ; 

(ii) there exist p e W(¥) , y e W ( X 1 ) such that p¥+ = y% : 

(iii) i-f a e ¥+ then a £ X , + -

Proof Since e ^ = K ^ , ' {Xj } = ï 
wew ( XL • : 

(sgn w)w{JC+}, it follows 

immédiately that {VF+} appears with non-zero coefficient in eX if and only 

if there exist p e W ( ¥ ) , y e W(^T*) such that py+ = y%+ proving the 

équivalence of (i) and (ii). 

(ii) (iii) Without loss of generality, assume that a € ¥+. Thus if 

p e WOF) , a e p¥+ = y%*, a £ y ,+ , i.e. a £ £ ,+ since y e w ( ^ ' ) . 

(iii) — 4 (ii) if a e , + * then a J f+ and a e O/Y By (3.4), = pM" 

for some p e W(W) and thus y j£ ,+ = p¥* + for some y e W ( X ' ) • Hence 

Y*i+ = {VF+} fo^r some p e W (¥) , y e W (ïi ' ) . 
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3.8 Lemma Let_ ¥ and £ be admissible subsystems of $ with Dynkin diagram A. 

If there exists a £ ¥+ such that a £ Jt,+ then 

K £ '{Y+} = 0. 

Proof If a £ ¥ A jf + then Ta e W(H>) n W ( X * ) and (e-T ) {¥ } = { ¥ ' } - { ¥ } = 0. 

Since {e,T^} is a subgroup of W(Xy'), we select signed coset représentatives 

°lfG2'***'ak f°r ^e'Ta"^ in w ^ ' ^ and cfotain 

K >'{r} = (o +...+0 )(e-Ta){r} = 0. 

We can now prove 

3.9 Lemma Let Y and X be admissible subsystems of $ with Dynkin diagram A-

(i) _If (y*} does not appear in e g then k^ {y^"} - 0; 

(ii) If {r} appear s with non-zéro coefficient in {r}' then 

KJ^'{H,+ } = (sgn Y ) e ^ » for some y e W(j£ ' ) . 

Proof (i) follows directly from 3.7 and 3.8. 

To prove (ii), if {r} appears with non-zero coefficient in eX then by 

3.7, there exist p e W(¥) , y e W(t£') such that p¥+ = y X + and hence 

K X'{¥+} = K ^ ' { p Y + } = k y { X + } =kX (sgn y)= (K3C*)'{36 + } = ( s g n y ) e ^ 1 . 

The obvious bilinear form < , > is put on (as in sections 1 and 2) . 

Then, using exactly the same proof as in thèse two sections, we can prove 

3.10 Theorem Let U be a submodule of ^ . Then either U O sA or US A/s A ̂ g A X. 

Furthermore, S A/s A ̂  g A X js zéro or irreducible. 

There remain many problems. S A/s A ̂ g A X I f . when is u non-zero? 

Is there a concept in this more gênerai setting which corresponds to 

p-regular partitions in the case of symmetric groups? The partial order 

of dominance on partitions was crucial in that case in proving that the D^ 

for distinct p-regular partitions are non-isomorphic. Can we prove in our 
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case that the non-zero D are distinct if the corresponding root Systems 

are not of equal size? (cf. MacDonald [12]). What is the dimension of 

DA? 

3.11 Définition A A-tableau ¥ + is called a standard à-tableau if H,+ and 

its dual Y'+ are subsets of $ +

r that is, the positive roots of ¥ and its 

dual are composed of positive roots of $.{Y+} is a standard A-tabloid if 

there is a standard A-tableau in the équivalence class {r"}. e • is a 

standard à-polytablold if ¥ + is a standard A-tableau. 

3.12 Conjecture The dimension of S is the number of standard 

A-polytabloids. 

285 



A. O. MORRIS 

Références 

[1] E. Al-Aamily, Représentation theory of Weyl groups of type B n , 
Ph.D. thesis, University of Wales (1977). 

[2] E. Al-Aamily, A.O. Morris & M.H. Peel, The représentations of the 
Weyl groups of type Bn , J. of Algebra 68 (1981), 
298-305. 

[3] A. Borel & J. de Siebenthal, Les sous-groupes fermés connexes de 
rang maximum des groupes de Lie clos, Comment. Math. 
Helv. 23 (1949), 200-221. 

[4] N. Bourbaki, Groupes et algèbres de Lie, Chapetres 4,5,6, Actualités 
Sci. Indust. 1337 (Hermann, Paris, 1968). 

[5] R.W. Carter, Simple groups of Lie type (Wiley, London, 1972). 

[6] E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. 
Math. Soc. Transi. (2) 6 (1957), 111-244. 

[7] H.K. Farahat & M.H. Peel, On the représentation theory of the 
symmetric group, J. of Algebra 67 (1980), 280-304. 

[8] G.D. James, The irreducible représentations of the symmetric group, 
Bull. Lon. Math. Soc. 8 (1976), 229-232. 

[9] G.D. James, The représentation theory of the symmetric groups. Lecture 
Notes in Mathematics, Vol.682 (Springer-Verlag, Berlin 
1978). 

[10] G.D. James & A. Kerber, The Symmetric Group Revisited (to appear). 

[11] G. Lusztig, A class of irreducible representations of a Weyl group, 
Proc. Kon. Ned. Akad. van Weben, Ser. A, 82 (3) (1979), 
323-335. 

[12] I.G. MacDonald, Some irreducible representations of Weyl groups, Bull. 
Lond. Math. Soc. 4 (1972), 148-150. 

[13] S.J. Mayer, On the irreducible characters of the Weyl groups, Ph.D. 
thesis, University of Warwick (1971). 

[14] S.J. Mayer, On the irreducible characters of the symmetric group, 
Advances in Mathematics 15 (1975), 127-132. 

[15] S.J. Mayer, On the characters of the Weyl group of type C, J. of 
Algebra 33 (1975), 59-67. 

[16] S.J. Mayer, On the characters of the Weyl group oftype D, Math. Proc. 
Camb. Phil. Soc. 77 (1975), 259-264. 

117] M.H. Peel, Modular représentations of the symmetric groups, Univ. of 
Calgary Research Paper No. 292 (1975). 

[18] M.H. Peel, Specht modules and the symmetric groups, J. of Algebra 36 
(1975), 88-97. 

286 



REPRESENTATIONS OF WEYL GROUPS 

[19] T. Shogi, On the Springer représentations of the Weyl groups of 
classical algebraic groups, Comm. in Algebra 7 (1979), 
1713-1745 and 2027-2033. 

[20] T.A. Springer, Trigonométrie sums, Green functions of finite groups 
and représentations of Weyl groups, Inventiones Math. 
36 (1976), 173-207. 

[21] T.A. Springer, A construction of representations of Weyl groups, 
Inventiones Math. 44 (1978), 279-293. 

[22] T.A. Springer & R. Hotta, A specialization theorem for certain Weyl 
group représentations and an application to the Green 
polynomials of unitary groups, Inventiones Math. 41 
(1977), 113-127. 

Department of Pure Mathematics/Adran Mathemateg Bur, 
The University Collège of Wales/Coleg Prifysgol Cymru, 
ABERYSTWYTH, 
Wales. 

287 


