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INTRODUCTION 

Many problems in analysis have natural formulations as questions of contin­
uity of linear operators defined on spaces of functions or distributions. Such 
questions can often be answered by relatively straightforward techniques if they 
can first be reduced to the study of the operator on an appropriate class of sim­
ple elements which; in some convenient sense, generate the entire space. For exam­
ple., a linear operator mapping the Lebesgue space into a Banach space is 
continuous if and only if it is bounded on characteristic functions. The selection 
of an orthonormal basis which diagonalizes or nearly diagonalizes an operator on 

2 
the Lebesgue space L offers us a similar type of approach. 

The main these of the two papers in this volume is a description of a decom­
position into simple building blocks of elements in generalizations of the classic­
al Hardy spaces. In contrast to the Lebesgue spaces, these generalized Hardy 
spaces are not rearrangement invariant. Rather, they consist of functions (or dis­
tributions) which satisfy both size and cancellation conditions. In the case of 
holomorphic or harmonic functions the cancellation is implicit in the differential 
equation which the functions satisfy. In the case of the "real variable" theory 
the cancellation properties are different, but are still sufficient to allow estim­
ates substantially more subtle than those based solely on size considerations. 

The history of the classical Hardy spaces and their modern generalizations is 
rich and we will not summarize it here (the reader interested in this history 
could start with the book of Stein and Weiss [10], the survey article by Coifman 
and Weiss [3], the survey talks in [1] or the Proceedings of the 1978 AMS Summer 
Institute [11]). Much of the interest in Hardy spaces arose from the observation 
that they provide a useful substitute for the Lebesgue space . Indeed., many 
naturally occurring operators in harmonic analysis and in the theory of differen­
tial equations which are not bounded on the Lebesgue space L̂" are bounded on the 
Hardy space H*" . The following is an example of such an operator. Let us start 
with a function f(x) defined on the real axis in the complex plane. Let F(z) 
be its holomorphic projection to the upper half plane given by the Cauchy integral 
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F(z) = 1 
2iti J- 00 

f(t) 
t-z 

dt 

with z = x + iy , y > 0 . Now consider the boundary values g(x) = lim F(x + iy). 
y -0+ 

The mapping from f to g 3 cf is a continuous linear operator from L P to L P 

for 1 < p < oo . While this mapping is not continuous at the end points p = 1 

and p = » } it is a continuous map on , which is a large subspace of . In 

fact, Ĥ" was first defined to be the subspace of L"'" on which the operator C 

is bounded. It turns out that many other operators, apparently quite different 

from C , are. also bounded on (but not on L̂" ). 

A breakthrough in the understanding of this space H"̂  and its important 

generalizations to n dimensions was made by C. Feffermen and E.M. Stein in [4]. 

There, they present various descriptions of these spaces and their duals. Using 

their ideas it is possible to describe Ĥ" in terms of basic building blocks 

called atoms: 

Definition. A function a(x) (defined on R n ) is called an atom (actually, a 

1-atom) if its support is contained in a ball B , \\a\\œ < 1/|B|( l B l is the 

Lebesgue measure of B ) and [ a(x)dx = 0 . 

V 

We can now define the Hardy spaces in terms of these building blocks: 

Definition. A function f (defined on ]Rn ) belongs to the Hardy space Ĥ (]Rn) 

if there is a sequence of numbers X.. satisfying £^ |x..| < 00 and a sequence of 

atoms a. so that f = I? X.a. . The norm of f is defined to be the  
J 1 J J 

infimum of the expressions z|XjI with respect to all possible representations of 

f of the type just described. 

It is a theorem (see [6]) that this "atomic" space is., indeed, the classical 

space H1(Rn) . 

The atomic theory of Hardy spaces on R n is presented in [3] and [6]. 
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Several comments are in order. First, since J | a | £ 1 f°r a nY atom a , the 
space H"̂ (Rn) is a subspace of L̂  . In fact, it is a subspace of L̂" consisting 
of functions which have a certain subtle type of cancellation. If the condition 
that atoms have mean value zero were dropped from the definition then the resulting 

1 n 
space would be L (1R ) . Secondly, for many purposes, the atoms are the natural 
elementary building blocks on which to analyze various operators. Any linear or 
sublinear estimate that is obtained for atoms (often by means of a simple argument) 
extends to all of Ĥ" . For example, it is relatively straightforward to show that 
pseudodifferential operators (of order zero) map atoms into L^(Rn) . Hence, such 1 1 2 operators map H into L . Since such operators are also bounded from L to 
2 
L one can then use the theory of interpolation of operators to conclude that 

P P 
these operators are also bounded from L to L for 1 < p < 2 (that is, one 
can interpolate between H"̂  and \} and obtain . This is another important 
sense in which is a suitable and natural substitute for L*") . Finally, as 
was mentioned above, the spaces H^CF*1) were originally defined by the requirement 
that operators similar to the operator C described earlier be bounded. If the 
spaces are defined that way, then what we have offered as a definition is, in 
fact, one of the deepest results of the subject. 

We have just defined H^(Rn) as the space of scalar combinations of basic 
building blocks that are localized and satisfy a size condition as well as a can­
cellation condition. This type of approach can be extended to a very large range 
of other contexts (see [3], [8], [2], [7]). There are situations, however, in 
which the restriction to functions supported on balls is unnatural or inconvenient. 
Two such situations are presentsd in the two papers in this volume. In one, atoms 
are a bit too simple to use for proving that certain operators map a Hardy space 
into itself; in the other, the building blocks are holomorphic (or harmonic) 
functions and, thus, cannot have support in balls. 

Let us begin by describing the first situation. It is fairly clear that, if 
1 1 1 2 a(x) is an atom on ]R , then Ca € L (1R ) (use the L -theory near the support 

of a and use the cancellation property near infinity). It is not completely 
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clear, however, from this atomic definition that Ca is, in fact, in Ĥ(]R"'") 
(although it is true). Ca is not an atom since it does not have compact support. 
Nevertheless, it does have mean zero and has rapid decay at infinity. One can 
show that Ca is a sum of atoms which have as their supports the support B of 
a and the successive doubles of B . Furthermore, the coefficients in this sum 
of atoms decrease as fast as the terms of a geometric series. This configuration, 
an element of H^dR) which can be realized as a sum of "neatly stacked" atoms, 
which we call a molecule, occurs frequently. In fact, many of the operators to 
which we have alluded, that are bounded on Ĥ" but not on L"̂  , have the property 
that they map atoms uniformly into molecules. This fact (and its generalizations, 
for example to H P , p < 1) is one of the major themes of the second paper in 
this volume. The fundamental size and cancellation conditions which characterize 
molecules are captured by the following: 

Definition. A function M € L^(Rn) is a molecule centered at 0 (for H^R11)) 

if 
(J n|M(x)|2dx)(J jM(x)| 2|x| n + 1dx) n < C 
TR 1R 

and P M(x)dx = 0 . 
R 

It is a direct verification that an atom is a molecule. Conversely, as 
indicated above, every molecule can be written as a neatly stacked sum of atoms. 

The definition just given is well suited to analysis by Fourier transform 
techniques. For instance, if n = 1 , then M , the Fourier transform of the 
molecule M , is characterized by 

(f lM(?)|2d?)(f |M'(§) 12d§) < C , M(0) = 0 . 
R R 

It is straightforward to check that if a is an atom and m is a function satis­
fying Ml + ll?"1'(5 )||00 < 00 then M = ma satisfies the above condition. These 
facts form the outline of the proof that these multiplier operators map H"̂" bound-
edly into itself. 

Let us now pass to the other situation where the building blocks consist of 
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holomorphic (or harmonic) functions (and, hence, cannot be atoms). The methods 

used to obtain the decompositions in terms of these building blocks do not involve 

the theory of maximal functions developed by Fefferman and Stein. Rather, the 

decomposition is based on properties of the Bergman kernel for homogeneous domains. 

Notwithstanding this difference, the decomposition turns out to involve molecules 

of the type described above. The development of functions in terms of these 

building blocks is the main theme of the first paper in this volume. We shall now 

describe these results in more detail. 

— _2 

Let B(z , 5) = (1 - %z) , where z and £ belong to the unit disc D of 

the complex plane. The following result is proved in the first paper: 

Theorem. There exists a set of points j £ \ JLn D with the following property: 

A holomorphic function f00 is in L^(D) (i.e., J |f|dxdy < °°) if and only if 
„ D 

f = 
œ 

j = l 
X. 
J 

[B(z,Ç.)]2 

B(£j,£j) 

for scalar s \̂  with Zl| X ̂  | < 00 . 

The points are, roughly, a lattice with respect to the hyperbolic metric 

on the disc. The representation based on these points is a discrete analog of the 

following reproducing formula for holomorphic functions in L^(D) : 

f(z) = c|D 
f(C> 

rB(z,r)l2 

B(£j,£j) 
dÇ A d£ . 

The relation of this result to the theory of molecular decomposition is shown 

2 -1 
by the observation that the function which is z[B(z,Q.)] [B(£ .> £ . )] on D and 

1 2 

o when z £ D is a molecule for H (P ) . Thus, the last theorem can be combined 

with the molecular theory of Hardy spaces to show that if f is a holomorphic 

function in L^(D) and f(0) = 0 then the function F(z) given by 
F(z) = 

f(z) z £ D 

0 z € D 

1 2 
belongs to H (R ) . 

2 
Here is a different type of application of these ideas. Let L + be the space 
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of square integrable functions on the positive reals. Suppose k is a function 
2 

on the positive reals and H the linear map defined on L + by 
(Hf)(x) = 00 

0 
k(x + y)f(y)dy . 

Such operators are (the continuous analogs of ) Hankel operators. 
We wish to describe conditions on k which insure that the operator H is 

2 
a trace class map (i.e., a nuclear map) of L + into iteslf. It is not hard to 
see that the following are examples of trace class operators of this form: Let 
z be a point in the upper half plane, z = x + iy . Let e

z( t) ê tne unit vector in L 2 given by e (t) = J~2 y^^2e^zt and H the operator defined by + z z 
H f = (f , e )e" . This corresponds to the choice k(t) = k (t) = 2ye 1 Z t . z z z z 
Obviously, H is of trace class. Since absolutely convergent sums of sequences z 
of operators H are also trace class operators, we can use these examples to 
generate a large collection of trace class operators. We claim that, in fact, all 
trace class Hankel operators can be represented by such sums. Furthermore, only 
certain types of sums need be considered: 

Theorem. There exists a set of points { z j , j = l , 2 , 3, ... , in the upper 
half plane with the following property: the operator H is of trace class iff 
k(t) = ZX.k (t) for some sequence \\. \ such that z| \ . \ < °° . J z. j J 

As before, the points i z j! are selected so as to be, roughly, a lattice 
with respect to the hyperbolic metric. 

This theorem extends results of Howland and Rosenblum [5] and gives a new 
approach to recent results of Peller [10]. 

The basic idea of the proof is to show that H is of trace class if and only 
if a certain transform of k is in a certain Bergman space. Once that is shown, 
the previously described decomposition theorem for functions in the Bergman space 
can be used. Details and generalizations are presented in the first paper of this 
volume. 
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Let us kow turn to a more detailed description of the second paper. This 
work presents in detail the theory of representation of functions in the Hardy 

space H^(Rn) , of distributions in the Hardy spaces HP(Rn) , 0 < p < 1 , and 
illustrates how such representations can be used to study certain operators. The 
notion of molecule introduced by the authors is a highly generalized version of the 
definition given above. The principal technical result that is proved is that a 
function (or distribution) belongs to a Hardy space if and only if it can be writ­
ten as an appropriately normalized sum of molecules. This result is then used to 
give a systematic treatment of various classes of operators of interest in harmonic 
analysis. For example, sharp results are obtained for fractional integral opera­
tors and for multiplier operators satisfying conditions of the Hormander type (as 
explained above, this is done by estimating the images of atoms and showing that 
they are molecules). 

This paper also develops the theory of molecular decomposition for Hardy 
2 

spaces of functions defined on subsets of R for which the integrability condi­
tions are given with respect to measures other then Lebesgue measure. Although 
the results are rather technical, there are a number of direct applications. 

2 
Perhaps the most startling is the one mentioned above: if F on R is holomor-

1 2 

phic on D (or, merely, harmonic) and is 0 outside D , then F G H (R ) if and 

only if F € LL(R2) (provided F(0) = 0) . Actually the second paper presents a range of atomic and molecular decomposi­
tions for each fixed HP(Rn) , 0 < p < 1 . The different decompositions correspond 
(among other things) to different descriptions of the dual spaces of HP(Rn) . 
Once the different decompositions are shown to yield equivalent norms on HP(Rn) , 
one can conclude that the various descriptions of the dual space are equivalent. 
This yields equivalence relations between various spaces of smooth functions of the 
Morrey-Companato type. 

In a sense, the second paper can be considered to be a sequel of the survey 
article [3]. In the latter, one is presented with a theory of Hardy spaces in a 

7 



INTRODUCTION 

very general setting (on "spaces of homogeneous type") that deals with metric and 
measure theoretic properties many spaces have in common with R n . As a conse­
quence many of the properties peculiar to R n (for example, its differentiable 
structure and the presence of translations and dilations) were not exploited. The 
second article in this volume shows how the "finer points" of the theory can be 
developed in certain particular situations where additional structure is available. 
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