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REALIZATIONS OF A SINGLE VOLTERRA KERNEL
par

Peter E. CROUCH

ABSTRACT. - The input-output map of a nonlinear analytic system can be expan -
ded in a suitable domain as a Volterra series. The Volterra kernels,each of which
defines a term in the series,can be expressed in terms of the system data. In this
paper these expressions are used to realize a single term in the series, again di-
rectly in terms of the system data. This will lead in later work to a synthesis al-

gorithm for systems with finite Volterra series.

I.- INTRODUCTION, - It has been shown in BROCKETT [1], BROCKETT and

GILBERT [2], KRENER and LESIAK (7], that the input-output maps of a large
class of nonlinear analytic system have convergent Volterra series expansions.
In the linear and bilinear cases the Volterra kernels have well known expressions
in terms of the system matrices, KRENER and LESIAK [7] have provided similar
formulas for the Volterra kernels in terms of the vector fields and functions de-
fining the system.

Generalizing to the bilinear case P, d'ALLESSANDRO et al.[5] provided an
algorithm which synthesised bilinear realizations of Volterra series from the
Volterra kernels. Another method was given in BROCKETT [1] for the case of

finite Volterra series,

In GILBERT (3] and CROUCH [4], it was shown that a finite Volterra series
has a nonlinear realization in the form of a cascade of linear systems with poly-
nomial link maps. In CROUCH [4] it was shown that the state space of a minimal
realization (in the sense of SUSSMANN [6] ) of a finite Volterra series has a vector
space structure, and can also be written as a cascade of linear systems. However
to date no algorithm has been given which syntheses cascade realizations of finite

Volterra series, in general.
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The purpose of this paper is to provide a cascade realization of a single term
in a Volterra series expansion of a non-linear stationary system, directly in terms
of the system data. In conjunction with the previous work in CROUCH [4], this

will provide the necessary structure for the synthesis algorithm above.

II. - PRELIMINARY DEFINITIONS AND RESULTS.

The following non-linear analytic system will be considered :

M

X = f(x) +uglx), x(o):xo, x€R"”
{ y = h(x)

where f and g are analytic vector fields on RrR" (column n-vectors) and h

is an analytic function,

THEOREM, - KRENER+ LESIAK [7], BROCKETT[1], BROCKETT+ GILBERT [2].

If the equations with u=0, have a solution on [0, T] then for all integrable

T
u , satisfying f lul ds <t, and t sufficiently small, the input-output map of
‘o

non-linear analytic system can be written as a uniformly convergent Volterra

series on [0, T] :

© t 9 %1
(2) Y(t)=W () x )+ Z [ [ - W (t,0...0)(x_ ) ulo
(o]

iz1 o o ol

Since the Volterra kernels W, not only depend on the real parameters
1
t, 01 ... 0. , butalso on the initial condition X they are viewed as real
i
n
valued functions on IR

X — Wi (t, 01... Gi)(x)

To express these kernel functions in terms of f, g and h, some conve-

nient notation is introduced,

n
If a and b are analytic vector fields on IR, define a covariant deri-

vative Va b as the vector field :

X — (va b) (x) = va(x)
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REALIZATIONS OF A SINGLE VOLTERRA KERNEL

whose ith component is given by :

b, = L gy (a0

When b is an analytic function Vab simply represents the directional deriva -

tive of b in the direction a . An easy computation shows :

(3) V b-v, a-[abl=0
a

b
for arbitrary vector fields a and b, where [, ] is the Lie bracket. The

Lie derivative of a vector field b by a vector field a well be denoted by :
L_b=[a,b]
a

and higher order derivatives by :

st lael; ®b-b
a a a
If a is a vector field, let Ya denote the flow of a . Thus on some maximal

neighborhood of O0€IR depending on =x€IR
d
Ly O =aly,m6), v (0K x
Let Ya(t)# denote the differential of the local diffeomorphism Ya(t) ‘R - R

For t sufficiently small the one parameter vector field Ya(-t)* b(Ya(t) (x)) is

given by the convergent series :
T i
,2 t /“ L b (x)
i=o

and sometimes denoted by exp't La(b) (x) .

In the case where a=f and b=g set:

(4) g ©0...0)=7 g

The kernel functions are now described in the following result :
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THEOREM. - KRENER + LESIAK [7].

W (t,o...0 )x)=7 (x) v v v (ho v.(t)
n 1 n g f
go,) (0 ;) 8o )" &o)
W_(t) (x) = ho v, (1) (x)
COROLLARY. -
W (0,0t 0 -t) (V) (x) = W (L0, 0 ) (%) .
Proof : Let a be a vector field, b a function, and Y a local diffeomorphism,

then by definition of the differential :

(7, boY) (x) = 7, () POY = Ypa(x) P (VY*ab) oY (x)

where (Ysa) (x) = wa(Y (x)). Since
(¥, (0 £00)) () = (0, 1) ()

the corollary now follows by applying the theorem. QED.

The main aim of this paper is to find a realization of the p'th term
of the Volterra series expansion in equation (2) where the system is stationary,
that is f(xo) = 0. By appealing to the corollary this amounts to finding a realiza -

tion of the following input-output map when x=x

t G g
- 1 P-1 o,
(5) Yp(t) (X)—‘[)fo j; Wp(cl—t,...,op-t) (x)u(Ol)...u(op) do ... dq
whe re
(6) Wll)(ol. . Op) (X) = Vg(op)(x) Vg(o.p_l) PP vg(o_l) h

In fact the realization constructed is valid for all x€IR . The key observa -

tion in obtaining such a realization is the following result.

LEMMA, - Let a, b,al,. v ar be analytic vector fields and define a differential
operator on vector fields by :
d =V d=¢V v ..V v d
a
¢ r %ra 2%

Then the following identity holds.

v v -V v =V v v v v
(7) Lb(ca)+(Vab Cab) C(L a)+'2 A a
c izl r r-1 bi 1
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Proof : By using equation (3) the identity reduces to :
r
V Vv a=V Va+i vV V¥ LV ..V a
L
b ¢ c b e b(ai) a,

However this simply follows from the identity.

v - V.V a-v =
(8) dea 4 ba [b,d]a 0

which is valed for any vector fields a,b and d. Q.E.D.

§3. - The first stage in obtaining a realiz ation is to isolate the dependence
of W' on h. Let x = h(r)(x) denote the r'th derivative of h , where

for each x, h(r)(x) is a symmetric r-linear map (v . vr) - h(r)(x)(vl. LoV )

G —2n . - ! : .
R ,... yIR' =R . Itis clear from the definition of W}') in equation (6) that

it has an expansion of the form

. _ (1)
Wp(Gl. . .Op) (x) = h'"'(x) (gp(Ol. R

Denote this expansion by
9 wW'(o,...0) = H' R
(9) Lo o) = H (g )

where H'p is a linear function in the components of the vectors gl(Ol)(x), RN

gl(op)(x), Ces gp(cl. .. Op) (x) , with coefficients depending on x .

The terms in this expansion are grouped in the following way. For each s
1< s < p, consider those terms involving the s'th derivative of h only,
and in which g terms 1<j<gq , appear r, times, q=p-(s-1). Itis easily
shown that will be p !/(rl! ..t 1) (2072 ... (91)"9 terms in this group speci-

q

q q
fied by the integers (q, r...r ), which must satisfy i?j’l r=s, iZ_I i r=p.
q = L

By introducing the control dependent vector fields
.

t O
(10) xi(t) (x) =j‘ j'l. .. j‘l_lgi(cl-t, .. .,Oi-t) (x) a(ol). .. a(ci) doi. . .dc1
o o

it is easily verified that y_(t) (x) is a sum of terms of the form
———7T > ¢ r. >

1/ ! h(s)( t ! t t 2 t 'y

(r13 Ce rq ) x) (xl( )(x). . .xl( )(x) XZ( )(x). .. xz( )(x). .. xq (x))

where each term is due to the contribution of a group of terms as described above,

and is therefore specified by a set of integers (q, T rq). This sum of terms
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will be denoted by setting

(11) y (t)y= H (xl(t) oo x (1)

where Hp is a polynomial function in the components of the vectors
q
. . . p
t) ... t) . Not o .= ’ P =
Xl( ) xp( ) otice that since for each q 1);‘:1 ir=p X Hp(x1 xp)
HP((X xl) - ()\Pxp)) for 0 #A€IR . The coefficient of a term in Hp specified
by (q, T rq) is simply related to those of H‘p through the division by

rll ...r ! of the coefficient of any term in the group specified by the same

integers.

The realization of the input-output map given in equation (5) is now equivalent

to realizing the vector fields xi(t) 1< i< p, and applying Hp as in equation (11).

§ 4. - In this section the identity appearing in the lemma is used to provide a set
of non-linear differential equations for the vector fields g which are then

solved using a variation of parameters formula.

Recalling the definition of g(0) and gi(cl' .. oi) it is easily verified that

d/deg(c+g): Lfg(0+€) and hence

r
d
d te, 0O te,..., + = v R/ Y
/d€g ylote, ote 0: 1) =2 Vo o)L glo ve) " o +e)80HE)
i=1 r f i 1
v v v
+ g(0r+€)... g(0i+e)"' g(cl+e) Lfg(c+e) .

Setting a=g(o+e), b=1f, a.= g(oi+s) in equation (7) gives

d
/d€g_, (0+e, 0 +e,...,0 +e) = L

c+e,0. +e,...,0 +g) +
1 r

£ 8rnl 1
+

v v ..V f.
g, (0%, ... 0 te) glo te g(o te) g(ote)

The last two terms on the right hand side of this equation yield terms involving

second and higher derivative of f . Letting

F' (g...8_,)=7 LY Y f-v f
r °1 r-17 g(o) " glo) " glo)) g (0,...0)
the above equation can be written as
d = 1
(12) - /d€ gr+1(o+z, o te ... ,Gr+e)— -Lg ng(cﬁ:, ooy te )+ Fr+1(g1, R gr)

Notice that the resulting set of equations for g 1Si<€ p can be solved
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inductively using the variation of parameters formula. In fact

d _ _ '
- /d€ expe-L o+e o+s,...,crr+e) = expe Lf Fr+1(g1"'g )

£ 8rh ( 71
and hence by integrating with respect to t, between 0 and -0

g (G,G...Gr)=exp—G—Lfgr+1(0,0—0,...,Or—0)+

1 1
-0 ,
+"Io expe—Lf Fr+1 (gl... gr) de.

r+l

The '"initial condition' can be reformulated as a sum of derivatives of g
(as H' and F') since
P r
0,9 ...0)=V - oLV .
89 %= %o ) Tg0) Teo)) B
Thus letting

1
(13) €,4(09--.9)=G ,(g---¢,)
the expression for 8.4 Canmnow the written in the form
- o] _ '
14) gr+l(0 60t ..., 0, t) = p( 0)- L Gr+1(g1"‘gr) +
1
+I exp(t-s)- Lf Fr+1(g gr) ds .
§5.- Equation (14) is now reformulated in terms of the vector fields Xi(t) in

order to obtain the desired set of equations.

Using the definition of x (t) equation (14) can be written in the form
t

xr_,_1 j exp(t-o) f J r+1(g1‘ .. gr) u(ol). . .u(cr)) do. .. dcl)u(o)dc
o O O
q,
+J‘ j exp(t-s) fj:jol J“ "B (e g ) u). . u(o) u(o) do

do_... dcl)u(o) ds do.

The second term on the right hand side of the equation can be reexpressed, by

interchanging the order of integration between s and O to give

j(;exp (t-s) f f J r+1(g1' .. gr) u(o) u(Ol). ..u(o) do_...ds, do)ds.

By making the obvious definitions of the vector valued polynomial functions

Gr+1 and Fr+1 the following expression for er(t) is obtained
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t
xr_H(t) = j; exp(t-s)- Lf(FrH(Xl(s)’ e xr(s))+ u(s) Gr+1(x1(s). . .xl(s))) ds .

This is easily recognised as the solution to the equation

er(t) = -L; xr+1(t)+ Frﬂ(xl(t). ox (DHu(t) G

The main result now follws,

THEOREM., - The input-output map of equations (5) has the following realization
x = Lg% +ug xl(O) =0
x, = -Lf x,+ FZ(XI) +u GZ(XI) xZ(O): 0
= - + F .. =
xp Lf xp p(x1 x _1)+ u Gp(x1 x _1) xp(O) 0
y = H (x...x)

Fi s Gi and Hp are (vector valued) polynomials in the components of the state

vectors X .xp , satisfying the homogeneity relations (0% X€IR)
MFE (x...x )=FOx.. 4 % )8 e .x )=G0x.. ik )
S R T L s A i-1 T U 5 L e M i-1
p _ p
1N Hp(xl' ..x ) = H( X, X xp)

Note that F1 s Gi and Hp are relatedto f, g and h via the kernel
functions g; defined in equation (4) and F,l' , G'i and H;) defined in equa -
tions (12), (13) and (9) respectively. The solutions of the above equations are

expressed directly in terms of the kernel functions g, via equation (10).

The techniques involved here can easily be extended to multi-input, multi-
output non-linear systems using a generalization of the expression for the Volterra
kernels given in equation(4) (see CROUCH [4] ). Moreover since all the analysis
performed is of a local nature these results apply equally as well to non-linear
systems defined on manifolds. It is noted however that the covariant derivative
defined here satisfies the equations (3) and (8). That is the torsion and curvature

tensors vanish identically
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o
i

T(a,b) = 7 b-9a -[ab]

= =V Vv -V v - v
0= Rfa,b)c =9 % c-9 7 c-T, 3¢

Both these properties are used in the analysis and so other choices of covariant

derivative cannot be used.
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