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ALMOST A(mod $)- INVARIANT SUBSPACES 

by 

Jan C. WILLEMS 

0. - ABSTRACT . In this paper we define two new concepts in the context of conti
nuous time finite dimensional time-invariant linear systems. They are those of 
' almost ' [A(mod (B)-] invariant ' and ' almost controllability ' subspaces . It is 
shown that there exists a supremal almost invariant and a supremal controllability 
subspace contained in any given subspace of the state space, and an algorithm for 
their computation will be given. A feedback characterization of these subspaces is 
derived. The paper ends with an application of these ideas to the disturbance de
coupling problem. 

1. - INTRODUCTION. - One of the main innovative and useful circle of ideas 
which has been put forward in linear system theory in the last decade has been, 
without any doubt, the development of the notions of A(mod <&)- invariant and con
trollability subspaces. These notions have shown to be very useful on the theoretical 
level in making apparent the ' fine structure' of multivariable linear systems but, 
more importantly, they have been instrumental in solving a wide variety of some 
very convincing control theoretic questions (disturbance decoupling, output stabi
lization, tracking and regulation, decoupling, etc.) . In this paper we develop some 
related notions. Our study is set in the spirit and the language of the 'geometric' 
approach as developed by Wonham [l, ch.4, § 5 ] . Due to the space limitation, we 
can only provide the proofs of the main results . More details will appear in [2]. 

2 . - Consider the linear system £ : x = Ax+ Bu with x€ ^ = '• X , u€ IRm= : U 
and A and B matrices of appropriate dimensions, called the system matrix 
and the input matrix, respectively. We will consider £ as a family of trajecto
ries in state space X , i . e . , £ : = [x : IR-> X | x absolutely continuous and 
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3 u : IR-* U such that x= Ax+ Bu } . Our definition of £ basically comes down 
to the requirement : x(t) - Ax(t)€ : = Im B Vt . We will write £ as £ (A, B) 
when we want to emphasize its dependence on A and B . It is easily seen that 
for all F and all nonsingular R there holds : £ (A, B) = £(A+BF, BR) . Thus 
the set of all trajectories is 'feedback invariant'. 

3 . - For any given £ we will consider certain subspaces of X . The first set 
of definitions is standard and is included for completeness. The second set of de
finitions is new. 

3 . 1 . - Definitions . - A linear subspace VcX is said to be [A(modlB)-] 

invariant if Vx € V , 3 x : ]R-> X such that : (i) x € £ ; (ii) x(0) = x ;  o o 
(iii) x(t)€ V Vt . A linear subspace &c:X is said to be a controllability subspace 

if Vx , x J R , 3T>0 and x:IR->X such that : (i) x€£ ; (ii) x(0) = x , o 1 o 
x(T) = x ; (iii) x(t)€ft Vt . 

Invariant subspaces, controllability subspaces, and their applications are 
studied in much detail in the book of Wonham [l] . We now generalize these notions: 

3.2. - Definitions.- A linear subspace V <z X is said to be almost  a 
[A(modfe)-] invariant if Vx €V and e>0 3X : IR -> X such that : / o a e 
(i) x €£ ; (ii) x (0)=x ; (iii) inf l|x (t)-x|| = : d(x ( t ) ,V)<e Vt . E £ O ^ - - E £ 3. x€V 
A linear subspace & crX is said to^e almost a controllability subspace if 
Vx , x ,€R 3 T > 0 such that Ve>0 , 3X : R -» X satisfying: (i) x £ £ I o 1 a e e 
(ii) x (0)=x , x (T)=x. ; (iii) d(x (t), » )<e Vt . v / ev / o e v / 1 e a 

Thus, whereas an invariant subspace is a subspace in which a trajectory 

can remain, an almost invariant subspace only requires this trajectory to remain 

arbitrarily close. 

4. We will be interested in all invariant, e tc . , subspaces contained in a given 
linear subspace K of X . These will be denoted by 99(V) , !»M , % JK) , and 
9t , respectively, but we will drop X when X - X . Notice that 39 , e tc . , a 
are defined in terms of trajectories and thus feedback invariant. 
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5 . - Clearly ft(%) c 29(%) a 25 (%) and ft(?0 c ft (V) c= 25 (V) . An example of an 

almost controllability subspace which is not invariant is ft . Note that it is im

portant in the definition of almost controllability spaces that T is to be inde

pendent of e . An example of a subspace X in which there exists, Ve>T, a T and 

a x 6S such that x (0) = x , x (T ) = x. and d(x ( t ) ,£)<e V t , is e e o e e I e 

span {[ l0l) , with £ defined by A = [ ° * ] and B = [ 1 ] . 

6. - Our first theorem is an easy consequence of the definitions : 

Theorem. - The families , ^(K) , $ (*0 , and *R (V) are all closed under 

subspace addition, i . e . , V , V_€35(̂ r)=> V+V^C! 93(̂ 0 . Hence there exists an ele

ment V*€$(?0 such that V€$(V) Vc: V* . Similarly there exist analogously 
A A 

defined subspaces , V* _ and ft * a, a a, >( 

7. - The following algorithm will play a very essential role in the sequel : 

S£+1: ^ n ( A S ^ + B ) ; S^= {o} (ACSA) 

We will call it the almost controllability subspace algorithm. This algorithm 

has been studied by Wonham [l,p.l06] who calls it the 'controllability subspace 

algorithm' . However, in view of 15, it would seem that our nomenclature is more 

appropriate . 

Some properties of (ACSA) are given in the following theorem. A sequence 

of subspaces {ft. } = {ft,, ft^, . . . , ft 1 will be called a chain in ft if ft=3l&=>ft3 l 1 2 n' 1 2 
. . . =5 ft . Denote A : = A+BF , and n : = {l, 2, . . . , n} . 

n F 

Theorem. - (i) The sequence {sjt } is monotone nondecreasing ; moreover 

dimrç co X v k u R + X u+l u a oo 

(ii) S?? = inf {c£c X U - (A£+ft)} ; 
A 

(iii) S = ??*: = sup { i d K ! 3F and a chain {ft.} in ft such that 

£= ft^ AFft2+. . .+ A^'1 ftn) ; 
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(iv) = sup Ucr V | 3 F and a chain {fa.} in_ ft such that 
X = ».+ A.ft + . . . + AT 0 } . 1 F 2 F n 

Proof : (i) and (ii) are shown in [l, p. 110-111] . To show (iii) and (iv) notice 
first that it is easily seen recursively on |i that every space of the form 

let -1 \J- U 
ft + A B9+. . .+ A ft is included in S . It thus suffices to prove that Sv 1 F 2 F n \ K 
can itself be written in this form. This will again be shown recursively. It is 
obviously true for (J = 1 . Assume now that is of this form and notice that 
we may as well take = ft1 0 A^ 0 . . . 0 A ,̂"1 ft . Let ft'. be such that *C 1 F 2 F U- I 
B.eB'. = B. . with ft : - ft . Thus = ^fl (A S£ + ft) = ^H(S^+ ft'+ A ft' +. . . 

1 J 1-1 O /\ ^ ?\ I Jr Z 
+ A^ ^ ft' + ÂL ft ) . Now, s t t dV* and thus there exist linearly independent vec-F U F U K 
tors (i€^) in ft' + A ft' +. . . + A ,̂"* ft' + A^ ft such that S^+1= 0 

l 1 i1 Z r U r M- (J. 1 'C 
span {e , e , . . . , e0 } . In fact, since ^H(ft' + A f t ' + . . .+ A~ ft' ) = {0} , every 

1 2 u u k _ i 1 F 2 F u e . is of the form e . = A^ b.+ I! A„ b! , with b.., . . . , b„ € ft linearly inde 
I I F I , , F i, k 1 * kt 7 

k=l pendent and b'. , € ft' . Define now x. _ : = b. , . x. ^: = b'. + A^ b. , . . . , R I, k k i , l i i ,2 I, U F i x : = b« + A b'. + . . . + AU~ b.,x. , : = b. + A b'. + . . . + A^ b. = e. . i,|i i,2 F i,3 F l i,U+l i , l F i ,2 F I I 
k-1 Notice that x. , = A„ x. , + b'. , and that, since the A_ b. 's are l i-i,k+l F i , k i , U - k F i 

nearly independent, so are the x. ^'s (k€U , i€^_) . Define now the matrix £ 
by F " : x . , i- with r. , such that Br. = b*. . . Thus BF"x. = 3 I, k i ,k i ,k ^ ^ I, k i,U-k I, k 
b. , , whence x. , = (A + BF") b. . This yields the desired expression i,l»t-k i ,k F I 
for Ŝ t+̂  with ft . = span f b,, . . . , b„} and the new F ': = F+ F " on X M+l 1 I 
span {x. A (k€ia , i£ A) and F ' : = F on ft" 0 A f t ' ' 0. . .0 A ~̂̂ " ft" with l, k 1 F 2 r U 
{ f t ' ! 3 a chain in satisfying ft'^ 0 ft^+1 = ft. . B 

8.- The following feedback characterizations of invariant and controllability 
subspaces may be found in [ l] : 

8.1. V € $ » a F such that A Vcr V « AVer V+ft 
8.2. R€ <ft » 3 F, G such that R = < A lBG> . 

Here < A | f t > : = ft+Aft+... + A ~ ft is the set of states reachable 
from 0 along trajectories of E . 

The analogous characterizations of almost invariant and almost controllability 
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subspaces are more difficult to obtain but shed a great deal of light on the nature 

of these subspaces : 

Theorem. - (i) iff 3V€$ and B £ ft such that V = V+ R ; a a a a a a 
(ii) & €3* M£ 3F and a chain {fe.} in 8 such that 

ft = A +. . .+ An~ H . 
a l F 2 F n 

Let f : IR -* IR denote the step function, 6 : = f the Dirac delta, r ' its 

derivative, etc. If we use u(t) = rfi(t) as 'input' b £ we obtain x(0+) = x(0 ) + 

Br ; if we use x(t) = r f ^ ( t ) as 'input', we obtain x(0+) = x(0 )+ ABr, and if 

we use x(t) = r f^(t) , we obtain x(0+) = x(0 )+ A* * B r . By using smooth appro

ximations we get a trajectory which will stay close to x(0 ) + span [Br, ABr, . . ., 

A* ^ Br) . Thus the result in the above theorem may be explained by considering 

x= A x+ Bx and using inputs of the form S a. f^(t) . Remark, however, that F i 
it is necessary that one should be allowed to move in the directions Br, ABr, . ., 

i 2 (i) A Br in order to be able to use f in order to move in the direction 

A1"1 Br . 

9 . - We now proceed towards a proof of Theorem 8. Consider first the following 

proposition which is proven in [3, Lemma 6] : 

Proposition. - Consider the single input system £ : x = Ax+ bu with U = IR . 

Then given any XQ, X^ € flî : = Im b , T 4 0 , and e > 0 there exists x £ I! 0 C°° 

such that x (0)=x , x (T) = x, , and d(x (t),!B)<e Vt . e o £ 1 e 

10. - The following proposition yields the sufficiency of Theorem 8 in the single 

input case : 

Proposition. - Consider the single input system I! : x = Ax+ bu with U = IR . 

Then : = f A$+. . . + A 1 " ^ is almost a controllability subspace. 

Proof : It is easy to see that it suffices to consider the controllable case and 

that we may pick the basis in X to our convenience. Moreover, since 

S (A+ bf, b) = £ (A, b) and R.(A, b) = R (A+ bf, b) it follows that we may as well 

start with a system in 'feedback canonical form' : 
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x, = , . . . , x. = x. , , . . . , x , = x , x = u . We need to show that 1 2 1 l+l n-1 n n 
span [e e } , where e. denotes the i-th standard basis vector in n-i+1 n 1 
IR , is almost a controllability subspace. Define for any subspace <£ , 
E /<£ : = [z X/X | 3X€ £ such that z(t) = x(t)/£ Vt } . Note that in general 
£/£ will not be a system (its paths need not have the 'state property'). However 
£/ft. ^ is a system in the sense we have defined it if we restr ict attention trajec
tories in C°° . By identifying the associated A and b matrices and using 
Proposition 9 on E/ft. 1 it follows that for any Zq€ X/ft. ^ , T ^ 0 , and e > 0 , 
there exists z € E/ft. , such that z (0) = z , z (T) = 0 , and d(z (t) , e i-l e o e £ 
ft./ft. , ) < e Vt . This implies that for all x €ft. , T / 0 , and £> 0 , there 1 i-l o 1 
exists x € E such that x (0) = x , x (T)€ft. , , and d(x (t) , ft.) < e Vt . e e o e i-l e I 
From ft. we thus move to ft. . , from ft. . to ft. , e tc . , to f o } . This I i-l i-l i-2 
yields, by moving from x ^ ft. to 0 and from 0 to x ^ ft. (by taking T<0 
in the above argument), the claim of the proposition. • 

11. - From Proposition 10, it is easy to prove that every space of the form 
ft = ft, + A_ ft + . . .+ A** 1 ft with fft.} a chain in ft is almost a controlla-a l F 2 F n I M 
bility subspace. Indeed, ft may then be written as ft = E ft. with 

U.-l a i=l 1 
each ft. of the form ft. + A f t . + . . . + A^ ft. and ft. € ft . Now, each ft. is 

I 1 F 1 F 1 I I 
almost controllable. Consequently, since $ is closed under addition, ft € !K 

a a a 

12.- We will now show that every almost controllability subspace is of the form 
ft, + A ft0 + . . .+ a", * ft for some F and some chain (ft.) in ft . The proof 1 F 2 F n I 
is based on the following lemma : 

Lemma.- Assume ft 6 91 , with ft f l f t^fo] . Then ft ={0} . 
a a a a 

Proof : Assume 0^ x € ft . Then there exists, for any £ > 0 , an x € £ such 
o" a e that x (0) = x and d(x (t),ft )«5 e . Let X - ft0 Z , with Z=> ft , and write £ o £ a a 

x = (b ,z ) . Note that z (0) = z / 0 . Now, z satisfies a differential equation 
of the form z = A z + B b with ||b (t)|| ̂  e Vt . Clearly, for e sufficiently £ l e l £ £ 
small, it will be impossible to transfer z to 0 with b as control in T 
units of time (T independent of £ ! ), as required for almost controllability. 
This contradiction establishes the lemma. • 
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13. - The claim made in the beginning of section 12 can now be established along 
the following lines : let ft £ ft , and consider S?° as defined in section 7. 

a a ft 
a Now, E /S? defines a system and ft /S^° is almost controllable rela-% a № a a 

tive to it. This is easily seen by writing S~ as ft. © ft . .© ft and W 1 F 2 F n 
considering the compatible feedback canonical form Ll, p. 123J . In addition, since 

CO 
is the maximal subspace of ft which may be written in this form, 

= ft H (AS? + ft) which implies that the input matrix of E / s " ? intersected 
a a a 

with ft /S^° is [ 0 ] . Hence, by Lemma 12, ft / S?° = [O] and thus a № a ft a oo a a ft - . The result then follows from Proposition 7. 

14.- In order to establish Theorem 8 we still need to show that every V € $ 
a a is of the form V + ft . We will not give this proof in detail : it is a bit more a a 

involved then but parallel to the reasoning in 12 and 13. The lemma analogous 
to Lemma 12 is : 

Lemma. - Assume V € $ with V f*l ft = {0 } . Then V 6 59 .  a a a • a 

This lemma applied to the system ^ / S ^ will establish that 
V = V+ ft* Tr with V€* . a a, V 

a 

15.- Theorem 8, Proposition 7, and the results in Wonham [ 1, ch. 4] culminate 
in the following algorithms : 

Let Ji+1 
X 

= X n A -1 V 
r + ft ) ; V°= X , 

v 
v = X n (A s £ + ft) ; S°= {0} . 

Then v t V oc - lim x 
V 

U -4 co 
ft* 

a, 5V 9 
oo = lim x 

n; 
U-*oo 

V 
s 

r m _co + x + 1 

d d oo D r r r ÔO 
V S ,oo 

r 
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These algorithms are easy to set up numerically if A, B and X are numeri
cally specified which is of course indispensable if any of this is going to be rele
vant in applications. 

16.- There are various special types of (almost) invariant subspaces : 

Definition.- V€$ is said to be a coasting subspace if ft* = [o] ; ft£ ^ is  y a 
said to be a sliding subspace if ft*^ = {0} (equivalently - {0} ). 

a a 
The basic types of almost invariant subspaces are : coasting subspaces $ 

(2 I <2 is a flow described by (A+BF)|# with F such that (A+BF) $ <$ ) , 
controllability subspaces ft (2 | ft is controllable), and sliding subspaces S 
(motions arbitrarily close to S are possible but non-zero motions in S are 
impossible. Moreover, in order to steer closer and closer to S , the inputs 
need to become more and mor e' di stribution like' and motions ' slide' along S 
with greater and greater speed). 

It is easy to show that every almost invariant subspace may be decomposed 
as V = ft* 0 $ 0 S with ft* 0 S = V* and ft* 0 S = ft* . I f ft* - [0] 

a Va Va Va Va a> Va Va 
then this decomposition is unique. 

17.- Every almost invariant subspace can be approximated arbitrarily closely 
by invariant subspaces. This approximation should be understood in the topology 
of the Grassmann variety Ga(X) of all q-dimensions subspaces of X . Thus 
«£ —<£ means that if £ = Im [ \ ] then for E sufficiently small 

e e-*0 0 
£ - Im [ * ] and || B II ^ 0 . 

Theorem.- Let V € $ . Then 3 V € 25 such that lim V = V .  a a e „ e a 

We will not give the (simple) proof. 
It is of interest to investigate the behaviour of the spectrum and of the feed

back gain on the s as £-*0, i . e . , to investigate I V£ ) and F as 
e-•O, where F is such that V c V . L e t V = ft ©£ © S . Then it is obvious -e FE e e a 
ly possible to choose V = ft © £ © V with lim V = S . Thus the spectrum of 

e E n e 
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V is arbitrary on ft , fixed on $ , but nothing dafinite can be said a priori about 
the spectrum on V . In any case, it is possible to choose the V such that : e e 

min fte[X} ——* -co . In addition, it is true that : min 
X€a(A^ | V ) X«a(A | v ) 

U I oo since V' has as its limit a sliding subspace. In addition 
lim ||F | V I! = co . These comments actually show that sliding subspaces are 

more akin to invariant than to controllability subspaces. 

We remark that % ̂  is precisely the closure of $ but that it need 
not be true that an almost controllability subspace is the limit of controllability 
subspace s. 

18.- The notions of almost invariant and of almost controllability subspaces as 
such do not have a direct generalization to discrete time systems : 
£ : = x(t+l) = Ax(t)+ Bu(t), t€ %, . The expressions which we found for V* and 
ft* however do have interesting interpretations in discrete time. These have 

a, a 
to do with the study of subspaces for which each point is reachable from 0 along 
this subspace and subspaces for which each point may be steered to 0 along this 
subspace. These have applications to be design of dead-beat controllers and ob-

19.- Application to the disturbance decoupling problem. 

The disturbance decoupling problem may be stated as follows : consider 
the system : 

x = Ax + Bu + Gw ; y = Cx , 

where u denotes the control, w the disturbance, and y the controlled  
output, when does there exists F such that feedback control u=Fx results in a 
closed loop system in which y is independent of w ? This compelling control 
theoretic question may be solved very elegantly by means of the theory of inva
riant subspaces. Indeed it is solvable [ l ,p .90] if and only if V* ^ 3 Im G . 

ker C 
Using almost invariant subspaces we can now also answer the question 

whether there exists F such that the effect of w on y becomes arbitrarily 
small. Indeed : 

247 



J. C. WILLEMS 

Theorem.- Let FT : t € IR+ -+ C e ' ^ ^ ^ G and let II.II denote the £ (0, co)  F p p 
norm. Given any e> 0 there exists F such that llH_ || ^ e V 1< p ^ oo  1- E F p 
if and only if V* _ Im G . e  * a,ker C 

Other applications include almost disturbance decoupling with stability and 

almost decoupling. We are presently working on the application of these ideas in 

singular 'cheap' control and filtering problems. 
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