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ASYMPTOTIC EVOLUTION OF A STOCHASTIC CONTROL PROBLEM
WHEN THE DISCOUNT VANISHES

by

R. TARRES

Here we are studying the minimization problem of an integral discounted
funtional, on a set of non explosive and non constrained diffusions ; the running
cost is "weakly coercive', which leads us, using the dynamic programming method,
to characterize the optimal cost among the solutions of the solving equation, with
radiative conditions expressing the centripetal aspect of the optimal control. The
behaviour of the problem when the discount vanishes is then considered ; a limit
problem is defined and similarly studied ; the convergence results are analogous
to the ones obtained by J.M. Lasry in the case of a periodical running cost f8].

For details and others results, see ElO] and [11].

I.- STATEMENT OF THE PROBLEMS.

Let's consider the stochastic differential equation of Ito type

1) 2(0)=x, d&(t)= p(E(t))dt+odw(t),

where
w is a normalized brownian motion on the real line R
p>0 1is a constant (p =42 in order to simplify formulas)
PEA (A is the control set of our problem), namely p is a function

from IR into itself satisfying the following properties

p is weakly growing (this means that there exist positive constants

m
bp and mp such that Vu€ R |p(u)|€bp(1+ [ul " P))

p 1is lipschitzian on every bounded interval

there exists cPE]R+ such that vu€IR¥, —qu_l plu)s cp(1+ lul) .
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R. TARRES

We know that, for each initial state x€IR and for each control pE€p ,
this equation (1) has a solution gx b defined on [0, +oo[ ; this solution is unique
(pathwise uniqueness on each interval fo, T] ), and is a non explosive diffusion

process with diffusion coefficient pZ: 2 and drift coefficient p (see [1], E4],

(s, [91).

For each constant s (s>0), x€IR and p€A , the relation

+00
(2) T eop)=E [ gl ()+ipE_ ()] at
s 0 X, P X, P

defines the discounted cost of our problem ; the functions f€ CZ(]R ; ]R+) and

g€ Cl(]R ; ]R+) are given.
We are interested in the following two problems

- the problem (P ) : to minimize Js(x,p) , for pEA

X,

- what is the behaviour of (PX s) when the discount s vanishes ?

Remarks.- The controls are closed-loop deterministic ones.

- (Px S) is a stationary problem

- Constraint is imposed neither to the controls nor to the trajectories of
the controlled diffusion : the controls are only non explosive ones, and

X,

the processes § b evolve on the non bounded set IR

- In 1975, J.M. Lasry (see [8]) studied the problems above and obtained
interesting convergence results, in n-dimensional case, without cons-
traints on the controls, but with the restriction that g was a periodic
function, or that the diffusion EX, b evolves on a bounded set of R s
with reflection at the boundary. And he thought that, replacing such hypo-
theses by sufficiently strong coercivity hypotheses on the functions g
and { in the running cost, it should be possible to obtain similar con-
vergence results ; the idea of this conjecture is the following one : with
such coercivity hypotheses, the optimal control is naturally quite centri-
petal, that is to say it tends first to bring back the evolution of the pro-
cess in the region where g takes small values, and secondly, to take
in this region values for which f 1is not too large ; so that the situation

is rather similar to the one corresponding to the case where the diffusion
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is reflecting at the boundary of a bounded set. This conjecture is the pur-

pose of the present work.

II.- THE PROBLEM (P s).

i

It will be solved on the control set /\1 defined by p€/\1 if and only if
PEA and there exist c 61R+ and apé[O,l[ such that Vu€R¥*,

P
—,%'— p(u)< cp(1+ lur1p ) .

The method of solution is the dynamic programming one (see nj, [2], (3],

(6]1,081,012]). The solving equation of (PX s) is

Ry Tx€ER, -y'"(x)+ sy (x)+ h(-y'(x))=g(x)

where h=f* is the conjugate function of f (according to the convex analysis),

defined by Vz€IR, h(z)= sup [zu-f(u)] ; we assume that f satisfies the follo-
u€R

wing coercivity hypothesis :

(H,) there exists c0>0 such that Vu€R , f'"'(u)2 c_; therefore

hECZ(]R;[-f(O),+oo[) and Vu€lR, o<h"(u)<cl_
o

)

e}

Remark : In the problem (P ), with reflection on the boundary of a bounded
set (respectively in the periodi(;al case), we have a limit condition of Neumann
type on the boundary of this set (respectively the periodical condition), to charac-
terize the optimal cost among all the solutions of the solving equation ; in our pro-

blem, we don't have such conditions, and this characterization is obtained by means

of a "radiative condition''.

A solution of (Px s) on A is summarized in theorem 1 :

THEOREM 1.- We make all the above hypotheses, and assume also that g sa-

tisfies the growth and coercivity hypotheses

' is weakly growing

g
. there exists AEIR+ such that YV u€ R, I—zr g'(u)= -A

(,)

Then, for each fixed s> 0, there exists one and only one solution

2
yEC'MR;R) of (Rs) satisfying the growth and radiative conditions :
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y' is weakly growing

h'(-y'(.)) € A ("weak radiative condition').

Let Y denote this solution, and P denote the control defined by
—h'(_y! . = <
Vu€ R, ps(u) h'( ys(u)) ; then psE/\1 and Vpe/\1 , 7 xER , ys(x) Js(x,ps)
Js(x,p) ; in other words, for each x€IR, ys(x) is the optimal cost for (P )
X,

s

on A and P is an optimal control (independant of x ) for this problem.

Remark : Let's denote by A the subset of A defined by pé€ /\2 if and

2 1
. : % Y < .
only if p€A and there exists cpE ]R+ such that Vu€R¥, T‘;‘- plu)< €y then,

we have psE/\2 <A

I1II.- ASYMPTOTIC BEHAVIOUR OF (PX S) WHEN s VAHISHES.

This study leads us to introduce the limiting stationary problem

(Qx) :  to minimize W(x,p), for p€/\3 , where M(x,p) is defined by

T
T — +00 ’ 4

(3) MG p) = limint B[l (O)(p(E,_ (0,
0

for each x€IR and p€ Ay and where the control set /\3 is the subset of A,
defined by p€/\3 if and only if p€A and there exist two constants cp? 0 and

d >0 such that VuéR*, = <c -d |u| .
b Tu P epm vl

We shall solve this problem by means of coercivity hypotheses stronger than
those above ; a solution of (Qx) and the convergence properties are summarized

in theorem 2.

THEOREM 2.- We make all the hypstheses of theorem 1, and assume also that g

and h satisfy the coercivity hypotheses :
(H there exists K1> 0 such that Vu€R, h'"(u)Z K

3) 1

(H there exist A= 0 and B>0 suchthat YVu€R¥, 'lu:"g‘(u)? -A+B|ul .

&)

Let's consider the solving equation of (QX)

(Ro) ¥Tx€R, -v'(x)+\+ h(-v'(x))= g(x)
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Then, there exists a pair (A, v)€ Rx CZ(IR;IR) , unique (except for the addi-
tion of a constant for v ;thatis, if (Xl,vl) is another solution of (Ro) , then
X1= A and V=V is a constant) solution of (Ro) satisfying the '"strong radiative
condition' h'(-v'(.))é/\3

Let ()\O,VO) be this solution of (RO) and Py the control defined by

= o' . = g
Yu€R, po(u) h'( vo(u)) ; then po€A3 , and ’v'pé/\3 , Tx€ER , )\o u(x,po) Wx, p)
in other words, for each =x€R, )\0 is the optimal cost (independant of x )

for (Qx) and p_ is an optimal control (independant of x ) for (QX) .

Let's consider ys and pS defined in theorem 1 ; then, for each s>0,

pse/\3 . Furthermore, when s vanishes, the problem (Px s) converges to

’

the problem (Qx) in the following sense :

i =A_, limy' =v' , limy"=v" , 1 =
im sy o imy' vy imy =v im ps P,

s=0 s s=0 s=+ 0 s=+ 0

uniformly on all compact subsets of IR .

. 1 T
Remarks : XO— M(x, po) = lim T E j‘ [g(gx, p(t))+f(p(gx, p(t)))] dt .
T=+00 0
- The hypotheses of theorem 2 can be weakened : it is possible to replace (H3)
and (H4) by the following hypothesis (with the same conclusions) : there exist

constants 621, A20, B> 0, K1> 0, )\1> 0 and alé ]1,2] such that :

3-(11

%= 1

G

* 2 i) - 8
VuEIR,mg(u) A+ Blul -
Tu€ER, |u|>xl=h"(u)> Kl|u|1

- Theorems 1 and 2 are generalized to n-dimensional case (to appear).

- For other results concerning the one-dimensional case, see [10] .

IV.- PROOF OF THEOREM 1. (For details, see [10]), s >0 is fixed.

2
4.1.- Let ys€ C"(R;R) be a solution of (Rs) and suppose that y' isa
s
r
weakly growing function ; then for each p€A , ™0 and x€R, y (x)< Ef
s
0

e-StEg(gx’ p(t))+f(p(§x’ p(1:)))]dt+ e-STE(ys(gx’p(T))), and this relation becomes an
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equality if p= P = h'(-y's(.))E/\ .

This property is a consequence of the Ito formula applied to the process
-st
a defined by n (t)=e s y (8 (t)) ; then it is sufficient to write the
5,X%,p $,X%X,Pp s X,p
mathematical expectations, using (Rs) and the definition of h .

4.2. Lemmal.- If ¢ :R-IR is a weakly growing and measurable function,

and if p €/\1 , then E(cp(é'x p())) is a weakly growing function,for each x€R.

Proof : It is sufficient to verify the result when ¢(u)= uZn’ n€N* . Let Tp be
2
the differential operator associated with equation (1) : fp:c%2+ P i . Since pé/\1 ,
there exist v= 0, =0 and B€10,1[ suchthat Vx€R, Tpcp(x)S Glp(x)) , where
Yué€ ]R+ , G(u) = \)uB+ n . It is well known that, if m(t)= E(cp(gx p(t))), then m'd
. ' = T .
exists on ]R+ and Vté€ 1R+ , md(t) E( pcp(ix’p(t))) (see [5]-and also [10] for

details : our hypotheses are not exactly those of [5]).

Therefore m'd(t)é EEG(cp(gX’ p(t)))] < G(m(t)) because of Jensen's inequa-
lity and concavity of the function G ; consequently, m(t)S r(t) where r is
the maximal solution, defined on ]R+ , of the differential equation wu'= G(u), with
initial condition wu(0)= x2n (for such results concerning differential inequalities,

see [7]) ; the verification that r is a weakly growing function completes the

proof.

4.3. Lemma 2.- Under the hypotheses of theorem 1, (Rs) has at least one so-

lution yS€ CZ(]R ;IR) such that y'S is weakly growing and h'(-y's(.))G/\2 .

Proof : For each s§>0 and T>0, let Vg TQ CZ(E-T,T] ; IR) be the solu-

tion of (Rs) on [-T,T] such that ET)=0. We have for and

Ys,T Ys,T

y's,T the following estimates :
There exist KE€N" and B1>0 such that for each >0, T>0 and
u€[-T,T]
1 2K B
= (i -h(0))< < + 21
(E) 5 (inf g-h(0) Sy L(u)Su —

1 :
the function vy defined by Yu€R, y(u)= S (inf g-h(0)) (respectively
y(u) = u2K+ §sl— , for sufficiently large K and Bl ) satisfies the relation :
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VYu€R, -y'"(u)+sy(u)th(-y'(u))<g(u) (respectively 3 g(u) ) ; the application of
extremality conditions to Vo o~V at a point where the minimum (respectively

the maximum) of this function is reached implies the formula (El) .

n
Let n1> 3 be an integer such that g'(u)= o(|ul 1) when |u|= +00 ; then,

for each s>0, there exist cs> 0 and c's> 0 such that, for each T>0

and u# 0, u€ (-T,T]

(Ez) -c - |ul < N Y'S’T(U)NCS
n
(E3) -c! -C_!u|1< ﬁ]h'(-y"T(u))éc's
n
the function v defined by v(u)=-c if u<O0 and v(u)= —c-u1 if u=0

n
(respectively v(u)= c+]ul 1 if u<o0 and viu)=c if u=20) for c=0
large enough satisfies the relation : Tu€ IR, v''(u)-sv(u)+(h'(v(u))) v'(u)= g'(u)

' : ; .
Ve, T the derived equation from (RS) ;
the application of a maximum method (analogous to the one used for <E1) ) leads

(respectively < g'(u)) ; we write for

to formula (E ; (E is a consequence of (E and the hypotheses concerning

) i (E,) )

f or h.

The above estimates are uniform with respectto T ; therefore,
{ys, T/l-u, U] ; T U} is relatively compact in CZ(E-U, U]J;R), and it is pos-
sible to construct by recurrence Vg o solution of (RS) on IR and a sequence

nt oo n- +0o
T ith T 2%, h that >0, 12 too
(T ey (With T, ®) such that ¥ U Ys, T /[-U,UIT > v s /[-U, U]

. 2 .
in c“([-U,U);R) and vy ,y's )Py satisfy also the above estimates.

4.4.- A solution Vg of (RS) in lemma 2 is also weakly growing and such

that h'(-y's(.))é/\1 ; hence, because of lemma 1, if pE/\l (then if p= ps)

- T+
e ST E(ys(gx p(T))) I ™, 0 ;the relations 4.1 complete the proof.
Remark : The uniqueness property of Vg (which is a consequence of its inter-

. . . T+
pretation) implies that Y U> 0, v, T/(-U, U] TS'UiO" YS/E-U vl in CZ([-U,U];IR).

V.- PROOF OF THEOREM 2.

5.1. Let (XO,VO)GIRXCZ(IR;IR) be a solution of (Ro) such that vl is
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weakly growing ; applying the Ito formula to the process a, p defined by

’

a. p(t) = -)\Ot + vo(éxy (t)) , and taking the expectatlons, with the help of (Ro)

and the definition of h , we get : A S = EI (g® (t))+f( x t)))] dt -
1 0 * ’
- vfr)(X)+ T E(Vo(gx p(T))) for each PE/\ , >0, and x€R ; and this relation

becomes an equality if p= P, = h'(—v'o(.))EA .

5.2. Lemma 3.- If ¢ : R+ IR is a weakly growing and measurable function, and

f pE/\3 , then for each x€RR, E(cp(gx p())) is bounded.

Proof : The proof is similar to that of lemma 1 ; using the same notations, since
pE/\3 , there exist v >0 and n> 0 suchthat Vx€R, I‘pcp(x)ﬁ Gl(cp(x)),

where VYué€ IR+ , Gl(u)s svju consequently, m(t) < rl(t) , where ) is

the maximal solution, defined on IR+ , of the differential equation u's= Gl(u) ,

with initial condition wu(0)=x ™| the verification that r is bounded completes

the proof.

5.3. Lemma 4.~ Under the hypotheses of theorem 2, (RO) has at least one so-

lution (Xo, v0)€ R x CZ(]R; IR) such that v'o is weakly growing and
h (-vo(.))E/\3

2
Proof : For each s>0, T>0 and a€R, let ys(a')I‘ C“(L-T,T);R) be the
(a) .
Vs

T’(T): aT and (a) "(-T)= -aT

solution of (R ) on [-T,T], such that Vg T
We have for ( ) and y(a) ' the following estimates :

ys, T
for each so> 0, there exist constants a>0, b>0, a0, b'>0, such that

for each SE]O,SO] , T>0 and ué€l[-T,T], u;fO

(E4) -alul-b |u| <-‘—‘—ys(a2r'(u)<-a|u|+b

]%Th L a‘u|+b+lu|] G]—lh ) "w)< -a'ul+ b

C

For such a constant a , there exist constants KEN*, B2>0 and TO? 0

such that, for each s€ ]O,SOJ , T> T0 and u€l(-T,T],

2K

(E6) inf g - h(0)< sys(?,)r(u)é sgu t B2 .

The proofs of (E4), (E5) and (Eé) are respectively similar to those of (EZ)' (E3)
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and (El) .

These estimates are uniform with respectto T> To ; consequently, there
exist for each s€]0, so] a solution zS of (Rs) on IR satisfying on IR the
above estimates ; it is clear, according to theorem 1, that z2.5 Vg for each

s€]o, So] , and that, for each U> To ,

(a) Tt+oo
c?(C- ) ; .
Vs, T/l-u,u] ST Vs/l-u,ul ® (C-u.uls R )
The new estimates obtained for Vg y; and h'(- y's()) are uniform with res-
pect to s€ ]0, 50] ; then there exists a pair (X vy ) € Rx CZ(IR; R ), solution of

(RO) and satisfying the following estimates :

inf g - h(0)< X < B_, and for each u€R, uf 0,
g o 2

n, a
—alul-b-ul =- "—Tv' ()< -alul+b

_1 1
v - < Q_ +b!'
| |h alu|+b+|u| )< "—[h u)) a |u( b

1ndeed because of the relative compactness of {y ;s€]0,s ]} in
s/[-U, U]

(E U,U];IR), one can construct such a isolutwn of (RO) and a sequence (Sn)nGIN
such that lim s =0, limy' =v' in C([-U,U];R), and lim s y =X  in
n S (o) n-’s (o)
0 oo n+0 n n=co0 n
c ((-u,ul; Rr).

5.4.- A solution (XO,VO) of (RO) in lemma 4 is such that v, is weakly

growing and h'(-v‘o(.))é/\3 ; hence, because of lemma 3, if p€/\3 (then if
1 t

p= po) - E(vo(§X p('r))) T %o ; the relations 5.1. complete the proof of the

results concerning (Qx) . The convergence properties stated in theorem 2 follow

from the construction of ()\O, vo) and the uniqueness property.

Remark : Let (X(Ta), g;i)

JE RxC2([-T,T];R) be the solution of (R ) such that
V,E[‘a)’ (T)=aT and v(

' = -aT , defined for each a€IR and T>0 (such
(a) ) ; if

a pair is unique, except for the addition of a constant for v a 1is the

T
constant occuring in the proof of lemma 4, then we have the following convergence
properties :
lim sy( a) )\(a) , lim y(a) =v(a)' , lim y( a) v(a)n uniformely on [-T, TJ;
, T 7T s, T T s, T" T
s=0 s=0 s=0
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(a)_, (a)_ (a)

lim and lim v '=v' , lim v = v'(') uniformely on all
Ttioo ° Tt+oo °  Tttam
compact subsets of IR .
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