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LIE ALGEBRAIC METHODS FOR THE CONTROL OF INFINITE 
DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS 

by 

Henry HERMES* 

INTRODUCTION. -

Let d , 8 be densely defined operators acting within a Banach space B 
of IRn valued functions. We consider systems of the form 

(1) dv /dt = G(vt)+ u(t) fl(vt) , Vq= cp€ B 

where the control u is Lebesgue measurable with values |u(t)| ^ 1 , and unique 
solutions of (1) are assumed to exist for small t > 0 . An observation of (1) is a 
continuous linear map g : B -+ TR . 

Let v̂_ denote the reference solution, at time t , corresponding to control 
u= 0 , and A(t,cp) c: B be the set of points attainable at time t by all solutions 
of (1) . We shall study two questions. The first, that of local controllability, is 
to derive computable conditions to determine when g(v̂ _)€ interior g(A(t,co)) f°r 
small t > 0 . This includes the study of IRn controllability, say for delay equa
tions, but not function space controllability, e.g. see [ l ] , [4] . The second ques
tion is that of finite dimensional realizations. Specifically, if t -» g(v (u)) is a 
solution t -» v (u) of (1), we say g admits a strong differential realization on 
1R . We shall give an example of an observation of a linear controlled parabolic 
equation which admits a strong (bilinear) differential realization on 1R . This 
realization has "singular a rcs" which may be studied by high order methods using 
Lie Theory. This illustrates the difficulties which may occur in "internally 
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controlled" systems of partial differential equations, i . e . systems where the 
control is not a forcing function or boundary value. 

I. - LIE PRODUCTS OF OPERATORS. 

Throughout, the symbol s will be used as the independent variable for a 
function v€ B . The infinitesimal generators we will consider shall be assumed 
to have the form 

(2) (Cv) (s) = fS((TSv) (s)) 

where for each s , TS is a closed linear operator acting within B (and these 
may change with the value s ) while fS : IRn -» ]R is real analytic. We assume, 
throughout, that our operators generate (at least locally) strongly continuous one 
parameter semi-groups, i . e . , that dv^/dt = C(v^) » VQ- Cp has a unique solution 
for small t > 0 . 

For example, consider the delay equation on IRn ; dx(t)/dt = W(x(t-1)), 
x(s) = c p ( s ) , - K s < 0 where cp€C[- l ,0 ] and W : R n R n is real analytic . 
Let C (t, cp) denote a solution at time t and define v^(cp) (s) = £(t+s,cp) , 
- K 0 . The map t -* vt(cp)€C[-l, 0] is a strongly continuous semi-group 
with infinitesimal generator 

(Cvt) (s) = 
d/ds v (s) = d/dt v (s), -1< s< 0 

W((Svt)(0))= W(vt(-1)) , s = 0 

where S is the unit shift operator ( i .e . (Sv) (t) = v(t-l)) . Here, referring to (2), 
fS(X) = X and TS= d/ds if - l * s < 0 while fS(\)=W(\) and TS=S if 
s= 0 . In the Banach space B= cC-1,0] , v^(cp) satisfies the equation 
d/dt v (co) = C(v ) , cp . Let C be an operator of the form (2) and f denote 
the derivative of f . We define ((DC(v) (s)) w) (s) = f,s((TSv) (s)) (TSw) (s) and 
the Lie Product of operators C, $ of the form (2) as ([C,<£ ] v) (s) = 
((DC(v) (s)) (<$ v)) (s)- ((D£(v) (s)) (Cv)) (s) . As expected, if C, S are linear ope
rators then [C, #] is just the commutator C&-SC . Furthermore, the above 

m s s 
concepts easily generalize to operators of the form (Cv) (s) = £ . f ..((T v)(s)) 

s s V V . . . f̂  ^((T j^v) (s))' tne details and examples of computations can be found in 
[4], [5] . We introduce the notation (adC, S) = [C,<£] and inductively 

(adk+1 C,ef)= [C, (adkC,<*)]. 
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Now consider the equation (1) with G, H operators of the form (2) . Let. 
T| (cp) denote the solution, at time t , of dv^/dt = ^(vt) > VQ~ > anc^ Dr^ (cp ) 
the differential of the map cp -* Tĵ (cp) . In [4] we showed the 

DECOMPOSITION THEOREM. - Assume the maps t -+ ^ ( c p ) (s) and 
t -* Dr] (cp) (s) are real analytic for all s and that Dr| (cp) -> id in the strong 
operator topology as t •+ 0 . Then a sufficient condition that the composition 
Tĵ (̂  (cp, u)) be a solution of equation (1) is that 4^(cp,u) satisfy 

(3) dvt/dt = u(t) E°°=0 (-t)V/v ! (adVa,ß)(vt) , vo = 

Such decomposition theorems provide the key to the applications of Lie theory to 
differential equations and control systems, [6], [7] . 

Let g : B -* IR be continuous and linear, C an operator of the form (Z), 
?t(cp) the solution at time t of dv^_/dt = C(v̂ _) » VQ~ CP an<̂  define 
g#(C ) = lim d/dt g(^ (cp)) • Analogous to the case of control systems on manifolds, 

* t+-.o 1 
we associate with (1) the set of operators 

(4) ?l = {(adva,fc) -. v= 0,1, . . . } 

and let ^ \ c p ) denote the elements of ^ evaluated at cp . 

THEOREM (Local Controllability). - The observation g : B -> Rk of system (1) 
is locally controllable along the reference solution T| (co) corresponding to 
u= 0 (i .e. g(i1t (cp))€ intg(A(t,cp)) for small t > 0 ) if dim. span g* (cp)) = k . 

Proof : Form B=BXIR ; let w(t) = g(v ) € IR and (Z 
v 
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Define ^ 
Cp ' 

g(cp)J 
= {(adva, i ) 

cp 

g(cp)J 
V = 0, 1, . . . } and TT : B -> R be projec-

i k 
tions to IRK , specifically for i|fÇB , y€R , = y . Let A(t,cp)c B denote 

the elements attainable at time t by solutions of (i) corresponding to all ad

missible controls. The reference solution of (i) corresponding to u= 0 is 
vr 

L«(V. 

£ A(t,cp) .Clearly if v .̂(u) denotes a solution of (1) at time t correspon

ding to control choice u , then 
vt(u) 

g(v (u)) 
is a solution of (i) . It follows that 

(ii) n ( Â ( t , c p ) ) = g(A( t ,cp) ) . 

Since span $ cp * 
g(fo) 

is the "first order local set of directions" in which one 

can proceed via solutions of (i), from the inverse function theorem (see Cal , 

chap. I. § 5 , in particular corollaries 1, Is) one has 

(iii) gOl ) = H V 

dcv 
€ int TT (A(t,cp)) = int g(A(t,cp)) 

for small t > 0 if dim span TT (g1 CO 
g(cp 

) = k . To complete the proof one need 

only show that TT(^~ ' cp 
g(cp] 

~ g*(^(cp)) which is a straightforward calculation using 

induction. B 

As an application, we consider a tension controlled vibrating string. Let o 

denote density, and s = s(t) tension. The one dimensional equation of the vibra-

ting string is o b w/bt = b/bx (s(t)bw/bx) , where w measures deflection 

from the rest position. Choose u as a nominal value of s(t)/p , U >0 such 
o 

that u - U> 0 and the control u(t) = s (t)/p - U , with |u ( t ) |<U . Let o , o 1 2 bw/bx = v , bw/bt = v to obtain the first order system 

^ bv1/ot = bv2/bx , v1(x)=ro1(x) , 0 < x ^ 4 

bv2/bt = u &vV&x+ u(t) bvVbx , v2(x) - cp2(x) , 0^ x < I 

2 2 
where we assume the string is clamped at both ends so cp (0)= cp ) = 0 • Take 
C [0,^] to be those functions in C[0,^] which vanish at 0 and & and o 
B = C[0 , ^ ] x C [0,4] . The boundary data w(t, 0) = w(t. 4 ) = 0 is implicit in B 
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1 2 i i , if the constants chosen in recovering w from v , v are properly chosen. 

This is assumed. With Q = 
0 

u ö/öx 
o 

ö/öx 

0 
H = 

0 

ö/öx 

0 

0 

(ü) /(cp) = {(adV 0,ß)cp : v = 0, 1, . . . } = 
0 

Öcp*/&x. 

ö cp /Ox 

*2 2/* 2 
.-ö cp /öx J 

-2ö3cp2/öx3] 

L2u ö̂ cpV°x"̂ . 

92 *4 ^ 4 
2 u ö cp /°x o 

.2 4 2/. 4 .-2 u 0 cp /öx -

' ^ *5 2/* 5 -2 u 0 m /öx 
o ^ 

U V 05œVôx5 
o 

One may now readily check specific initial data and observations for local con-
1 2 trollability . For example, if cp (x) = (TT/4) cos(TTX/^), cp (x)= 0 the solution with 

u(t)= 0 (i .e. the reference solution) is w(t, x) = cos (A/u^ TTt/^ ) sin(TTx/^ ), i . e . 

at each time t , the position of the string is a scalar multiple of sin(nx/^) . 
1 2 

Take as observation g (̂v )̂ = v^(4/2) , g^(vt) - vt (^/2) » i • e • respectively the 

angle of deflection of the string at &/2 and the velocity of the point at &/2 . 

Computing shows rank g#(^(cp))=l » not 2 , hence the theorem does not imply-

local controllability of this observation. Physically this is expected since the 

initial data was chosen so that S|(v^) » the angle of deflection at 4/2 , would 

be zero for all t . On the other hand, the velocity of the point at &/2 , i . e . 

g^(v^) , can be locally controlled via tension. 

One may show that for any integer k there exists initial data cp , Cp and 

an IR valued observation g which is locally controllable along the reference 

via tension. 

II . - FINITE DIMENSIONAL DIFFERENTIAL REALIZATIONS. 

Consider a special case of equation (1) i . e . 

(5) dv /dt = Cvt+ u(t) b , Vq= cp 6 B 

where C is linear and b€B . By differentiating g(v (u)) with respect to t 

it follows that if there exists a mapping C^ : IR such that 
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(6) g* Cvt = C* g(v ) 

then a strong differential realization of g exists. If C has ker g as an 
invariant subspace, equation (6) may be used to define . This rather severe 
restriction leads one to "change the order of events". Given an equation of the 
form (8), suppose C has an invariant subspace , S , of co-dim k . Then any 
observation g having S as kernel does admit a strong differential realization. 
A specific example with entails a slightly more general evolutionary equation than 
(5) is 

Example 2.1. - Consider the parabolic partial differential equation 
2 2 

(7) bv /bt = b vt/^x + u(t) (&vt+bx+ sin x) 
v (x) = 2 cos x+ 2 . o 

Let Ŝ" be the one sphere parametrized by -TT ^ x < TT and consider equation (7) 
1 ? 2 

on S x [0, oo] . Let B = {w € £2̂ "TT' ^ : w(~n) = w(n) = °J > a vt= ^ v^bx , 
fav^= bv^/bx and b £ B be given by b(x) = sinx . For the observation we choose 

]_ TT i TT 
g = (gy g2) with gx(v ) = - J vt(x) sin x dx , g2(vt) = ~ J vt(x) cos x dx . Then 

-TT -TT 
S = span [l, sin v x , cos v x : v - 2, 3, . . . } = ker g while codim S = 2 and 
C, S : S-^S . To compute the strong differential realization, let v (x)= C7.(t)sin 

CO ^ ^ 
jx+ £. Y . (t) cos jx and form the equation d/dt g(v ) = g* Civ + u(t) g* fov + 

J-0 j 2 
u(t) g* b . Letting 0"̂ (t) = y^(t) , y^(t) = y2(t) tne differential realization on H 
is (y = dy/ dt) 

y - -y + u(t) (1-y ) , y (0) - 0 
(8) 1 1 2 1 

y2= -y2+ u(t) yx , y2(0)= 2 . 

If we consider the problem, for (7), of finding that measurable control u with 
| u ( t ) | < l such that g(v^) = (0,1) in minimum time t , this leads to the pro
blem of reaching (0,1) in minimum time by a solution of (8) . The method of 
[9, §22] may be used to show that the optimal solution of this latter "bilinear 
problem" is y^(t)= 0 , v2(t) - 2e * , a singular arc obtained with control u(t) = 0 , 
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