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ON INVARIANTS AND MODULI FOR LINEAR TIME-VARYING SYSTEMS 

by 

Michel HAZEWINKEL 

I. - INTRODUCTION. 

Consider a linear time - varying dynamical system 

(1.1) x = Fx + Gu , y = Hx 

where x(t)£IRn , y(t)€lRp , u(t) € IRm and where F , G , H are matrices of 
the appropriate sizes with coefficients which may depend on the time t . To fix 
the ideas suppose for example that the coefficients of F, G, H all belong to the 
field of rational functions over ]R . Then it makes perfect sense to consider 
bases changes of the type x = Sx where S is an nxn matrix also with coef­
ficients in IR(t) with nonzero determinant, Such a base change transforms the 
equations (1.1) into 

(1.2) x- = (SFS_1+ SS-1)x+ SG^,y= HS^x 

and at least in the algebraic sense one can ask about invariants, moduli and cano­
nical forms just as in the case of non-time varying systems ([3-6]). 

Solutions to equations like (1.1) with u(t) € IR(t) given, certainly exist as 
vectors with coefficients in some differential extension field (cf. [ll] , Cl3 ] , or [l4]). 
They also exist as "functions" albeit as multiple valued functions with poles and 
branching points if F,G or u(t ) have poles, cf. e.g. [9]. 

The main purpose of the present note is to point out that the results of [5, 6] 
also go through in a time variable setting like the one discussed just above. In 
fact, more generally, these results go through for systems 

(1.3) 5x = Fx+ Gu, y = Hx 

where the F,G,H are matrices with coefficients in any differential field k 
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with differentiation operator 6 (for a definition cf.2.1 below). Examples of 
such differential fields are 

(a) k =IR(t) or <C (t) , 6 = -7-
dt 

(b) k = real meromorphic functions or complex meromorphic functions, 6 =~ "̂ 

(c) k = IR (sin t, cos t , sinZt, cos 2t, . . . ), 6 = -7- . 
\ / v ' dt 

Thus when one specializes the results for abstract differential fields obtained 
below to one of these cases one obtains results for "real life" dynamical systems 
with time variable coefficients. 

The techniques used to obtain the results below are basically the same as in 
[5, 6] . Most of the (minor) difficulties are caused by the fact that differential al­
gebraic geometry is more difficult and certainly far less developped than ordinary 
algebraic geometry. The present note only outlines the definitions and results . A 
more complete version is [7] . 

II. - PRELIMINARY REMARKS CONCERNING DIFFERENTIAL ALGEBRA  
UND DIFFERENTIAL ALGEBRAIC GEOMETRY. 

A differential field k is a field together with an additive operator 6 : k •+ k 
which satisfies 6 (ab) = 5(a)b+ afi (b) for all a ,b€ k . Examples were mentioned 
in the introduction. If the characteristic of k is zero (as in all the examples 
given) then there exists a differentially closed extension differential field (k, 6 ) 
of k (cf.[l4]), i . e . a field such that every polynomial expression in a number 
of variables and their derivatives has a solution in K . E .g . there will be ele-
ments x̂  , x^ € K such that x̂  + (6 x )̂ (6 x^)+ x^ = 1 . If char(k) > 0 the ques­
tion of existence of a differentially closed extension field is open. But there exist 
in any case large enough extension fields K to play the role of the universal 
field Q of algebraic geometry. Just as an affine algebraic variety over k is 
the set of solutions in Qn of a set of polynomials in X , . . . , X with coeffi-

1 n 
cients in k , one defines an affine differential algebraic (d.a.) variety as the set 
of points in Kn , K big enough, which satisfy a set of polynomial expressions 
in their coordinates and their derivatives. There is an obvious Zariski type topo­
logy on Kn defined by taking as closed subsets all affine d.a. varieties in Kn 
and hence an induced topology on affine d.a. varieties . A morphism between d. a. 
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varieties is a map which can locally be described by means of rational expressions 
in the coordinates and their derivatives and a d.a. variety is a T^-space which 
locally looks like an affine d.a. variety. It now requires little imagination to de­
fine morphisms of d.a. varieties, d.a. groups, d.a. vectorbundles and d.a. 
actions of a d.a. group on a d.a. variety. In particular ordinary algebraic va­
rieties, . . . , over k are special kinds of d.a. varieties, . . . , over k . If 
Gx V-> V is a d.a. action of the d.a. group on the d.a. variety V then an 
invariant is a d.a. rational function f : V -* K such that f(gx) = f(x) for all 
x€ V , g€G for which x and gx are both in the domain of f . This defini­
tion of course agrees with the one of S . Lie in [lZ], modulo the changes caused 
by the present algebraic-geometric setting. 

III.- THE D.A. QUOTIENT VARIETY Mar = 1?T /GL . INVARIANTS.  m, n, p m, n, p n 
Let k be any differential field with universal extension K . For example 

k may be the field of rational or meromorphic functions over IR or (C , with 
6 = -~ . We consider equations 

(3.1) fix - Fx + Gu, y = Hx 

with x(t)€kn , u(t)€ k , y(t)€ k̂ * and F, G, H matrices of the appropriate 
sizes with coefficients in k . As a rule we shall write x instead of 6x . 

Let L be the d.a. variety of all triples of matrices (F,G,H) of m, n, p 
sizes nx n , nx m , pxn respectively. Let GL be the d.a. group of all nxn 
invertible matrices. We define a d.a. action of GL on L by 

n m, n, p 
(3.2) GL x L ~+ L , (F, G, H)S= (SFS-1+SS-1, SG, HS"1) . 

n m, n, p m, n, p 

Note that this is indeed a d.a. GL -action, but not a morphism of the algebraic 
variety GL x L into the algebraic variety L . Of course, this n m, n, p ° m, n, p 
action of GL^ corresponds to the transformation x Sx in state space in 

(3.1). 

Let (F ,G,H )€L . We define the nx (n+l)m matrix R(F,G) by m, n, p v / j 

(3.3) R(F,G) = (G(O)J G(l){ . . . 'iG(n)) 
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where G(i) is inductively defined by G(0) = G, G(i) = FG(i-l)-G(i-l), 2 , . . , n . 
More or less dually the matrix Q(F,H) is defined as 

(3.4) Q(F,H)T= (H(0)TJ H(1)T! ...iH(n)T) 

with H(0) = H, H(i) = H(i-1)F 4- H(i-l), i =1, 2,-. . . , n, where the symbol T de­
notes "transposes". (Note the sign difference). 

The triple (F,G, H) is said to be algebraically reachable (abbreviated "ar") 
if rank (R(F, G)) = n ; the triple (F, G, H) is said to be algebraically observable 
(abbreviated "ao") if rank (Q(F, H)) = n . These two conditions define open d.a. 
subvarieties of L which we denote Lar , La° . In addition we m, n, p m, n, p m, n, p 
define L a r ' a ° = Lar 0 La° 

m, n, p m, n, p m, n, p 
Of course the notions "algebraically reachable" and "algebraically observa­

ble" as defined above correspond to the usual geometric notions of reachability 
and observability in the cases where k is a field of rational or meromorphic 
function over JR or <C . Indeed the system (F, G, H) is ao iff Q(F, H) 
has rank n . Because of the nature of the functions involved this happens iff 
Q(F(t),H(t)) has rank n pointwise in t for all t except possibly a set of 
measure zero and this in turn means that (F, G, H) is completely observable 
in the usual geometric sense (cf.[l6], corollary 8.8). Dually one has that alge­
braically reachable corresponds to completely reachable in the geometric sense 
for such differentiable fields. 

Let J = {(0,1), . . . , (0, m) ; (1, 1), . . . , (1, m) ; . . . ; (n, 1), . . ., (n, m)} , n, m 
lexicographically ordered. We use J to label the columns of the matrices 
R(F, G) by assigning the label (i, j) to the j - th column of G(i). A subset 
a c J is nice if (i, j )€a ^ (i — 1, j) €a for all i, j . A nice subset of size n n, m 
is called as nice selection. Given a nice selection a , a successor index of rj 
is an element (i, j) € J \ a such that a U { (i, j)1 is nice . For every n, m 
j 6 {l, . . . , m } and nice selection a there is precisely one successor index 
(i,j ') of a such that j '= j . This successor index will be denoted s(ct> j) • 

ar (3.5) Nice selection lemma.- Let (F, G, H) € L . Then there is a nice  m,n ,p 
selection a c J such that det(R(F, G) ) / 0 . (Here R(F,G) is the  n, m a a 
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square nxn matrix obtained from R(F,G) by removing all columns whose  
index is not in or ). 

We now proceed as in [5, 6] . First , note that 

(3.6) R(SFS_1+ SS~\ SG) = SR(F,G) 

(because (SFS_1+ SS_1) (SG(i))-(SG(i))* - SFG(i)+ SG(i)- SG(i)- SG(i) = S(FG(i)-G(i))). 
Let a be a nice selection and let x = (x., . . . ,x ) € knm= k*1* . . . x kn . Using 

1 m 
(3.6) one now shows just as easily as in [5, 6] that there exists precisely one 
triple (F ,G,H)€Lar such that R(F, G) - I , R(F ,G) , .N=x. for m,n ,p a n ' s(a,j) j 
i = 1, . . . , m . It follows that if U = f(F, G, H) € L | det(R(F, G) ) ^ 0 } then 

a m, n, p a 
(3.7) U ~ GL * Kmn+np, U /GL - Kmn+np . 

a n a n 

For each nice selection a and x - (y,z)€ K n+nP iet (X) = (F (x), G (x), 
a a a 

H (x)) be the unique triple such that R(F (x), G (x)) = I , R(F(x),G (x)) , .N a a a a n a a s ( a , j ) 
is the j - th component of y- (y ,̂ . . . , y^) 6 (k )m, and such that H (x) = z . 

We now construct the d.a. quotient variety as follows ; again as 
in [6] . For each nice selection a let V = knm y knP and let 

a 
V ={x€V | det(R(F (x), G (x)) ) ^ 0 } . We now glue the V together by means <x3 a a a 3 a 
of the isomorphisms i|/ „ : V -*• V , which are defined by „ (x) = 

ap aB 3a a3 , 
Y« (Ffi (y),G (y), H (y))= (F(x),G (x),H (x))b where S=R(F(x),G (x))~ . p p p a a a a ot P 
This defines us a d.a. variety provided we can show that Mar is T, . 

m, n, p 1 
Note that by construction M = L /GL , in any case as sets. 

m, n, p m, n, p n 
Now let G . ,x be the d.a. Grassmann variety of n-planes in (n+1)-n, (n+l)m 

space. Then by (3.6) R induces a map g : M -> G , , x . One now 
/ i\2 m, n, p n, (n+l)m 

also defines h : L ^ ^ •+ K n̂+ ' by h (F, G, H) = Q(F, H) R(F, G) . Now note 
that similarly to (3.6) 

(3.8) Q(SFS_1 + SS"1, HS"1) = Q(F,H)S_1 . 

Combining this with (3. 6) we see that h(F, G, H)S) = h(F, G, H) , so that h indu­
ces a map h : Mar K^n+^ m^ . One now shows as in [6] that 

m, n, p 
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I , -j \ 2 
(g,h) : Mar G / ,\ y K n m^ is iniective which proves that 
VB ' m, n,p n, (n+l)m * J ^ 
Mar is T, and hence a d.a. variety. The maps g and h are d.a. m, n, p 1 
morphisms (defined over k ). 

(3.9) Corollary. - Mar is an irreducible quasi projective d.a variety. 

It is the quotient of Lar by GL in the category of d.a. varieties.  3 m,n ,p — n 

One also verifies with no trouble that Mar in addition enjoys the plea-
m, n, p 

sant quotient property that Mar (kf) - Lar (k')/GL (k') for all interme-n m,n ,p m, n, p n 
diate differential fields kcz k ' c K . 

T ar , ,ar , A ,ar, ao Let TT : L M be the natural projection. Then M the m, n, p m, n, p m, n, p 
image of L«ar' a° is an open d.a. subvariety of Ma and one shows as m, n, p m, n, p 

in [6] that the morphism h above is injective on ^ ^ ' ^ p ' *tS -̂maSe ŝ rea_ 
dily described. An (n+1) x (n+1) block matrix with blocks of size pxm 

A = 

A 
о, о 

A 
n, о 

A 
О, n 

A 
n, n 

is of the form h(F, G, H) for some triple (F, G, H) <= ЬаГ' a° is and only if the 
m, n, p 

following two conditions hold : (i) rank (A) = n = rank (A1), where A' is the ma­
trix obtained from A by removing the last column and row of blocks, and 
(ii) A. - A. .,. = À. . for all i , j €{0 , l , . . . , n - l ] . l+l, j i,j+l i , j 

(3.10) Corollary. - ^ m ' n ^ p ^s a quasi-affine d.a. variety. 

(3.11) Corollary.- Every differential invariant of GL acting on L  1 1 n ь m, n, p 
is a rational function in the entries of the matrix h(F, G, H) = Q(F, H) R(F, G) 
and their derivatives. 
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Note that L , M , M are defined by polynomials invol-m, n, p m, n, p m, n, p 
ving no derivatives, and hence are ordinary algebraic varieties reinterpreted 
within the context of d.a. varieties. On the other hand the definitions of 
T ar _ ar ,ao . . L , L do involve derivatives and so do the proiection map m, n, p m, n, p 

T ar > rar ,n i li* , >,ar>ao T,(n+1) mp TT : L -* M , the embedding h : M K and hence m, n, p m, n, p m, n, p 
the description of Mar,a° as a quasi affine d.a. subvariety. Note that if k m, n, p 
is one of the "function differential fields" mentioned in the introduction then 
Mar,a° is a certain space of functions which satisfy certain differential equa-m, n, p n 
tions . 

IV . - CANONICAL FORMS, UNIVERSAL FAMILIES, LIMITS. 

We can be brief about the matter of existence or nonexistence of global con­
tinuous canonical forms. On the one hand there exist of course the local canonical 
forms c. : U -» U for every nice selection a defined by cv (F,G,H) = 
(F, G, H)^, S = R(F, G) . On the other hand the same examples and construc-
tions used in [5, 6] show that global continuous canonical forms on L 

m, n, p 
exist if and only if m = 1 or p = 1 . This is not completely immediate from the 
corresponding result in the non-time-varying case, because, a priori, the cano­
nical form of a non-time varying linear system could be timevarying in the pre­
sent setting. There are similar analogues of all the other results of [5, 6] per­
taining to canonical forms. E .g . , there is a continuous canonical form on 
Lar (resp. La° ) if and only if m= 1 (resp. p = 1). m, n, p m, n, p 

Let us also note that Lar -» Mar is a locally trivial principal d.a. 
m, n, p m, n, p GL fibre bundle over Mar , in complete analogy with the situation in the n m, n, p 

non-time-varying case. 

It is also true that Mar is a fine moduli space for a suitable notion of m, n, p 
families of time-varying linear dynamical systems. And finally one also has 
"degeneracy" or "partial completeness" results analogous to those of [8] . 
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