Astérisque

J. W. Jenkins
 Invariant Functionals and Polynomial Growth

Astérisque, tome 74 (1980), p. 171-181
http://www.numdam.org/item?id=AST_1980__74__171_0
© Société mathématique de France, 1980, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Invariant Functionals and Polynomial Growth

> by
J. W. Jenkins

Recall that a locally compact group G is said to be amenable if there is an element $p \in L^{\infty}(G)^{*}$ such that i) $p \geqslant 0$,
ii) $\left\langle p, \delta_{g} * \psi\right\rangle=\langle p, \psi\rangle$ for all $g \in G$ and $\psi \in L^{\infty}(G)$ (here δ_{g} is the unit mass at g and $*$ denotes convolution), and iii) $<p, X_{G}>=1$, where X_{A} denotes the characteristic function of a subset $A \subseteq G$. In this note we consider the situation in which the "normalization condition" iii) is replaced by iii)' < p, $\theta>=1$, where θ is a given non zero, non negative element of $L^{\infty}(G)$. The first results on this problem were obtain by Rosenblatt [6] .

We begin with the following observation : if G is not compact and K is a compact subset of G then there is an infinite sequence of elements $\left\{g_{j}\right\} \subseteq G$ such that for any positive integer N,

$$
x_{G} \geqslant \sum_{i=1}^{N} \delta_{g_{i}} * x_{K}
$$

If p is an element of $L^{\infty}(G)^{*}$ that satisfies $\left.i\right)$, ii), iii)' for $\theta=X_{K}$, then for all positive integers N,

$$
<p, x_{G}>\geqslant \sum_{i=1}^{N}<p, \delta_{g_{i}} * x_{K}>=N .
$$

This contradiction shows that, in general, given a θ, the desired functional can exist only on a proper subspace of $L^{\infty}(G)$. Hence we begin by considering the smallest translation invariant subspace of $L^{\infty}(G)$ containing θ.

Definition 1.- A locally compact group is said to be type A if for any non zero, non negative $\theta \in L^{\infty}(G)$, there is a linear functional p
defined on

$$
S_{\theta}=\left\{\Sigma \alpha(g) \delta_{g} * \theta \mid \text { supp } \alpha \text { finite }\right\}
$$

such that i) $p \geqslant 0, i i)<p, \delta_{g} * \psi>=<p, \psi>$ for $g \in G$, $\left.\psi \in S_{\theta}, i i i\right)<p, \theta>=1$.

In order to state our first theorem we need to recall the notion of polynomial growth. Fix a left Haar measure on G and denote the measure of a subset A of G by $|A|$. For any positive integer n, let $A^{n}=\left\{a_{1} a_{2} \ldots a_{n} \mid a_{i} \in A\right\} \quad . \quad G$ is said to have polynomial growth if for every compact neighborhood of e in G, U, there is a polynomial p such that $\left|U^{n}\right| \leqslant p(n)$ for $n=1,2,3, \ldots$. The following theorem was first proved in [6] for discrete groups and in [3] for arbitrary groups.

Theorem 2.- A locally compact group with polynomial growth is type A.

Proof. We define a linear functional p on S_{θ} by setting $<\mathrm{p}, \Sigma \alpha(\mathrm{g}) \delta_{\mathrm{g}} * \theta>=\Sigma \alpha(\mathrm{g})$. It is obvious that p satisfies conditions ii) and iii) of definition 1. It only remains to show that p is positive, i.e. if $\Sigma \alpha(g) \delta_{g} * \theta \geqslant 0$ then $\Sigma \alpha(g) \geqslant 0$. For this purpose, let $U=U^{-1}$ be a compact neighborhood of e in G containing the support of α and such that $\left\langle X_{U}, \theta \gg 0\right.$. Set

$$
A_{n}=\int_{U^{n}} \theta(s) d s
$$

and note that $0<A_{n} \leqslant\|\theta\|_{\infty}\left|U^{n}\right|$. Hence $\underline{\lim \left(A_{n}\right)^{1 / n}=1 \text {. Thus there }}$ is a subsequence $\left\{n_{k}\right\}$ such that $A_{n_{k}-1} / A_{n_{k}+1} \rightarrow 1$. Now if $g \in \operatorname{supp} \alpha$ then $U^{n-1} \subseteq g U^{n} \subseteq U^{n+1}$, and hence, for such g,

$$
A_{n-1} \leqslant \int_{g U^{n}} \theta(s) d s \leqslant A_{n+1}
$$

Recalling that $\Sigma \alpha(g) \delta_{\mathrm{g}} * \theta \geqslant 0$, we have

$$
0 \leqslant \int_{U} n_{k} \Sigma \alpha(g) \delta_{g} * \theta(s) d s=\Sigma \alpha(g) \int_{g U} n_{k} \theta(s) d s
$$

Dividing the inequality by $A_{n_{k}}$ and taking the limit on k we have, since supp α is finite, $\Sigma \alpha(g) \geqslant 0$.

There is a particial converse to theorem 2 .

Theorem 3.- Suppose that G is a finitely generated, discrete, solvable group or that G is a connected group, and that G is type A. Then G has polynomial growth.

Proof. Suppose that G a finitely generated, discrete, solvable group or that G is a connected group, and that G does not have polynomial growth. Then by [4] and [6], there exist elements $a, b \in G$ and a compact neighborhood U of e in G such that if $[a, b]$ denotes the semi group generated by a and b, we have i) $a[a, b] \cap b[a, b]=\emptyset$ and ii) $s U \cap t U=\emptyset$ if $s, t \in[a, b], s \neq t$. Let $V=[a, b] U$. Then

$$
\begin{array}{rl}
\operatorname{supp} \delta_{a} * X_{V} \cap \operatorname{supp} \delta_{b} & * X_{V} \subseteq a V \cap b V \\
& =(a[a, b] \cap b[a, b]) U=\varnothing
\end{array}
$$

Thus $x_{V} \geqslant \delta_{a} * x_{V}+\delta_{b} * x_{V}$. Hence there can not be a functional p on $S_{X_{V}}$ satisfying the conditions of definition 1.
S_{θ} is the smallest subspace of $L^{\infty}(G)$ on which we might hope to find a translation invariant positive functional normalized with respect to θ. By contrast, the largest subspace is

$$
L_{\theta}=\left\{\psi \in L^{\infty}(G)| | \psi \mid \leqslant \mu * \theta, \mu \in M(G)\right\}
$$

where $M(G)$ denotes the algebra of all bounded, regular Borel measures on G. Further, instead of asking only for invariance with respect to convolution by point masses, one could require that $<\mathrm{p}, \mu * \psi>=\mu(G)<\mathrm{p}, \psi>$ for all $\psi \in L_{\theta}$ and all $\mu \in M(G)$. We will construct such functionals p, inductively, obtaining at each stage a
functional invariant with respect to a larger subalgebra of $M(G)$. This construction also requires continuity of the functionals with respect to the following norm, $\|\cdot\|_{\theta}$, on L_{θ}.

$$
\|\psi\|_{\theta}=\inf \{\|\mu\|| | \psi \mid \leqslant \mu * \theta, \mu \in M(G)\}
$$

Definition 4.- Let A be a subalgebra of $M(G)$. G is said to have A-invariance if for all $0 \neq \theta \in L^{\infty}(G)$ for which $0 \leqslant \theta \leqslant f * \theta$ for some $f \in L^{1}(G)$, there is a $p \in L_{\theta}^{*}$ such that
i) $p \geqslant 0$,
$\mathrm{ii})<\mathrm{p}, \mu * \psi>=\mu(\mathrm{G})<\mathrm{p}, \psi>, \mu \in \mathrm{A}, \psi \in \mathrm{L}_{\theta}$,
iii) $<p, \mu * \psi>=\int<p, \delta_{X} * \psi>d \mu(X), \mu \in M(G), \psi \in L_{\theta}$, $\mathrm{iv})<\mathrm{p}, \theta>=1$.

The following theorem and proof were inspired by Ludwig [5] .

Theorem 5.- Suppose G is a connected group with polynomial growth or that G is a compact extension of a nilpotent group. Then G has M(G)-invariance.

The proof of this theorem requires the following.

Lemma 6.- Suppose G has polynomial growth and that G contains normal subgroups H and K with $K \subseteq H$. Suppose further that each element of H / K is contained in a compact neighborhood that is invariant under the innerautomorphisms from G / K. Then, if G has $M(K)$-invariance it has $M(H)$ invariance.

Proof. Let θ be a non zero, non negative element of $L^{\infty}(G)$ and let $p \in L_{\theta}^{*}$ satisfying $\left.i\right)$ - iv) of definition 4 with respect to $M(K)$.

Let \dot{U} be a compact neighborhood of e in H / K that is invariant under inner-automorphism from G / K. Given $\varepsilon>0$, we define $f \varepsilon$, \dot{U} on H / K by $f_{\varepsilon, \dot{U}}(\dot{x})=(1+\varepsilon)^{-1}$ if $\dot{x} \in \dot{U}, f_{\varepsilon, \dot{U}}(\dot{x})=(1+\varepsilon)^{-n}$ if $^{\varepsilon}$ $\dot{x} \in \dot{U}^{n}-\dot{U}^{n-1}, n \geqslant 2$, and $f_{\varepsilon, \dot{U}}(\dot{x})=0$ if $\dot{x} \notin<\dot{U}>$, the closed
(and open) subgroup of H / K generated by \dot{U}. Since H / K has polynomial growth

$$
\left\|f_{\varepsilon, \dot{U}}\right\|_{1}=(1+\varepsilon)^{-1}|\dot{U}|+\sum_{n=2}^{\infty}(1+\varepsilon)^{-n}\left|\dot{u}^{n}-\dot{u}^{n-1}\right|<\infty .
$$

Furthermore, for $\dot{y} \in \dot{U}$ and $\dot{x} \in<\dot{U}>$

$$
\left|f_{\varepsilon,} \dot{U}(\dot{x} \dot{y})-f_{\varepsilon, \dot{U}}(\dot{x})\right| \leqslant \varepsilon f_{\varepsilon,} \dot{U}(\dot{x})
$$

Since $\theta \leqslant f_{o} * \theta \quad$ for some $f_{o} \in L^{1}(G)$,

$$
\left.\left.1=\langle p, \theta\rangle \leqslant<p, f_{o} * \theta\right\rangle=\int_{G} f_{o}(x)<p, \delta_{x} * \theta\right\rangle d x .
$$

Thus, $<\mathrm{p}, \delta_{\mathrm{x}} * \theta \gg 0$ on some open subset of G. Hence, for some $a \in G,<p, \delta_{a x} * \theta \gg 0$ for x is some open subset of $<\dot{U}>$.

Since $\left\langle\mathrm{p}, \delta_{\mathrm{k}} * \psi\right\rangle=\langle\mathrm{p}, \psi\rangle$ for all $\mathrm{k} \in \mathrm{K}$, we can define $\left\langle\mathrm{p}, \delta_{\dot{x}} * \psi\right\rangle$ for $\dot{x} \in H / K$ by setting $\left\langle\mathrm{p}, \delta_{\dot{x}} * \psi\right\rangle=\left\langle\mathrm{p}, \delta_{x} * \psi\right\rangle$. We define p_{ε}^{\prime}, \dot{U} on L_{θ} by

$$
\left\langle p_{\varepsilon}^{\prime}, \dot{U}, \psi>=\int_{H / K} f_{\varepsilon}, \dot{U}(\dot{x})<p, \delta_{\ddot{a} \dot{x}} * \psi>d \dot{x}\right.
$$

Fix $\dot{B} \in H / K$ so that

$$
(1-\varepsilon)^{-1}<p_{\varepsilon}^{\prime}, \dot{U}, \delta_{\dot{b}} * \theta>\geqslant \sup _{\dot{y}}<p_{\varepsilon}^{\prime}, \dot{U}, \delta_{\dot{y}} * \theta>:=\alpha,
$$

and define p_{ε}, \dot{U} on L_{θ} by setting

$$
<p_{\varepsilon}, \dot{U}, \psi>=\alpha^{-1}<p_{\varepsilon}^{\prime}, \dot{U}, \delta_{\dot{b}} * \psi>
$$

for all $\psi \in \mathrm{L}_{\theta}$.
We first show that $\left\|p_{\varepsilon}, \dot{U}\right\|_{\theta} \leqslant 1$. For this, suppose that $\psi \in L_{\theta}$ and that $|\psi| \leqslant \mu * \theta$. Then

$$
\begin{aligned}
& \left|<p_{\varepsilon}, \dot{U}, \psi>\left|\leqslant<p_{\varepsilon}, \dot{U},|\psi|>=\alpha^{-1}<p_{\varepsilon}^{\prime}, \dot{U}, \delta_{b} *\right| \psi\right|> \\
& =\alpha^{-1} \int_{H / K} f_{\varepsilon, \dot{U}}(\dot{x})<p, \delta_{a \times b} *|\psi|>d \dot{x} \\
& \leqslant \alpha^{-1} \int_{H / K} f_{\varepsilon, \dot{U}}(\dot{x})<p, \delta_{a \times b} * \mu * \theta>d \dot{x} \\
& =\alpha^{-1} \int_{G} \int_{H / K} f_{\varepsilon, \dot{U}}(\dot{x})<p, \delta_{a \times b z} * \theta>d \dot{x} d \mu(z) \\
& =\alpha^{-1} \int_{G}<p_{\varepsilon}^{\prime}, \dot{U}, \delta_{b z} * \theta>d_{\mu}(z) \\
& \leqslant \int_{G} d \mu(z) \leqslant\|\mu\| . \\
& \text { Also note that if } \dot{y} \in \dot{U}, \psi \in L_{\theta} \text {, then } \\
& 1<\mathrm{p}_{\varepsilon}, \dot{U}, \delta_{y} * \psi>-<\mathrm{p}_{\varepsilon}, \dot{U}, \psi>1 \\
& \leqslant \alpha^{-1}\left|\int f_{\varepsilon, \dot{U}}(\dot{x})<p, \delta_{a x b y} * \psi-\delta_{a x b} * \psi>d \dot{x}\right| \\
& =\alpha^{-1} \int\left|f_{\varepsilon, \dot{U}}\left(\dot{x} \bar{b} \dot{y}^{-1} \dot{b}^{-1}\right)-f_{\varepsilon, \dot{U}}(\dot{x})\right|<p, \delta_{a \times b} * \psi>d \dot{x} \\
& \leqslant \varepsilon \alpha^{-1} \int f_{\varepsilon, \dot{U}}(x)<p, \delta_{a x b} * \psi>d \dot{x} \\
& =\varepsilon<\mathrm{p}_{\varepsilon}, \dot{U}, \psi>.
\end{aligned}
$$

Choose a sequence of compact neighborhoods of e in H / K, \dot{U}_{n}, that are invariant under the inner-automorphisms from G / K and such that $\bigcup_{n=1}^{\infty} \dot{U}_{n}=H / K$. For each positive integer n, let $p_{n}=p_{1 / n}$, \dot{U}_{n}. By ω^{*}-compactness of the unit ball in L_{θ}^{*}, the sequence $\left\{p_{n}\right\}$ has a cluster point p_{∞}. Clearly $p_{\infty} \geqslant 0$ and, since

$$
\begin{aligned}
1 \geqslant<p_{n}, \theta> & =\left\langle p_{1 / n}, \dot{U}_{n}, \theta\right\rangle \\
& =\alpha^{-1}<p_{1 / n}^{\prime}, \dot{U}_{n}, \delta_{a_{n}} * \theta> \\
& \geqslant 1-1 / n,
\end{aligned}
$$

$<p_{\infty}, \theta>=1$. It is also clear that for $k \in K$ and $\psi \in L_{\theta}$, $<p_{\infty}, \delta_{k} * \psi>=<p_{\infty}, \psi>$ and hence that $<p_{\infty}, \delta_{\dot{y}} * \psi>=\left\langle p_{\infty}, \delta_{y} * \psi\right\rangle$ $=\left\langle p_{\infty}, \psi\right\rangle$ for $\dot{y} \in H / K$.

If $\psi \in L_{\theta}$ and $\mu \in M(G)$, then

$$
\begin{aligned}
<p_{\infty}, \mu & * \psi>=1 i m<p_{1 / n_{\alpha}}, \dot{U}_{n_{\alpha}}, \mu * \psi> \\
& =1 i m \int_{G}<p_{1 / n_{\alpha}}, \dot{U}_{n_{\alpha}}, \delta_{x} * \psi>d \mu(x)
\end{aligned}
$$

Since

$$
\left|<p_{1 / n}, \dot{U}_{n}, \delta_{x} * \psi>\right| \leqslant\|\psi\|_{\theta}
$$

the dominated convergence theorem gives

$$
<p_{\infty}, \mu * \psi>=\int_{G}<p_{\infty}, \delta_{x} * \psi>d \mu(x)
$$

Finally, note that if $\mu \in M(H), \psi \in L_{\theta}$,

$$
\begin{aligned}
<p_{\infty}, \mu * \psi> & =\int_{H}<p_{\infty}, \delta_{x} * \psi>d \mu(x) \\
& =\mu(G)<p_{\infty}, \psi>
\end{aligned}
$$

Therefore p_{∞} satisfies $\left.i\right)$ - iv) of definition 4.
Proof of theorem 5. If N is a normal, nilpotent subgroup of G such that G / N is compact and if $N=N_{1} \supset \ldots \supset N_{k}=\{e\}$ is the lower center series for N, then for each $i=1, \ldots, k-1, N_{i} / N_{i+1}$ has large compact neighborhoods invariant under the inner-automorphisms form G / N_{i+1}. It G is a connected Lie group with polynomial growth then the eigenvalues of Ads are of modulus 1 for all $s \in G$ (see [4] or [1], where the following fact was first pointed out). Let S be the solu-radical of G, LS its Lie algebra and $L S_{\mathbb{C}}$, the complexification of $L S$. By Lie's theorem, there is an ordered basis for $L_{\mathbb{C}},\left\{X_{1}, \ldots, X_{m}\right\}$ so that the matrix
representation for Ads with respect to this basis is upper triangular for all $s \in S$. Let V_{j} be the subspace spanned by $\left\{X_{1}, \ldots, X_{j}\right\}$. Then the action of Ads on V_{j} / V_{j-1} is multiplication by $\alpha_{j}(s)$ where $\left|\alpha_{j}(s)\right|=1$, i.e. Ads acts by rotation on each space v_{j} / V_{j-1}. Thus we can find subspaces $\{0\}=W_{0} \subset W_{1} \subset \ldots \subset W_{n}$ of $L S$, each invariant under Ads with $\operatorname{dim}\left(V_{j} / V_{j-1}\right) \leqslant 2$, and with Ads acting by rotation on each space $W_{j} / W_{j-1}, j=1,2, \ldots, n$. Thus W_{j} is an ideal in LS and if S_{j} is the correspondinc closed normal subgroup of S, each element of S_{j} / S_{j-1} has large compact neighborhoods invariant under the inner-automorphisms from S / S_{j-1}, and also G / S, since, G / S is compact.

If G is a connected group with polynomial growth, then there is a compact, normal subgroup K of G such that G / K is a Lie group with polynomial growth. The above argument applied to G / K produced the desired series of subgroups.

In order to show that polynomial growth is not sufficient to imply $M(G)$-invariance, as is the case with being type A, we prove the following.

Theorem 7.- Let A be a subalgebra of $M(G)$ that contains the point masses and is closed with respect to involution. If G has A-invariance then for each $f \in A \cap L^{1}(G),-1 \notin s p\left(f * f^{*}\right)$.

Proof. Assume there is an $f \in A \cap L^{1}(G)$ such that $-1 \in \operatorname{sp}\left(f * f^{*}\right)$. Then for all $g \in L^{1}(G),\left\|g * f * f^{*}+g+f * f^{*}\right\| \geqslant 1$, for other wise,

$$
\left[(g-1)\left(-f * f^{*}-1\right)\right]^{-1}=\left\{1+\left[(g-1)\left(-f * f^{*}-1\right)-1\right]\right\}^{-1}
$$

exists in $\mathbb{C} 1 \oplus L^{1}(G)$, contradicting the assumption that $-1 \in \operatorname{sp}\left(f * f^{*}\right)$. Hence, there is a $\varphi \in L^{\infty}(G)$ such that $\left.<g * f * f^{*}+g, \varphi\right\rangle=0$ for all $g \in L^{1}(G)$ and $<f * f^{*}, \varphi>=1$. Thus $f * f^{*} * \varphi=-\varphi$. Let $\theta=\|\varphi\|^{2}$. Note that for $h \in L^{1}(G)$

$$
\begin{aligned}
|h * \varphi|^{2}(s) & =\left|\int h(t) \varphi\left(t^{-1} s\right) d t\right|^{2} \\
& \leqslant\left[\int|h(t)|^{1 / 2}|h(t)|^{1 / 2}\left|\varphi\left(t^{-1} s\right)\right| d t\right]^{2} \\
& \leqslant \int|h(t)| d t \int|h(t)|\left|\varphi\left(t^{-1} s\right)\right|^{2} d t \\
& =\|h\|_{1}|h| *|\varphi|^{2} .
\end{aligned}
$$

Hence, $\theta=|\varphi|^{2}=\left|f * f^{*} * \varphi\right|^{2} \leqslant\left\|f * f^{*}\right\|\left|f * f^{*}\right| * \theta$.
Thus, there is a functional p on h_{θ} satisfying $\left.i\right)$ - iv) of definition 4 with respect to A. Now, if $g, h \in L^{1}(G)$,

$$
(g * \varphi)(\overline{h * \varphi}) \leqslant \frac{1}{2}\left\{|g * \varphi|^{2}+|h * \varphi|^{2}\right\} \in L_{\theta} .
$$

We define a bilinear form B on $A \cap L^{1}(G)$ by

$$
B(g, h)=\langle p,(g * \varphi)(\overline{h * \varphi})\rangle
$$

Clearly $B(g, g) \geqslant 0$ for $g \in A \cap L^{1}(G)$ and $\left.B\left(f * f^{*}, f * f^{*}\right)=\left.\langle p,| \varphi\right|^{2}\right\rangle=1$. Also, for $g \in A \cap L^{1}(G)$,
$B(\mathrm{~g}, \mathrm{~g})=<\mathrm{p},|\mathrm{g} * \varphi|^{2}>\leqslant\|\mathrm{g}\|_{1}<\mathrm{p},|\mathrm{g}| * \theta>=\|\mathrm{g}\|_{1}^{2}$.
Thus B is bounded, and if $g, h \in A \cap L^{1}(G), s \in G$,

$$
B\left(\delta_{S} * g, \delta_{S} * h\right)=\left\langle p, \delta_{S} *[(g * \varphi)(\overline{h * \varphi})]\right\rangle=B(g, h)
$$

Hence, for $g, h, k \in A \cap L^{1}(G)$

$$
B(g * h, k)=B\left(h, g^{*} * k\right) .
$$

Recalling that $f * f^{*} * \varphi=-\varphi$, we have

$$
0 \leqslant B\left(f^{*}, f^{*}\right)=-B\left(f^{*} * f * f^{*}, f^{*}\right)=-B\left(f * f^{*}, f * f^{*}\right)=-1 .
$$

This contradiction implies that $-1 \notin \operatorname{sp}\left(f * f^{*}\right)$.

A Banach *-algebra A is said to be symmetric if $-1 \notin \operatorname{sp}\left(a a^{*}\right)$ for all $a \in A$. Theorems 5 et 7 show that $L^{1}(G)$ is symmetric if G is a connected group with polynomial growth or if G is a compact extension of a nilpotent group. This was first proved by Ludwig [5].

Hulanicki [2], considered the following group : let D be a countable direct sum of \mathbb{Z}_{2}, and let

$$
\underline{D}=\prod_{d \in D}^{T}(D)_{d}=\left\{\left(X_{d}\right)_{d \in D} \mid X_{d} \in D\right\}
$$

be the direct product of D copies of D. Define $\tau: D \rightarrow$ Aut(\underline{D}) by $t(c)\left(X_{d}\right)_{d \in D}=\left(X_{d+c}\right)_{d \in D}$. Then $D \alpha_{t} \underline{D}$ is a solvable group and for each $s \in D \propto_{t} \underline{D}, s^{4}=e$. Hulanicki showed that $\ell^{1}\left(D \propto_{\uparrow} \underline{D}\right)$ is not symmetric, hence $D \propto_{\epsilon} \underline{D}$ is a solvable group with polynomial growth that does not have $M\left(D \propto_{t} \underline{D}\right)$-invariance. Hence even for solvable groups being type A is a weaker condition that having $\mathbb{M}(G)$-invariance.

Let $F(G)$ denote the subalgebra of $M(G)$ consisting of all measures with finite support.

Using the Krein extension theorem, one can easily see that G is type A if and only if G has $F(G)$-invariance. Hence polynomial growth implies $F(G)$-invariance. Using the same techniques as in the proof of theorem 2, on can show that polynomial growth implies $K(G)$-invariance where $K(G)$ denotes the measures with compact support, or even invariance with respect to algebras of measures that vanish sufficiently rapidly at infinitly. (In Hulanicki's example, for instance, one selects a sequence of subsets $U_{n} \subset U_{n+1}$ such that $U U_{n}=D \ltimes_{t} \underline{D}$ and requires the measure μ to satisfies

$$
\operatorname{Lim}_{n}\left|<u_{n}>\left||\mu| \quad\left(D \propto_{t} \underline{D} \ll u_{n}>\right)=0\right) .\right.
$$

It is not known how large a subalgebra will give invariance for arbitrary groups with polynomial growth.

References

1. Y. Guivarc'h , "Croissance polynomiale et périodes des fonctions harmoniques", Bull. Soc. Math. France, 101 (1973) p. 333-379.
2. A. Hulanicki, "A solvable group with polynomial growth and nonsymmetric group algebra", preprint.
3. J. Jenkins , "Folner's condition for groups with polynomial growth", Math. Scand. 3 (1974).
4. J. Jenkins , "Growth of locally compact groups", J. Funct. Anal. 12 (1973) p. 113-127.
5. J. Ludwig , "A class of symmetric and a class of Wiener group algebras", to appear in J. Funct. Anal.
6. J. Rosenblatt , "Invariant measures and growth conditions", Trans. AMS, 193 (1974) p. 33-53.
