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RAMIFICATION IN P-ADIC LIE EXTENSIONS 

by 

Benedict H. Gross 

(Princeton) 

Let T7 "be a complete discrete valuation ring, with residue field k 

algebraically closed of characteristic p > 0 . Let K "be the field of fractions, 

Kg the separable closure of K , K the algebraic closure of K , and 

= AutK(K) = Gal(Ks/K). 

If G is a p-divisible group over £f , i t s general fibre determines a con­

tinuous Galois representation: 

GL(dx,D n GL(dx,DA) 
A 

•where the are division algebras with center $ . When K has characteristic 

zero this representation is well-known; i t is given by the Galois action on the 

Tate module T(G) [lO]. When K has characteristic p , I will show how to define 

p as a Galois action on a generalized Tate module and will calculate i t s deter­

minant . 

In both cases the image of p is a closed subgroup of II GL(d ,DA ) and 

inherits the structure of a p-adic Lie group. I t carries two f i l t ra t ions: an 

arithmetic f i l t ra t ion by the upper ramification subgroups of , and an analytic 
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B. GROSS 

f i l t ra t ion "by the p-saturated subgroups of Lie theory. When char(K) = 0̂  Sen has 

shown that these two f i l t rat ions are related in a striking manner [7]; unfortu­

nately, his results hold for any p-adic Galois representation and have nothing to 

do with the group G . When char(K) = p the ramification behavior of an arbi­ 

trary p-adic Galois representation can be quite random [ l l ] , but i t seems that 

there i_s an interesting relation between the two fi l t rat ions when the represen­

tation comes from a p-divisible group over £T . Such a relation would reflect a 

favorable arithmetic property of p in the equicharacteristic case, much as T(G) 

enjoys a Hodge-Tate decomposition in the case of mixed characteristic [10]. 

In this paper I will present evidence for such a f i l t ra t ion relation when G 

has dimension one. In this case the ramification calculations can be made quite 

explicit ly, and one can appeal to the theory of formal A-modules when G has 

additional endomorphisms. I t is a pleasure to express my appreciation to 

Jon Lubin and John Tate, who taught me this subject and offered many helpful 

suggestions. 

§1. Review of ramification theory [8] 

Let K be a local field, with algebraically closed residue field k of 

characteristic p > 0 . Let vT̂  be the valuation on K with value group Z on 
K 

K* . 
If E is a f ini te separable extension of K , we may f i l t e r the set 

r = rE/K = H<*VE>K) 

as follows. Since E is total ly ramified over K , i t is generated by any 

uniformizing parameter 3 • Let e = [E:K] and define for x >_ 0 the subset 

r = {a e r: ev„.(ea-B) > x + 1} x K — 

For large enough x . , consists only of the identity homomorphism; further­

more this f i l t ra t ion is independent of the choice of 3 . 
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p-ADIC LIE EXTENSIONS 

We call x a break in the f i l t ra t ion if T ^ T , for a l l e > 0 . When  x x+e 
E is a Galois extension of K , the set r may be identified -with the Galois 

group and the f i l t ra t ion -we have defined coincides with the lower ramification 

f i l t ra t ion of Gal(E/K). In this case the breaks a l l occur at integers; in the 

general case the breaks may be rational, as (ga-3) may ramify over E . 

If x. = 0 is the only break in the f i l t ra t ion of r then E/K is tamely 

ramified (hence cyclic). We shall henceforth assume there are further breaks. 

Define the Herbrand transition function: 

(1.1) V K ( X ) = J | % a r d ( r t ) d t 

This is monotone increasing and piecewise linear. Let ip(x) be the inverse 

function on the interval [0,°°) and define the upper f i l t ra t ion of r by set-

ting r = r^(y) y >_ 0 . The upper breaks are the values of y such that 

ry+e f ry for a l l e > 0 . 

The lower numbering passes well to a subgroup, and the upper numbering to a 

quotient. To be precise: let L be a f inite Galois extension of K containing 

E . Let G = Gal(L/K) and H = Gal(L/E) , so T ^ G/H . Then 

(1.2) H = HOG for a l l x > 0 . 
x x 

(1.3) Ty = GyH/H for a l l y >_ 0 . 

{l'k) h/K = *E/K ° *L/E 

Using (1.3) we may define an upper f i l t ra t ion on the Galois group of an infinite 

Galois extension L/K by setting: 

Gal(L/K)y = {a e Gal(L/K) : for a l l subfields E of f inite degree 

over K, a e rŷ K Gal(L/E)} . 

We say y is a break in this f i l t ra t ion if i t occurs as a break in some finite 

quotient. Then every non-negative rational number occurs as a break in 

83 



B. GROSS 

Gal(Kg/K) ; on the other hand, when Gal(L/K) is a p-adic Lie group, the breaks 

form a discrete subset of the reals [7], [ l l ] . If L is the maximal abelian 

extension of K , the breaks occur exactly at the non-negative integers. 

We now show how to calculate the upper breaks in ^-Q/K wnen ^ ^s given as 

the root field of a separable Eisenstein polynomial. By (1.3) these breaks will 

also occur in the f i l t ra t ion of the Galois group of the normal closure of E . 

Lemma 1.5 (Tate) 

Assume E = K($) , where 3 satisfies the separable equation: 

f(x) = x6 + ae_]_xe~1+* • *+ao "with a^ e K , Y^a±^ — 1 ' and VK â0̂  = 1 * 

Let g(x) be the polynomial: 

g(x) = (|)6 f(6x+3) = xe + b ^ x ^ + . - . + b ^ 

and le t N(g) be i t s Newton polygon: the convex hull of the points (i9vK(b^)) 

in the plane. 

Then the upper breaks in the f i l t ra t ion of rE/K occur at the y-intercepts  

of the non-trivial sides of N(g) . 

yg 

y1 
Ng 

Proof. The roots of g(x) are the values â . = (3Q/$) - 1 9 where a runs 

through Hon^(E,K) . Thus the distinct rational numbers in the set 

S = {ev„(a ) : a ^ 1} give the lower breaks of T . K <J 
On the other hand, the numbers -vTJa ) are precisely the slopes of N(g). 

Since the non-trivial sides of the polygon satisfy linear equations of the form 

y + Ax = *E/K(e-A) 

we see that the y-intercepts give the upper breaks. 
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Corollary 1.6 

Suppose char(K) = p and E = K($) is a separable extension of degree 

q = p , where 3 satisfies f(x) as in 1.5« 

J£ VK âî  — VK âl̂  for a l l i >_ 1 then ^ 0 and the upper and 

lower f i l t rat ions of have a unique break at the point 

m = (qv (a1)/q-l) - 1 . 

2) If E/K is Galois then q - 1 divides v f a , ) and Gal(E/K) - F+ . 

Proof. l ) The coefficient a^ is non-zero as f(x) is assumed separable. If 

we graph the Newton polygon of g(x) as in (1.5) ™"e find ii: nas but one slope: 

m = (qv (a1)/q-l) - 1 a 

1 b 
The y-intercept is at (qv (a,) /q-l) - 1 , which is the only upper break. By 

K 1 

( l . l ) i t is also the only lower break. 

2) If E/K is Galois the lower break must be integral. As there is only 

one break point and this point is positive, Gal(E/K) is an elementary abelian 

p-group [8]. 

§2. P-divisible groups and Galois representations 

Let K be a field, and G a p-divisible group over K of height h . If 

p ^ char(K) then G is etale and is completely determined by i t s Tate module : 

(2.1) T(G) = Horn (OJ / 2 ,G) . 
K P P 

This module is free of rank h over 7L = EndT̂ (Q /2£ ) and admits a left action 
P K p p 

of Qj = Aut__(K) which is continuous and Z -linear : 
d K P 

(2.2) p : (j, >"Autz (T(G)) - GL(h,Zp) . 
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The functor G \ *• T(G) from étale groups to Galois modules is fully faithful 

[9], [10]. 

When p = char(K) the situation is more complicated as G need not "be étale. 

The Tate module, as defined in (2 . l ) , can only give information on the maximal 

étale quotient of G . To construct a more sensitive functor into the category 

of p-adic Galois modules, we need a larger supply of in i t i a l objects (like Olp/Z ). 

These objects are furnished by Dieudonné theory. For any reduced rational 

number À = r / s in the interval [0,l] there is a canonical p-divisible group 

G, defined over F of dimension r and height s . The group G, is speci-À p A 
fied by i t s Dieudonné module: 

D(G.) = Z [F,V]/(FS r=Vr,FV=VF=p) . A p 

All endomorphisms of Ĝ  are defined over F , and 

EndF 
s 

p 

(GA> ® x \ ^X > 
> P 

where D, is the central division algebra over $ with invariant A (mod 72) . A p 
The central assertion of the classical theory is that the category of p-divisible 

groups up to isogeny over K is semi-simple and that the groups Ĝ  represent 

the distinct simple objects [ l ] . If G is any group over K we therefore have 

G ^ dA 
11 GA A X 

over K , 

where the d.. are integers, almost a l l zero, determined by G . We can gener-A 
alize the construction (2.1) by defining 

(2.3) VA(G) = HomjGx,G) 8^ fll 
K p 

Then VA(G) is a right module over of dimension d̂  , or a left module for 

the dual algebra D° . I t admits a continuous left action of (j, ; when K con­
e-

tains the field F s this action is D,-linear: 
p 
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PA : Oji > Aut Q(VA(G)) * GL(dx,Dx) . 
X 

If K contains the algebraic closure of the prime field we can thus define the 

representation p = € pA on the generalized Tate module V(G) = € VA(g) . 
X X 

Now suppose 'Cf is a complete discrete valuation ring, as in the introduction, 

with quotient field K and residue field k (algebraically closed of charac­

te r i s t i c p > 0). Let G be a p-divisible group defined over tX The special 

fibre G. and the general fibre Gir are groups over a field; therefore k K 

G ~ n G.A 
k X 

(2.5) 
dX 

GK —' n Ĝ  over K , 

where we accept the convention that = ^p^p an(i do/l = h ^ cnar(K) = 0 

Consider the Galois representation arising from the general fibre: 

(2.6) p : 0^ > n GL(dx,Dx) . 

How can we distinguish this from an arbitrary p-adic Galois representation? 

Firs t , we can compose p with the homomorphism 

det = n Nm, : II GL(d, ,D, ) • !£* 

where Nm is the reduced norm in the algebra Mat(d, ,D ) over 3̂  . We obtain 

a p-adic character e = det(p) of 0^ . 

Theorem 2.7 
If char(K) = p then e = 1 in Hom( ,̂9Q*) . 

Proof. The group G gives r ise to an F-crystal E(G) over the perfect closure 

of 7¥ [3]. The special fibre of this crystal is isogenous to the direct sum 

€EA , where E # = TL [F]/(F =p ) . Over K the general fibre is isogenous X r/ s p 
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to №XA ; over Kpert * i t is isogenous to this crystal , twisted by the represen­

tation p . 

The category of F-crystals has an exterior power operation which commutes 

with fibre products. If G has height h we find 

( A ^ ) > k ~ E d i m ( G ) / 1 

(A^«))K~Ed.m(G)/ l over K . 

h 
Over Kper ' the general fibre of /\E(G) is isogenous to E,. ,pWl twisted by 

CLim̂  (j ) IL 
the character e = det(p) . But the F-crystal E /nw-i has only the t r iv i a l 

^ aimvLrj/l 

l i f t ing from k to tf [3]. As /\E(G) is such a l i f t ing, i t s general fibre is 

isomorphic to i t s special fibre and e = 1 . 
Notes: l ) Suppose G has height h over ~£f and i t s general fibre decomposes 

as in (2.5); then J d s = h where s = denom{\) . If C is the completion A A A 
of the maximal unramified extension of $ (which spli ts a l l the algebras D ) , 

P A 
we have an embedding 

n GL(d.,D.) c • GL(h,C) . .. A A A 

Now let U be the open set Spec TT- Spec k , so (j, = ir^U) . Then (2.6) gives 

us a "monodromy representation" 

(2.8) p : TT^U) • GL(h,C) . 

In the geometric case when K has characteristic p , Theorem 2.7 asserts that the 

monodromy representation factors through SL(h,C) . 

2) Theorem 2.7 may be formulated for K of arbitrary characteristic. Let 

X be the cyclotomic character giving the action of on p-power roots of unity 

in K . Then 

(2.9) e = xdlm(G) in H G m ( J . m J ) . 
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For K of characteristic zero this is due to Raynaud [6]; for K of charac­

t e r i s t i c p i t is a restatement of (2.7) • 

§3. Formal A-modules of dimension 1 . 

Let G be a connected p-divisible group of dimension 1 over & . Then G 

can be identified with a formal group on one parameter, and we can make the 

representation p of (2.6) more explicit by using Lazard's one-dimensional 

theory. When G has additional endomorphisms i t is convenient to analyse this 

situation using the language of formal A-modules [2] [k]. 

Let A be the ring of integers in a f ini te extension F of fl^ , let TT 

be a prime of A and q = Card(A/7rA) . Suppose R is a ring over A and 

Y : A > R is the natural morphism. Then a formal A-module of dimension n 

over R is a pair G = (G,i) , where G is a formal group of dimension n over 

R and i : A • End (G) is an infective ring homomorphism such that i(a) in-

duces multiplication by y(a) on Lie (G) . We write [a] for the element i(a) 

in End^G) . If G and H are two formal A-modules over R , we define 

HomR(G,H) = {<j> e HomR(G,H) : <J> o [a] = [a] o cj> a l l a e A} . 

We shall henceforth only consider formal A-modules and formal groups of dimension 

one. 

I t is quite easy to describe the category of formal A-modules over a field 

K of characteristic p ; if A = this is equivalent to the category of formal 

groups. Choosing a model for G over K we have 

[ir]G (x) = f (xM 

where f(x) is a power series over K with f1(0) ^ 0 , and h is a s t r ic t ly 

positive integer, the height of G . (The height of G, as a formal group, is 

then h-[A:2^], and we shall assume the height is f ini te . ) If K is separably 

closed there is one isomorphism class of formal A-modules for each finite height. 
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As a representative, we can take the formal A-module ^/h. 9 vnicn ^s defined over 

A/TTA and characterized by 

(3.1) [irL (x) = xq . 

This formal A-module achieves a l l of i t s endomorphisms over the field W ^ ; 

there we have 

EndF h (Gl/h} = Bl/h 

where ^ / h ^ e maximal or^er i-n "the central division algebra over F = A8QJ 

with invariant l/h (mod Z) . When K is not separably closed G is classified 

over K by i t s height and a representation 

p : Gal(Ks/K) • B*/h 

as in §2. 

We can now apply this to formal A-modules G over "C whose special fibre is 

isomorphic to ^2./h over ^ * Le"t: ^0/1 â-eno"ke "̂ he constant étale A-module 

F/A . When char(K) = 0 we have GT_ - (Gn/n)h . When char(K) = p the 
K 0/1 

general fibre of G must also have dimension 1, therefore 

gk ~ * ( ( W d 
K 

where 1 <_ g <_ h and g + d = h . Define the Tate modules 

Tl/g(G) = Horn (G1 . 9G ) of rank 1 over B, , 1/g 
(3.2) 

T0/1(G) = Hom_(G0/l,GK) of rank d over A . 

These afford Galois representations: 

(3.3) 
p ' y—* Bi/g -

p0/l : (J, —> GL(d,A) 
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as in (2.k). We shall res t r ic t our study to the equicharacteristic case (g ^_l) , 

as the ramification of p ^ 1 when char(K) = 0 is well-known [7]. 

Choosing a model for G over we have 

(3.10 U L (x) = f(x*8) 

where f(x) = a^x + a^x^ + . . . has coefficients in ~Cf and a ^ 0 . If we ii 

s is t on a model l i f t ing the standard model of 5 ^hen ^he a± ^ e ^n 

the maximal ideal except for a ^ . The integer e = v^a^) is independent of 

the model chosen; i t is zero if and only if d = 0 . In that case the represen­

tation p = p~^g $ p "̂*" is t r iv ia l [5]» The simplest nontrivial case is when 

d = e = 1 ; here we have complete resul ts . 

Theorem 3»5 

Let G be a formal A-module of dimension 1 and height h = g + d over O 

Assume d = e = 1 and for n >̂  0 define the rational numbers 

a(n) = < * \ (gn-l) 
Ug-l)(<ld-l) 

\ \ 1/ g /"1 # * 
1) a) The representation p : Uv >• B is surjective, so B 

inherits an upper ramification f i l t ra t ion. 

b) The upper breaks in this f i l t ra t ion are precisely at the points 

a(n) , n •> 0 (or n >_ 1 if qS = 2). 
c) For n > 1 (B*)A^N^ = 1 + TT̂ B , where TT is a prime of B .  — _y ^ 

2) a) The representation p ^ 1 : (j/ • A* is surjective, so A* 

inherits an upper ramification f i l t ra t ion. 

b) The upper breaks in this f i l t ra t ion are precisely at the points 

a(gn) , n _> 0 (or n _> 1 if q = 2). 

c) For n > 1 (A^)a(gn) = 1 + TT*A . 

We will prove this result in the following section. First we shall make a 

few remarks on i t s contents and provide a concrete example. 
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Example: Let E be the e l l ip t ic curve over tj =]F2[[t]] with plane equation 

2 3 y + txy + y = x 

and origin at the inflection point (x,y) = (0,0) . Then E^ is ordinary, but 
K 

Ê_ is super singular. The formal group E associated to this model, using x 

as a local parameter at the origin, gives a formal A-module G with A = 2£ and 

L-2JG(x) = tx + (l+t )x + . . . + (t +t )x + . . . . 

Thus h = 2 and g = d = e = 1 . Applying (3-5) we see the upper breaks in 

p0/l((J,) = a* occur at the points a(gn) = 3(2n-l) , and ( A * ) 3 ^ " ^ = 1 + 2nA 

for n >_ 1 . These are the breaks in the separable quotient of the 2-division 

field of V . 

Notes: l ) The breaks in the upper f i l t ra t ion of p^^(C^) are integral if and 

only if g = 1 , i . e . if and only if B}./g is abelian. 

2) Since ( O g = (TTa) in Bn ; , we find B A 1/g 

(B*)a(Sn) = 1 + TT°B for n > 1 

and the function a(gn) relates the ramification f i l t ra t ion to the ir^-filtration 
O/l l /e # * * in both p and p . Let H denote the elements in B x A whose re-

duced norm down to A is 1 , and H the elements of H congruent to 1 
n 

(mod TT̂ ) . I suspect that p = p1//g © p0^1 maps surjectively onto H* and 

that for n >_ 1 , 

(H*)a(gn) = Hn . 

Theorem 2.7, combined with (3-5), shows that this holds at least when A = . 

3) When d = 1 but e > 1 we can prove a slightly weaker result . Let 

es be the separable degree of K over L = k((a1)) . Then there are positive 

constants c and N such that, for a l l n > N , 
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i / e a(n)+c _ , e a(n)-c 

(3.6) / \ , n #, e a(gn)-c 
po/i( j V ^ ^ E i + t P0/1(^) 3 

Indeed, "by Drinfeld's moduli theory [2], we can find a model for G over 

k[[a^]] where we can apply (3-5) • Then (3-6) follows from a comparison of the 

upper numbering on Gal(Lg/L) with that on i t s subgroup = Gal(K*s/K) of 

index e 

Thus the breaks in the TT -̂f i l t ra t ion of occur near the upper breaks 

e^ • a(gn) . The breaks in the p-saturated f i l t rat ion therefore occur near the 

upper breaks • a(g«eF«n) , where F = ASflĴ  and ep = vp(p) . This result 

bears an eerie formal relation to a theorem of Sen in characteristic zero. By 

definition 

(nh .x ge n 
esa(geFn) = e " ~1} (q - l ) 
3 F 3 (qS-D(q-D 

h -, 0 (e^n-l) 
= es (1 + q« + q2g + . . . + q F S) • 

When has mixed characteristic, g = 0, d = h, and eg = v̂ -(Tr̂ _) • Thus, 

arguing purely formally, we might expect that in this case the breaks in the 

p-saturated f i l t ra t ion of P(GÜ would be near the upper breaks e e^n = e^n 

But this is precisely Sen's result [7] : is there a general theory which can 

obtain both results simultaneously? 

k) When d > 1 the situation becomes more complicated. I t seems that the 

upper breaks in P ( ^ ) are determined by the valuations of the d moduli that 

classify the l if t ing of G over ^2./h '"2"'5 Wiien ¿L = 1 9 a^ is the unique 

modulus of the l i f t ing; i t might be interesting to study maximal 1-dimensional 

families in general. 
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§4. The proof of Theorem 3*5 

To prove part l ) we start with the representation 

pl/G : (h >• B* . 

Recall that the prime TT gives a f i l t ra t ion on the image: 
B 

B* O 1 + IT B O 1 + TT̂ B D . . . 

with successive quotients: 

B* / 1 + TT B - IF* 

1 + TT̂ B / 1 + TTS+1B - IF+ for n > 1 . 
B B qg 

For n _> 0 le t be the kernel of the composed homomorphism: 

pn : — • B* — . (B#/1+T£+1B) « ( B / ^ + 1 B ) * , 

and let K be the fixed field of H in K . Then ( Q//H ) * Gal(K /K) and n n s J n n 
we have a tower of fields: 

K 
s. 

.K 
1 

I 
K0 

K = K 

If we choose an isomorphism of formal A-modules over Kg : 

<f) : G • Gn / 
y 1/g 

we have, for a e 0/ , 

pl/g(a) = 4> o <j> a e Aut(Gl7 ) - B* . 
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Choosing models for G and ^-^/g over » we may write <j> as a power series: 

<|)(x) = kxx + k2x2 + . . . 

with coefficients in . Similarly, we have the power series over XX : 

R 1 / \ QS 2qg LTTJG(X) = a ^ + a2x ^ + . . . 

[TTL (X) = xqg . 
Gl/g 

Since <J) is an isomorphism, of formal A-modules, these series satisfy: 

(fc.l) * o M_(x) = [ir]. O <j,(x) = <(>4S(Xq8) . 
G Gl/g 

Lemma ^.2 

1) The coefficients k. in 4>(x) are integral in K 
J s 

2) One has k. e K , for a l l j < q_n , and K = K n (k ) .  j n-1 u n n-1 n 
QL 

Proof. The integrality of the k̂  follows from the identity (k.l)9 which may be 

used to define them successively. Since a e if and only if k^ = k^ , we 

have KQ = K(k^) . But for a e EQ : 

(£o<j>a(x)=x + kx^ + . . . ; 

furthermore, a e if and only if m > n . This gives part 2) . 

Lemma 4̂. 3 

Assume that d = e = 1 . Then for n >_ 0 , 

1) induces an isomorphism Gal(Kn/K) - (B/7r̂ +1B)* . 

2) k „ is a uniformizing parameter of K 
3) Gal(K /K _) has a unique upper and lower break at the point 
hn 

m = q_ - 1 . 
k) The lower f i l t ra t ion of G = Gal(K /K) is given by: 

95 



B. GROSS 

G0 = G 

G = Gal(K /Kj for 0 < x < qh - 1 x n 0 — ^ 

G = Gal(K /Kn) for qh - 1 < x < q2h - 1 x n 1 ^ — 

G = Gal(K /K , ) for CL^"1^ - 1 < x < qnh - 1 x n n-1 — 

G = (1) for qnh - 1 < x . 
x ^ 

5) The upper f i l t ra t ion of G = Gal(K /K) is given by: 

G° = G 

GX = Gal(K /K j for 0 < x < a(l) n 0 — 

GX = Gald^/K^) for a(l) < x <_ a(2) 

GX = Gal(Kn/Kn_1) for a(n-l) < x £ a(n) 

GX = (l) for a(n) < x , 

where a ( l ) , a (2 ) , . . . , a (n ) are defined in Theorem 3-5-

g 

Proof. We use an induction on n . For n = 0 look at the coefficient of x^ 

in the identity (U.l). This gives the equation: 

kiai = kiqS • 

Since e = v__(an ) = 1 , this shows that Kn = K(kn ) has degree qg - 1 over K 

and that k^ is a uniformizing parameter. By counting we see that the injection 

pQ : GOICKQ/^) • (B/T^B)* 

is an isomorphism. The only upper and lower break is at 0 , as is a tamely 
ramified extension of K . 

Now assume that the lemma holds for K _/K . Look at the coefficient of 

x in the identity (U.l). This gives the equation: 
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n-1 n g 
k_,a + . . . + k aq + . . . + k aq = (k )q . 
1 n n-1 q n 1 n q q q q 

But I claim this is an Eisenstein equation: 

(h.h) b + e.fy = yqS 

for y = k ^ over Kn_-L • i t is clear that b is integral, by (K.2). Since G ^n n-
l i f t s Gn ,, and d = 1 , we know vT (̂a. ) > 1 for i ^ q . Consequently, _L/n K 1 
v (a.) > 1 for i / q and K _ l n-1 

n-i n-i q 

by our inductive hypothesis that k is a uniformizing parameter in . 
^ g Therefore K = K _(k ) has degree q over K _ and uniformizing parameter n n-1 n n-1 / _V ^ q (n-1) 

k ^ . By induction, we know that [K^ ^:K] = (q - l)q ; hence the injection 
q11 n" 

pn : Gal(Kn/K) — (B/^+1B)* 

is surjective by counting. By applying corollary (1.6) to the equation (^.M we 

see that Gal(K^/Kn ^) has a unique upper and lower break at the point: 

/ q \ g / g i N NN -I m = vK (a1^ ) q&/q&-l - 1 = q - 1 . 
n-1 

The calculation of the f i l t rat ions on Gal(K /K) is now accomplished using the 

identity <\> . - <j> , o <|> , , the inductive hypothesis, and the fact that K / K K N/K K / K. _. n n-1 n n-1 

cj>K . (x) = x for x <_ qnh - 1 . 
n n-1 

This lemma yields part l ) of Theorem 3.5 as an immediate corollary. Given 

an adequate theory of 7r-divisible A-modules, we can see how part 2) of this 

Theorem would follow formally from part l ) . We can define the character: 

£A = detA (p) : °jf * A* 
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where det^ : B*/g x GL(d,A) y A* is the reduced norm in the category of 

F-alge"bras. In analogy with (2.7) one would expect: 

(4.5) £A = 1 in Hom( <̂ >A*) . 

When d = 1 this would imply: 

(h.6) pQ/1 = (Nml/g o p ^ f 1 , 

from which we could easily derive i t s ramification f i l t ra t ion. Since the full 

theory of "A-crystals" is not available to prove (4.5)9 we shall prove part 2) 

independently, and check that the results are consistent with (4.6). 

First we must identify the representation 

P0/l : ^ y GL(d9A) = M* 

where M = Mat(d,A) . We appropriate our previous notation: for n >_ 0 le t 

be the kernel of the composed homomorphism: 

Pn : ^ " M* ^ M*/ 1 + 7Tn+1M - (M/TTn+1M)* 

and le t K be the fixed field of H in K . 

If in = {x e K : vTJx) > 0} , then the set of points of G in m give a 

genuine A-module G(m) . Let G(m) ^ be the f ini te submodule of 7rn+1-torsion. 

This module is free of rank d over A/IT A and is stable under the action of 

Cp . The resulting representation: 

0 , — Aut (G(») n+1) - (M/,n+1M)* 
v A/TT A 7T 

may be identified with p^ . Consequently, is just the separable subfield of 

the field of irn+^-division points. 

Lemma k.lk 

Assume that d = e = 1 . Then for n >_ 0 , 
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1) p induces an isomorphism Gal(K /K) - (A/ïïn+1A)* . n c n / -, \ g(n+l) 
2) If a e G(m) x1 and [ir J_(a) ï 0 , then B = aq is a 

— n n+1 G n n 
uniformizing parameter in . 

3) Gal(K^/K ) has a unique upper and lover break at the point 
hn 

m = q - 1 . 
k) The lower f i l t ra t ion of G = Gal(K /K) is given by: 

n w 

GQ = G 

G = Gal(K /K j for 0 < x < qh - 1 x n 0 — ^ 

G = Gal(K /K, ) for qh - 1 < x < q2h - 1 x n i ^ — ^ 

G = Gal(K /K n ) for q ^ " 1 ^ - 1 < x < qnh - 1 x n n-1 — 

G = (l) for qnh - 1 < x . 
x L̂ 

5: The upper f i l t ra t ion of G = Gal(K /K) is given by: 

G° = G 

GX = Gal(Kn/KQ) for 0 < x <_ a(g) 

GX = Gal(K /Kn) for a(g) < x < a(2g) n 1 — 

GX = Gal(Kn/Kn_1) for a(g(n-l)) < x <_ a(gn) 

GX = (l) for a(gn) < x , 

where a(g), a(2g), . . . , a(ng) are defined in Theorem 3*5» 

Proof. We use an induction on n . For n = 0 the extension is generated 

by the non-zero roots of the polynomial f(x) , where 

MG(x) = f ( x ^ ) . 

Since d = e = 1 each non-zero root 3Q has K-valuation l / (q- l ) . Consequently 

the injection: 
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pQ : Gal(KQ/K) >• (A/TTA)* 

is an isomorphism, and Bq is a uniformizing element. The break sequence is 

obvious as Kq is tamely ramified over K . 

Now assume the result holds for the layer K n/K . Let a be an element 
n-1 n 

in G(m) not killed by 7rn , and put 

V i - i*W = f(%qg) • 

ng 
Raising this identity to the q power, we obtain: 

ng ng (n+l)g ng 
en-i = %4-i = fq K ) = fq <»„> • 

By our induction hypothesis, $n_-̂  is a uniformizing parameter in ^N_J_ • 

Applying the Weierstrass preparation theorem to the power series 

ng ng ng ng 
(x) = x + a^ x2 + . . . + aj x4 + . . . 

we see that 3n satisfies an Eisenstein polynomial over ^N_2_ ' 

g(x) = X1 + b xq_1 + . . . + b^x + bQ 

with 

vK (bQ) = 1 vR (b.) > vR . 
n-1 n-1 n-1 

We may therefore apply corollary (1.6) to conclude that Kn_;]_( $n) nas degree q 

over and a unique upper break at the point 

m = qvK (b1)/q-l - 1 = qnh - 1 , 
n-1 

as 
ng -i /T \ / q N ng, n N n-1 vK (bx) = vK (a£ ) = q (q-l)q 

n-1 n-1 

Clearly $n is a uniformizing parameter in Kn_1( 3n) ; counting degrees shows 

that K = K ( 3 ) and that the injection n n-1 n 

Pn : Gal(K /K) • (A/TTA)* 
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is an isomorphism. One can now calculate the entire break sequence using the 

induction hypothesis and the identity 

*K /K = *K _/K ° *K /K n . 
n n-1 n n-1 

This lemma immediately yields part 2) of Theorem 3.5 as a corollary. I t 

is easy to check that parts l ) and 2) are consistent with (k.6) using the 

identi t ies: 

NmA(l+7T̂ nB) = 1 + TT̂A 

NmA(l+,f+1B) = 1 + *l+1A . 
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