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The necessity of coming back to original mathemati
cal texts of utmost importance is nowadays well recognized. 
This issue of Astérisque is devoted to the presentation 
of Gauss' Disquisitiones Generales Circa Superficies 
Curvas and other texts related to it, together with a 
discussion by Peter Dombrowski of its contents, presenta
tion and historical importance, written at the occasion 
of the bicentenary of Gauss' birthday. 

This would not have been made possible without the 
help of Michael Keane and David Trotman who translated 
Peter Dombrowski's original German manuscript, the autho
rization of the Braunschweigische Wissenschaftliche Gesell
schaft (who organized the bicentenary celebration), the 
assistance of J. P. Bourguignon, and the beautiful typing 
and page setting of Marie-José Lécuyer. 

We thank them, and also Prof. P. Dombrowski for having 
provided the scientific community with a mathematical text 
of a type which, in our opinion, is indispensable and was 
sti11 missing. 

The editors 
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in in D^ffgranfa Z Geo/Tzetrz/ 6fMr^?zj t/za Z-ast 150 z/̂ ars 137 
- Literature 153 

i i i 





DISQUISITIONES GENERALES 

CIRCA 

SUPERFICIES CURVAS 

AUCTORE 
CAROLO FRIDERICO GAUSS 

SOCIETATI REGIAE O BLATA Ε D. 8. OCTOB. 1827 

CO M MENTATION ES SOCIETATIS REGIAE SCIENTIARUM 

GOTTINGENSIS RECENTIORES. VOL. VI. GOTTINGAE MDCCCXXVIÍI 

GOTTINGAE 

TYPIS DIETERICHIANIS 

MDCCCXXVIII 

1 



CF. GAUSS 

DISQUISITIONES GENERALES 

CIRCA SUPERFICIES CURVAS. RFES CURVAS. 

ι. 
Disquisitiones, in quibus de directionibus variarum rectarum in spatio agi-

tur. plerumque ad maius perspicuitatis et simplicitatis fastigium evehuntur, in 
auxilium vocahdo superficiem sphaericam radio = 1 circa centrum arbitrarium 
descriptam t cuius singula puncta repraesentare censebuntur directiones rectarum 
radiis ad illa terminatis parallelarum. Dum situs omnium punctorum in spatio 
per tres coordinatas determinatur, puta per distan tías a tribus planis íixis inter 
se normalibus, ante omnia considerandae veniunt directiones axium his planis 
normalium : puncta superficiel sphaericae, quae has directiones repraesentant, per 
(l) (2), (3) denotabimus; mutua igitur horum distantia erit quadrans. Ceterum 
axium directiones versus eas partes acceptas supponemus, versus quas coordina-

• tae responden tes crescunt. 

2. 
Haud inutile.erit, quasdam propositiones, quae in huiusmodi quaestioni-

bus usum frequentem oíFerunt, hie in conspectum producere. 
I. Angulus inter duas rectas se secantes mensuratur per arcum inter puncta, 

quae in superficie sphaerica illarum directionibus respondent. 
IT. Situs cuiuslibet plani repraesentari potest per circulum maximum in 

superficie sphaerica, cuius planum illi est parallelum. 
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DISQUISITIONES GENERALES 

G E N E R A L I N V E S T I G A T I O N S 
O F 

C U R V E D S U R F A C E S 
B Y 

KARL FRIEDRICH GAUSS 
PRESENTED TO THE ROYAL SOCIETY, OCTOBER 8, 1827 , OCTOBER 8, 1827 

1. 

Investigations, in which the directions of various straight lines in space are to be 
considered, attain a high degree of clearness and simplicity if we employ, as an auxil
iary, a sphere of unit radius described about an arbitrary centre, and suppose the 
different points of the sphere to represent the directions of straight lines parallel to 
the radii ending at these points. As the position of every point in space is deter
mined by three coordinates, that is to say, the distances of the point from three mutually 
perpendicular fixed planes, it is necessary to consider, first of all, the directions of the 
axes perpendicular to these planes. The points on the sphere, which represent these 
directions, we shall denote by (1), (2), (3). The distance of any one of these points 
from either of the other two will be a quadrant ; and we shall suppose that the direc
tions of the axes are those in which the corresponding coordinates increase. 

2. 

It will be advantageous to bring together here some propositions which are fre
quently used in questions of this kind. 

I. The angle between two intersecting straight lines is measured by the arc 
between the points on the sphere which correspond to the directions of the lines. 

II. The orientation of any plane whatever can be represented by the great circle 
on the sphere, the plane of which is parallel to the given plane. 
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CF. GAUSS 

disuiquitiones general disuiquitiones genea 

cirva 
investigationes general ones general 

III. Aiigulus inter duo plana acqualis est ángulo sphaerico inter circuios 
máximos illa repracsentantes , et proin etiam per arciim inter Horum circulorum 
maximorum polos intereeptum mensuratur. Et perinde inclinatio rectae ad pla
num mensuratur χι er arcum , a puncto, quod resjoondet directioni rectae, ad eir-
culum maximum, qui plani situm repraesentat, normaliter duetum. 

IV. Denotantibus ¿vy y, ζ; oc\ y\ ζ coordinatas duorum punetorum , r eo-
rundem distantiam , atque L punctum , quod in superficie sphaerica repraesen
tat directionem rectae a puncto χη-iore ad posterius duetae, erit 

ao = χ—\-r cos ( l)U, y = y -f-r cos (2)L, ζ = z -f- r cos (3)L 

V. Hinc facile sequi tur, haberi generaliter 
cos(l)7v2-j-cos(2)7v2-f-cos(3)X2 = 1 

nec non, denotante U quodeunque aliud punctum superficiel srdiaericae, esse 
cos(l)Z/ . cos (1) U-\- cos (2)Ζ/, cos (2)i'-f- cos (3) i . cos(3) Ζ/ == cosLL' 
VI. THEOREMA. Denotantibxtsbus L, U, U\ U" quatuoror punctata in su superficie 

sphaeraecae, atquee A angulumm , quems arcus LL', UU" in punctoo concursusus sui for
mantt erit 

cos LU", COSUU"— cos UU". cos L'U" = sin IJIJ. sinU'U". cos .A 
Dem. Denotet litera A. insuper punctum concursus ix^sum, statuaturque 

A L = t, AU = t\ AU" = t'\ AU" = t'" 
H a b e m u s itaque : 

cos LU' = cos t cos t" -j— sin t sin t" cos A 
cos UU" = cos ¿'eos t'"~{— sin /'sin t"'cos A 

cos JL U" = cos t cos ¿"'—{— sin t sin t"'cosA 

cos UL" = cos ¿'eos t" —f- sin ¿'sin t" cos A 

et proin 

cos L U". cos UU"— cosL U". cos UU" 

= cos A (cos t cos t" sin ¿' sin ¿"'—f- cos icos t'" sin ¿ sin t" 

— cos icos ¿'"sin ¿'sin t"— cos ¿'eos ¿"sin ¿sin t'") 

= cos A (cos t sin ¿'— sin ¿ eos ¿' ) (eos ¿"sin ¿"'— sin ¿ " eos ¿"' ) 

-= cos A . sin (¿'— ¿). sin (¿"'— ¿" ) 

= cos A . sin Z/ X'. sin U"U" 
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General nvesiganvestigations 

of 

Curved SurfacesCurved Surfaces 

III. The angle between two planes is equal to the spherical angle between the 

great circles representing them, and, consequently, is also measured by the arc inter

cepted between the poles of these great circles. And, in like manner, the angle of inclina

tion of a straight line to a plane is measured by the arc drawn from the point which 

corresponds to the direction of the line, perpendicular to the great circle which repre

sents the orientation of the plane. 

IV. Letting a;, y, 2 / J / ' , a' denote the coordinates of two points, r the distance 
between them, and Z the point on the sphere which represents the direction of the line 

drawn from the first point to the second, we shall have 

3 ? ' = 2; + 7* cos (1)Z 

^'= y + 7* cos (2)Z 

3 ' = 3 + 7* cos (3)Z 

V. From this it follows at once that, generally, 

cos' (1)Z + cos' (2)Z + cos' (3)Z = 1 

and also, if Z' denote any other point on the sphere, 

cos (1)Z . cos (1)Z' + cos (2)Z . cos (2)Z' + cos (3)Z . cos (3)Z'= cos ZZ'. 

VI. T H E O R E M . 7/̂  Z, Z', Z", Z'" ^ l O ^ /02/7* ^7027^3 072 the 5p%<7?*<?, K?;<% ¿/¿2 0!7?.y/f 

wicth the <37*C3 ZZ', Z"Z'" 772%/%^ ̂ if ifÂ Z7' ^70i'72if q/* z'72^7'-S^Cifi(772, ifÂ T̂qe shmall Â t'̂  

cos Z Z " . cos Z'Z'"— cos Z Z ". cos Z'Z" = sin ZZ'. sin Z"Z"'. cos ^ 

Z)<?7730723^7*%^'<973. Let denote also the point of intersection itself, and setpoint 

^ Z = if, ,4Z'= if', ^ Z " = if", ^ Z ' " = 

Then we shall have 

cos Z Z " — c o s i f.cosf + sin^ sin if" cos^. 

cos Z'Z"'= cos f cos sin if' sin if'" cos ̂ 4 

cos ZZ'" = cos % cos ¿"'4- sin % sin if"' cos ̂ 4 
cos Z'Z" = cos ̂  cos if" + sin f sin if" cos 

and consequently, 

cos Z Z " . cos Z'Z"'— cos ZZ'". cos Z'Z" 

= cos ̂  (cos 2? cos if" sin %' sin if'" + cos if' cos if'" sin if sin if" 

— cos if cos if'" sin %' sin i f " — cos f cos f sin if sin i f"') 

= cos (cos if sin if'—sin if cos if') (cos f sin i f ' " — sin if" COS if '") 

= cos yl . sin ( f — if) . sin (if'" if") 

= cos ̂ 1 . sin Z Z ' . sin Z"Z"' 
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C. F GAUSSSS 

DISQUISITONES generlesgenerlenerles 

circa 
superficies curvassuperficies curvas 

Ceterum quum inde a puncto vi bini rami utriusque circuii maximi proficiscan-

tur, duo quidem ibi anguli formantur, quorum alter alterius complementum ad 

18 0": sed aiTalysis nostra monstrat, eos ramos adoptandos esse, quorum directio-

nes c u m sensu progressionis a puncto Z, ad -Z , et a puncto Z / ad .Z'" consen-

tiunt: quibus intellectis simul patet, quum circuii maximi duobus punctis con-

currant, arbitrarium esse, utrum eligatur. Loco anguli vi etiam arcus inter po

los circulorum maximorum, quorum partes sunt arcus Z?Z/ , jL jL \ adhiberi pot

est: manifesto autem polos tales accipere oportet, qui respectu horum arcuum si

militer iacent, puta vel uterque polus ad dextram iacens, dum a Zv versus Z7 

atque ab Zy" versus Z/" procedimus , vel uterque ad laevam. 

V I I . S i n t Zv, Z/\ tria puncta in superficie sphaerica, statuamusque bre-

vitatis Caussa 

cos(í)Z/ =x cos(2)Zy = y , cos(3)JL = r ^ T 

cos(l)Zv^ = ¿c\ cos(2)Z^' = ^ y cos (3 )Z nz'cos(3) =nz' 
cos (l ) ZV = zc", cos (2) Z / ' = y", cos (3) Z= z'c(3) =nz' 

nec non 
xy'z + s'y" z + s"yz' - xyz' - syz' - x"y'z = Ax"y'z =Ax"y'z = A 

Designet X polum circuii maximi, cuius pars est arcus Z ,Z7, et quidem eum, qui 

respectu huius arcus similiter iacet, ac punctum (l) respectu arcus (2) (3) . Tunc 

erit, ex theoremate praecedente, y2r'—y'.z=^cos(l)X.sin(2)(3).sinZ^Z/, sive, 

propter (2)(3) = 9 0^, 

yz' — y 2 i= c o s (1 )À. sinZvZv, et pennde 

3<27' Z ĴC COS (2) X. sin Z/Zv̂  

<27 7V' <a?'y = COS (3)X. sin Z/Z/' 

Multiplicando has aequationes resp. per ¿t?", y", et addendo , obtinemus adiu-

mento theorematis secundi in y prolati 

A = cosXZ/'. sin Z,.Z' 

Iam tres casus sunt distinguendi. Z*?*w:o, quoties JL" iacet in eodem circulo 

máximo, cuius pars est arcus Z/Z/, erit XZ/' = 9 0^, adeoque A =i 0. Quoties 

vero Z/' iacet extra circulum illum m a x i m u m , aderit casus secundus si est ab ea-

d e m parte, a qua est X, f^rfÍMg, si ab opposita : in his casibus puncta Z,, Z/, Z^ 

6 
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GENERAL investigationsinvestigations 
of 

curved surfacescurved surfaces 

But as there are for each great circle two branches going out from the point ,4, 
these two branches form at this point two angles whose sum is 180°. But our analysis 
shows that those branches are to be taken whose directions are in the sense from the 
point Z to Z', and from the point Z" to Z'"; and since great circles intersect in two 
points, it is clear that either of the two points can be chosen arbitrarily. Also, instead 
of the angle ,¿1, we can take the arc between the poles of the great circles of which the 
arcs Z Z', Z " Z'" are parts. But it is evident that those poles are to be chosen which 
are similarly placed with respect to these arcs ; that is to say, when we go from Z to Z' 
and from Z " to Z'", both of the two poles are to be on the right, or both on the left. 

VII. Let Z, Z', Z " be the three points on the sphere and set, for brevity, 

cos (1)Z = 2?, cos (2)Z = y, cos (3)Z = 2 

cos (l)Z' = 3 ; ' , cos (2)Z' = y', cos (3)Z' = 3 ' 

cos (1)Z"= 3 ; " , cos (2)Z"= y", cos (3)Z" = 3 " 
and also 

a; 4/ 3 " + 37' y" 3 + 3 7 " ^ 3 ' — a? 3 ' — 3 / y 3 " — 3 7 " ^ ' 3 = A 

Let X denote the pole of the great circle of which Z Z ' is a part, this pole being the one 
that is placed in the same position with respect to this arc as the point (1) is with 
respect to the arc (2)(3). Then we shall have, by the preceding theorem, 

^ 3 ' — 3 = cos (1)X . sin (2)(3) . sin ZZ', 

or, because (2)(3) = 90°, 

y 3 ' — y ' 3 = cos (1)X . sin ZZ', 
and similarly, 

3 3 7 ' — 3 ' 37 = cos (2)X . sin Z Z ' 

37y' — 3 7 ' y = cos (3)X . sin Z Z ' 

Multiplying these equations by 3 7 " , 3 " respectively, and adding, we obtain, by means 
of the second of the theorems deduced in V, 

A = cos X Z". sin Z Z ' 

N o w there are three cases to be distinguished. First when Z " lies on the great circle 
of which the arc Z Z ' is a part, we shall have XZ"== 90°, and consequently, A = 0. 
If Z " does not lie on that great circle, the s^eo7M? case will be when Z " is on the same 

side as X ; the Fird case when they are on opposite sides. In the last two cases the 
points Z, Z', Z " will form a spherical triangle, and m the second case these points will lie 
in the same order as the points (1), (2), (3), and in the opposite order in the third case. 

7 



C. F GAUSSSS 

^^^^<^^^^^¡^^^ ^^^^^^^^^ 
cirvarva 

superficies curvassuperfic  

ibrmabunt triangulum sphaericum, et quidem iacebunt in casu secuudo eodem 

ordine quo puncta (l), (2), (3), in casu tertio vero ordine opposito. Denotando 

angulos illius trianguli simpliciter per Zy, Zy\ Zy\ atque perpendiculum in super

ficie sphaerica a puncto Z/ ad latus Z/Z/ ductum per j^, erit 

sinp = sin jL. sin ZyJv"^= sin Z^\ sin Z/'Zy", atque X Z / = 9 0^-}-p 

valente signo superiori pro casu secundo, inferiori pro tertio. Hinc itaque colligimus 

-1- A = sin Zy. sin ZvZv\ sin .ZZ?" r = sinZ^\ sin ZvZ/\ sin ZyZv" sin Zy . sin JDZv". sin Z^ Z/ 

('eterum manifesto casus primus in secundo vel tertio comprehendi censeri potest, 

nulloque negotio perspicitur , A exhibere sextuplum soliditatis pyramidis in

ter puncta Z/, Z/\ Zy" atque centrum sphaerae ibrmatae. Denique hinc facillime 

colligitur, eandem expressionem + ^-A generaliter exprimere soliditatem cuius-

vis pyramidis inter initium coordinatarum atque puncta quorum coordinatae sunt 

jv, y, 2 ; V, 2?'; <2?", y", ^r", contentae. 

3. 

Superficies curva apud punctum vi in ipsa situm curvatura continua gaudere 
dicitur, si directiones o m n i u m rectarum ab vi ad omnia puncta superAciei ab vi 

infinite parum distantia ductarum infinite parum ab uno eodem que plano per vi 

transiente deflectuntur: hoc planum superñciem curvam in puncto vi ? < 2 ? ? ' / ^ ? * ^ di

citur. Quodsi huic condition! in aliquo puncto satisñeri nequit, continuitas cur

vaturae hie interrumpitur, uti e.g. evenit in cuspide coni. Disquisitiones prae-

sentes ad tales superñcies curvas, vel ad tales superficiei partes, restringentur, in 

quibus continuitas curvaturae nullibi interrumpitur. Hie tantummodo observa-

m u s , methodos, quae positioni plani tangentis determinandae inserviunt, pro 

punctis singularibus , in quibus continuitas curvaturae interrumpitur, vim suam 

perdere, et ad indeterminata perducere debere. 

4. 

Situs plani tangentis commodissime e situ rectae ipsi in puncto vi normalis 

cognoscitur, quae etiam ipsi superficiei curvae normalis dicitur. Directionem hu

ius normalis per punctum Z/ in superficie sphaerae auxiliaris repraesentabimus, 

atque statuemus 
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of 

curved surfacescurved surfaces 

Denoting the angles of this triangle simply by Z, Z', Z ' and the perpendicular drawn on 
the sphere from the point Z " to the side Z Z ' by p we shall have 

sin jo = sin Z. sin Z Z " = sin Z'. sin Z' Z", 
and 

X Z"=^ 90° ^p, 
the upper sign being taken for the second case, the lower for the third. From this 
it follows that 

±= A = sin Z. sin ZZ'. sin Z Z " = sin Z'. sin ZZ'. sin Z'Z" 
= sin Z" . sin Z Z" . sin Z' Z" 

Moreover, it is evident that the first case can be regarded as contained in the second or 
third, and it is easily seen that the expression ± A represents six times the volume of 
the pyramid formed by the points Z, Z', Z" and the centre of the sphere. Whence, 
finally, it is clear that the expression ± & A expresses generally the volume of any 
pyramid contained between the origin of coordinates and the three points whose coor
dinates are 3 , y, 3 y 3 ? ' , y', 3 ' / 3 7 " , 3 " . 

3. 
A curved surface is said to possess continuous curvature at one of its points yl, if the 

directions of all the straight lines drawn from yl to points of the surface at an infinitely 
small distance from 1̂ are deflected innnitely little from one and the same plane passing 
through yl. This plane is said to ĵ2;<?A the surface at the point ̂ 1. If this condition is 
not satisfied for any point, the continuity of the curvature is here interrupted, as happens, 
for example, at the vertex of a cone. The following investigations will be restricted to 
such surfaces, or to such parts of surfaces, as have the continuity of their curvature 
nowhere interrupted. W e shall only observe now that the methods used to determine 
the position of the tangent plane lose their meaning at singular points, in which the 
continuity of the curvature is interrupted, and must lead to indeterminate solutions. 

4. 
The orientation of the tangent plane is most conveniently studied by means of the 

direction of the straight line normal to the plane at the point vl, which is also called the 
normal to the curved surface at the point ̂ 4. W e shall represent the direction of this 
normal by the point Z on the auxiliary sphere, and we shall set 

9 
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circacirca 
Superficies CurvasSuperficies Curvas 

cos (1) Z = r X , cos (2) = y, cos(3)7L = ^ 

coordinatas puncti ^4 per - denotamus. Sint porro —}— d .T, y —}— dy, ^-j-d^x + dx 

coordinatae alius puncti in superfìcie curva ^4'; d^ ipsius distantia infinite parva 

ab ^4 ; denique X punctum superfìciei sphaericae repraesentans directionem ele

menti ^4^4 . Erit itaque 

d^y d^.cos(l)X, d^ = d^.cos (2 )X, dj? ̂ = d^.cos(3)X 

et quum esse debeat XZv ^= 9 0", lL = 90°L = 90° 

Xcos(l ) X - + - ycos (2 )X + ^cos ( 3 ) X = 0 

E combinatione harum aequationum derivamus num derivamusdevamus 

X d ^ + y d y - t - ^ d g = 0 

Duae habentur methodi generales ad exhibendam indolem superfìciei cur-ndam indolem df 

vae. Methodus^W^dz utitur aequatione inter coordinatas <z*, gr, quam reductam 

esse supponemus ad forni a m W r = o , ubi W erit functio indeterminatarum 

j?, ^f, ^. Sit difPerentiale completum functionis W 

d l T = J ^ d j y + Qd^/ + J ^ d ^ 

eritque in superfìcie curva 

Z*d<i7-l-Qdy-t-jRd2; = 0 

et proin 

Z*cos(l )X-[-Qcos (2 )X-}-J^cos (3 )X = 0 

Quum haec aequatio, perinde ut ea quam supra stabilivimus , valere debeat pro 

directionibus o m n i u m elementorum d^ in superflcie curva, facile perspicie-

m u s , X , ^ proportionales esse debere ipsis JP, Q, JR et proin, quam fiat 

xx-+- y y+^J? = l 
erit vel 

x + 98 
v0( + s+ r) + RR') 

y = 12 
3( gg + ss + rr)= + RR') 

z = R 
t' + q +ggç + RR') 

vel 

X = 
— jp  

t/(J>.P-t-QQ+^RJ?)' 
Y = — Q 

(pp + qq +TT) 
Z = —T 

'FFF = ff + ff) + RR') 
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of 
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cos (1) =vY, cos (2)Z — Y, cos (3)Z = Z 

and denote the coordinates of the point yl by 3̂ , y, 3. Also let 3r + <%3;, ,y + dy 2 +3dz 

be the coordinates of another point vl' on the curved surface ; <%s its distance from yl, 

which is infinitely small; and finally, let X be the point on the sphere representing the 

direction of the clement vlvl'. Then we shall have 

<%;p = <3?s.cos(l)\, <%?y = 6?3.cos(2)\, <f3 = <%s.cos(3)X 

and, since X Z must be equal to 90°, 

X cos (1)X + Xcos (2)X + ^ cos (3)X = 0 

By combining these equations we obtain 

Xdx +y dyX + Zdz ¿ 3 0. 

There are two general methods for denning the nature of a curved surface. The 

first uses the equation between the coordinates 3^y 3, which we may suppose reduced to 

the form № = 0, where 7iT will be a function of the indeterminates 37, y 3. Let the com
plete differential of the function be 

J IF = .P ¿3; + (? + J? ¿ 3 

and on the curved surface we shall have 

.P J3; + (? <?y + 7? ¿73 == 0 
and consequently, 

,P cos (1)X + $ cos (2)X + ^ cos (3)X = 0 

Since this equation, as well as the one we have established above, must be true for the 

directions of all elements 6?g on the curved surface, we easily see that vY, y, ̂  must be 
proportional to jP, Z* respectively, and consequently, since 

X² + Y² Z² = 1Y² Z² = 1 
we shall have either 

X -
Z* 

(^ + + 7^) 
y = 

Q 
v ( 7 ^ + + Z ' ) 

Z = 7^ 
^dh + ^ + 7?s) 

or 

Tç — r 
1/ (Z" + + 7̂'D') 

Y = — C 
l / ( Z ' + + 7 ^ ) 

Z= — 7? 

V (7^ ' + <y + 
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Methodus secunda sistit coordinatas in forma f auction u m duarum variabi-

lium p, q. Supponamus per difTereiitiatioiiem harum functioiium prodire 

d ¿v = a d ρ —|— ad q 
dy = b dp -\- b'dq 
d ζ = c dp -|— cd q 

quibus valoribus in formula supra data substitutis , obtinemus 

(α X b Y-\- c ZZ) dp -f- X + 6' YY - j - c Z) d ? = 0Y-\- c Z) 

Q u u m haec aequatio locum habere debeat independenter a valoribus difTerentia-
lium dp, dq, manifesto esse debebit 

a X - \ - b Y - \ - c Z c Z c Z C z = O , a ' X - \ - b ' Y - \ - c ' Z c Z = 0 

unde colligimns , X, Y, Z proportionales esse deberé quantitatibus 

b c—cbca', cet — ac\ca ab'—baca' 

Statuendo itaque brevitatis caussa 

V/((6c — c 6 ' ) 8 + ( c a — acY^r{abab',— ba,f) = Δ 

erit vel 

X = b c' c b' 
Δ Y' = ca' - ac' 

Δ 
Z = a b'— b a' 

Δ 
vel 

X = c b'— b c' 
Δ 

Y = a c'— c ci 
Δ Z = b ci— a b' 

Δ 

His duabus methodis generalibus accedit tertia, ubi una coordinatarum. 
e. g. z exhibetur in forma functionis reliquarum «a?, y : haec methodus manifesto 
nihil aliud est, nisi casus specialis vel methodi primae, vel secundae. Quodsi 
hie statuitur 

d ζ = tdoc —f~ it dy 
erit vel 

X = — t 

V( 1+ tt+ uu') 
Y = — u 

y/{\-httit + uu) ' 
Ζ = ι 

\/(î -f- 11 -4- uu) vel 
X = t 

y/(i + í í + « « ) ' 
Y = u 

v/(l-f- ÍÍ + MM) Ζ -1 
V ((tt+ tt + uu) 
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The second method expresses the coordinates in the form of functions of two varia
bles, p, q. Suppose that differentiation of these functions gives 

tlx = a dp -h a dq 
dy = b dp + b' dq 
dz — c dp + c' dq 

Substituting these values in the formula given above, we obtain 
( a X + b Y + c Z) dp + (α' X + V Y + c' Z) dq = 0 

Since this equation must hold independently of the values of the differentials dp, dq, 
we evidently shall have 

a X + b ΥΛ- c Z= 0, a'X+ b' Y+ c' Ζ = 0 
From this we see that X, Y9 Ζ will be proportioned to the quantities 

be' — cb', ca' — a cf

y ab' — ba' 

Hence, on setting, for brevity, 
v / ((bc' — cb'Y + (ca' — ac')2 + {ab'— ba')*) = A 

we shall have either 
X = 

be' — cb' 
A 

Y = 
ca'— ac' 

A 
Y = ah' — ha' 

Δ 
or 

X = 
cb' — be' Y = ac' — ca' 

A 
Φ — ba' — ab' 

A 

With these two general methods is associated a third, in which one of the coordinates, 
z, say, is expressed in the form of a function of the other two, x, y. This method is 
evidently only a particular case either of the first method, or of the second. If we set 

dz == t dχ H- u dy 
we shall have either 

X = 
— t 

i / ( H f + u2) Y = 
— u 

i/( 1 + t2 + u2) Z = 
1 

V (1 + t2 + u2) 
or 

X = 
t 

V (1 + t2 + u2) Y = 
u 

V (1 + t2 + u2) z= 
— 1 

V (1 + t2 + w2) 
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5. 
Duae solutiones in art. praec. inventae manifesto ad puncta superficiel 

sphaericae opposita, sive ad directiones oppositas referuntur, quod cum rei natura 
quadrat, quum normalem ad utranivis plagam superficiel curvae ducere liceat. 
Quodsi duas piagas, superficiel contiguas, inter se distinguere, alteramque exte-
riorem alteram interiorem vocare placet, etiam utrique normali suam solutionem 
rite tribuere licebit adiumento tbeorematis in art. 2 (VII) evoluti, simulatque cri
térium stabilitum est ad plagam alteram ab altera distinguendam. 

In metbodo prima tale critérium petendum erit a signo valoris quantitatis 
W. Scilicet generaliter loquendo superficies curva eas spatii partes, in quibus 
TV valorem positivum obtinet, ab iis dirimet, in quibus valor ipsius W fit ne
gativus. E theoremate illo vero facile colligitur, si W valorem positivum obti-
neat versus plagam exteriorem, normalisque extrorsum ducta concipiatur, solu
tionem priorem adoptandam esse. Ceterum in quovis casu facile diiudicabi-
tur, utrum per superficiem integram eadem regula respectu signi ipsius W va-
leat, an pro diversis partibus diversae : quamdiu coëfncientes _P, Q, _R valores 
finitos habent, nec simul omnes tres evanescunt, lex continuitatis vicissitudinem 
vetabit. 

Si methodum secundam sequimur, in superficie curva duo systemata linea-
rum curvarum concipere possumus, alterum, pro quo ρ est variabilis, q con-
stans; alterum, pro quo q variabilis, ρ constans : situs mutuus barum lineamm 
respectu plagae exterioris decidere debet, utram solutionem adoptare oporteat. 
Scilicet quoties tres lineae, puta ramus lineae prioris systematis a puncto A pro-
ficiscens crescente py ramus posterioris systematis a puncto A egrediens crescente 
qy atque normalis versus plagam exteriorem ducta similiter iacent, ut, inde ab 
origine abscissarum, axes ipsarum x •> y, ζ resp. (e. g. si tum e tribus lineis il-
lis, turn e tribus his, prima sinistrórsum, secunda dextrorsum, tertia sur sum di
recta concipi potest), solutio prima adoptari debet; quoties autem situs mutuus 
trium linearum oppositus est situi mutuo axium ipsarum x,ytz, solutio secunda 
valebit. 

In methodo tertia dispiciendum est, utrum, dum ζ incremen tum positivum 
accipit, manentibus χ et y invariatis, transitus fiat versus plagam exteriorem an 
interiorem. In casu priore, pro normali extrorsum directa, solutio prima valet, 
in posteriore secunda. 
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5. 

The two solutions found in the preceding article evidently refer to opposite points of 
the sphere, or to opposite directions, as one would expect, since the normal may be drawn 
toward either of the two sides of the curved surface. If Ave wish to distinguish beUveen 
the two regions bordering upon the surface, and call one the exterior region and the other 
the interior region, we can then assign to each of the two normals its appropriate solution 
by aid of the theorem derived in Art. 2 (VII), and at the same time establish a criterion 
for distinguishing the one region from the other. 

In the first method, such a criterion is to be drawn from the sign of the quantity TV. 
Indeed, generally speaking, the curved surface divides those regions of space in which W 
keeps a positive value from those in which the value of W becomes negative. In fact, it 
is easily seen from this theorem that, if W takes a positive value toward the exterior 
region, and if the normal is supposed to be drawn outwardly, the first solution is to be 
taken. Moreover, it will be easy to decide in any case whether the same rule for the 
sign of W is to hold throughout the entire surface, or whether for different parts there 
will be different rules. As long as the coefficients I*, Q, R have finite values and do not 
all vanish at the same time, the law of continuity will prevent any change. 

If we follow the second method, we can imagine two systems of curved lines on the 
curved surface, one system for which ρ is variable, q constant ; the other for which q is 
variable, ρ constant. The respective positions of these lines with reference to the exte
rior region will decide which of the two solutions must be taken. In fact, whenever 
the three Unes, namely, the branch of the line of the former system going out from the 
point A as ρ increases, the branch of the line of the latter system going out from the point 
A as q increases, and the normal drawn toward the exterior region, are similarly placed as 
the χ, y, ζ axes respectively from the origin of abscissas (e. g., if, both for the former 
three lines and for the latter three, we can conceive the first directed to the left, the 
second to the right, and the third upward), the first solution is to be taken. But when
ever the relative position of the three lines is opposite to the relative position of the 
x, y, ζ axes, the second solution will hold. 

In the third method, it is to be seen whether, when ζ receives a positive increment, χ 
and y remaining constant, the point crosses toward the exterior or the interior region. 
In the former case, for the normal drawn outward, the first solution holds ; in the latter 
case, the second. 
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ß. 
Sicuti, per translatam directionem normalis in superAciem curvam ad su

perAciem sphaerae, cuius puncto determinato prioris supeiAcici respondct punctum 

determinatum in posteriore, ita ctiam quaevis linea, A el quaevis figura in illa rc-

praesentabitur per lineam vel Aguram correspondentem in liac. In comparatione 

duarum ñgurarum hoc modo sibi mutuo correspondentium , quarum altera quasi 

imago alterius erit, duo momenta sunt respicieiida, alterum, quatenus sola quan-

titas consideratur, alterum, quatenus abstrahendo a relationibus quantitativis so

lum situm contemplamur. 

^.lomentum primum basis erit quarundam notionum , quas in doctrinam de 
superAciebus curvis recipere utile videtur. Scilicet cuilibet parti superfìciei cur-

vae limitibus determinatis cinctae c M r ^ ^ ? M 7 Y ? ^ ?<9?r3?^76 seu ! M ? ^ y r ^ m adscribemus, 

quae per aream figurae illi in superficie sphaerica respondentem exprimetur. A b 

hac curvatura integra probe distinguenda est curvatura quasi specifica, q u a m nos 

??3^7?^M?Yi7№ CM7*7J^?M7^^ vocabimus : haec posterior ad joM??c?^^^ superAciei refertur, et 
denotabit quotientem qui oritur, dum curvatura integra elementi superficialis 
puncto adiacentis per aream ipsius elementi dividitur , et proin indicat rationem 
arearum inAnite parvarum in superAcic curva et in superAcie sphaerica sibi m u 
tuo respondendum. Utilitas harum innovationum per ea, quae in posterum a no
bis explicabuntur , abunde , ut speramus , sancietur. Quod vero attinet ad ter-
minologiam , imprimis prospiciendum esse duximus , ut omnis ambiguitas arcea-
tur, quapropter haud congruum putavimus , analogiam terminologiae in doctrina 
de lineis curvis planis vulgo receptam (etsi non omnibus probatam) stricte sequi, 
secundum q u a m mensura curvaturae simpliciter audire debuisset curvatura, cur
vatura integra autem amplitudo. Sed quidni in verbis faciles esse liceret, d u m -
modo res non sint inanes . neque dictio interpretationi erroneae obnoxia? 

Situs Agurae in superAcie sphaerica vel similis esse potest situi Agurae 
respondentis in superAcie curva, vel oppositus (inversus); casus prior locum ha
bet , ubi binae lineae in superAcie curva ab eodem puncto directionibus inaequa-
libus sed non oppositis proAciscentes repraesentantur in superAcie sphaerica per 
tineas similiter iacentes , puta ubi imago lineae ad dextram iacentis ipsa est ad 
dextram; casus posterior, ubi contrarium valet. H o s duos casus persingum men-
surae curvaturae vel positivum vel negativum distinguemus. Sed manifesto haec 
distinctio eatenus tantum locum habere potest, quatenus in utraque superAcie pla-
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6. 

Just as each definite point on the curved surface is made to correspond to a definite 
point on the sphere, by the direction of the normal to the curved surface which is trans
ferred to the surface of the sphere, so also any line whatever, or any figure whatever, on 
the latter will be represented by a corresponding line or figure on the former. In the 
comparison of two figures corresponding to one another in this way, one of which will be 
as the map of the other, two important points are to be considered, one when quantity 
alone is considered, the other when, disregarding quantitative relations, position alone 
is considered. 

The first of these important points will be the basis of some ideas which it seems 
judicious to introduce into the theory of curved surfaces. Thus, to each part of a curved 
surface inclosed within definite limits we assign a total or integral curvature, which is 
represented by the area of the figure on the sphere corresponding to it. From this 
integral curvature must be distinguished the somewhat more specific curvature which we 
shall call the measure of curvature. The latter refers to a j?oi7it of the surface, and shall 
denote the quotient obtained when the integral curvature of the surface element about 
a point is divided by the area of the element itself; and hence it denotes the ratio of the 
infinitely small areas which correspond to one another on the curved surface and on the 
sphere. The use of these innovations will be abundantly justified, as we hope, by what 
we shall explain below. As for the terminology, we have thought it especially desirable 
that all ambiguity be avoided. For this reason we have not thought it advantageous to 
follow strictly the analogy of the terminology commonly adopted (though not approved by 
all) in the theory of plane curves, according to which the measure of curvature should be 
called simply curvature, but the total curvature, the amplitude. But why not be free in 
the choice of words, provided they are not meaningless and not liable to a misleading 
interpretation ? 

The position of a figure on the sphere can be either similar to the position of the 
corresponding figure on the curved surface, or opposite (inverse). The former is the case 
when two lines going out on the curved surface from the same point in different, but not 
opposite directions, are represented on the sphere by lines similarly placed, that is, when 
the map of the line to the right is also to the right; the latter is the case when the con
trary holds. We shall distinguish these two cases by the positive or negative sign of the 
measure of curvature. But evidently this distinction can hold only when on each surface 
we choose a definite face on which we suppose the figure to lie. On the auxiliary sphere 
we shall use always the exterior face, that is, that turned away from the centre ; on the 
curved surface also there may be taken for the exterior face the one already considered, 
or rather that face from which the normal is supposed to be drawn. For, evidently, there 
is no change in regard to the similitude of the figures, if on the curved surface both the 
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gam determinatam e l ig imus , in qua figura concipi debet. In sphaera aux i l iar 
semper plagam e x t e r i o r e m , a centro avers am , adhibebimus : in superficie curve 
et iam plaga exter ior sive quae tamquam exter ior consideratur, adoptari potest, ve" 
potius plaga eadem , a qua normal is erecta concipitur; manifesto enim respectr 
s imil i tudinis figurarum nihi l mutatur , si in superficie curva turn figura ad plagam 
oppositam t r a n s f e r t u r , turn n o r m a l i s , dummodo ipsius imago semper in eadem 
plaga superficiei sphaericae depingatur. 

S ignum posit ivum vel negat ivum , quod pro situ figurae infinite parvae men-
surae curva turae adscribimus, et iam ad c u r v a t u r a m integram figurae finitae in su
perficie curva extendimus. A t t a m e n si argumentum omni general i tate amplecti 
susc ipimus, quaedam dilucidationes r e q u i r u n t u r , quas bic brev i ter tantum attin-
gemus. Quamdiu figura in superficie curva ita comparata est, ut singulis punctis 
i n t r a ipsam puncta diversa in superficie sphaerica respondeant , definitio ulteriore 
expl icat ione non indiget . Quoties autern conditio ista locum non h a b e t , necesse 
er i t , quasdam partes figurae in superficie sphaerica bis ve l pluries in computum 
d u c e r e , u n d e , pro situ simili ve l opposito , ve l accumulat io ve l destruct io oriri 
poter i t . Simplicissimum erit in tali casu , figu.ra.iTL in superficie curva in partes 
tales div isam concipere , quae singulae per se spectatae conditioni i l l i satisfaciant, 
singulis t r ibuere c u r v a t u r a m suam integram , quant i tate per aream figurae in su
perficie sphaerica respondentis , signo per situm determinat i s , ac denique figurae 
toti adscribere curvaturam integram ortam per addit ionem c u r v a t u r a r u m integra-
r u m , quae singulis part ibus respondent . G e n e r a l i t e r i taque c u r v a t u r a Integra 
figurae est = yVl'da, denotante d a e lementum areae figurae, k mensuram cur
va turae in quo vis puncto. Quod vero att inet ad repraesentat ionem geometricam 
huius integral is , praec ipua huius re i momenta ad sequentia redeunt . Per ipber iae 
figurae in superficie curva (sub restr ict ione art . 3) semper respondebit in superfi
cie sphaerica l inea in se ipsam rediens . Quae si se ipsam nul l ib i in tersecat , to-
tam superficiem sphaericam in duas partes d i r imet , q u a r u m al tera respondebit 
figurae in superficie c u r v a , et cuius a r e a , positive vel negat ive accipienda, prout 
respectu per ipber iae suae similiter iacet ut figura in superficie curva respectu suae, 
vel inverse , exhibebi t posterioris curva turam integram. Quoties vero l inea ista 
se ipsam semel vel p luries secat , exhibebi t figuram complicatam , cui tamen area 
certa aeque legit ime tribui potes t , ac figuris absque nodis, haecque area, r i te in-
te l l ec ta , semper valorem iustum curvaturae integrae exhibebit . A t t a m e n uberio-

1 8 

http://figu.ra.iTL


DISQUISITION ES GENERALES 

Generales Investigation rales Investigation 

rale 

raleGenerales Investigation ral 

figure and the normal he transferred to the opposite side, so long as the image itself 
is represented on the same side of the sphere. 

The positive or negative sign, which WTC assign to the measure of curvature accord
ing to the position of the infinitely small figure, we extend also to the integral curvature 
of a finite figure on the curved surface. However, if we wish to discuss the general case, 
some explanations will be necessary, which we can only touch here briefly. So long 
as the figure on the curved surface is such that to distinct points on itself there corres
pond distinct points on the sphere, the definition needs no further explanation. But 
whenever this condition is not satisfied, it will be necessary to take into account twice 
or several times certain parts of the figure on the sphere. Whence for a similar, or 
inverse position, may arise an accumulation of areas, or the areas may partially or 
wholly destroy each other. In such a case, the simplest way is to suppose the curved 
surface divided into parts, such that each part, considered separately, satisfies the above 
condition ; to assign to each of the parts its integral curvature, determining this magni
tude by the area of the corresponding figure on the sphere, and the sign by the posi
tion of this figure ; and, finally, to assign to the total figure the integral curvature 
arising from the addition of the integral curvatures which correspond to the single parts. 
So, generally, the integral curvature of a figure is equal to fkder, dcr denoting the 
element of area of the figure, and k the measure of curvature at any point. The prin
cipal points concerning the geometric representation of this integral reduce to the fol
lowing. To the perimeter of the figure on the curved surface (under the restriction 
of A r t . 3) will correspond always a closed line on the sphere. If the latter nowhere 
intersect itself, it will divide the whole surface of the sphere into two parts, one of 
which will correspond to the figure on the curved surface ; and its area (taken as 
positive or negative according as, with respect to its perimeter, its position is similar, 
or inverse, to the position of the figure on the curved surface) will represent the inte
gral curvature of the figure on the curved surface. But whenever this line intersects 
itself once or several times, it will give a complicated figure, to which, however, it is 
possible to assign a definite area as legitimately as in the case of a figure without 
nodes ; and this area, properly interpreted, will give always an exact value for the 
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rem liuius argumenti de figuris généralissime conceptis expositionem ad aliam oc-
casionem nobis reservare debemus. 

7. 

Invest igemus iam formulara ad exprimendam mensuram curvaturae pro quo-
vis puncto superficiei curvae. Denotante d a aream elementi huius superficiei. 
Z d a erit area proiectionis huius elementi in planum coordinatarum ocyy\ et per-
inde, si d S est area elementi r e s p o n d e n t s in superficie sphaerica, erit ZdlL area 
proiectionis ad idem planum : sign urn posit ivum vel negativum ipsius Z vero in-
dicabit situm proiectionis similem vel oppositum situi elementi proiecti : manifeste 
i taque i l lae proiectiones eandem rat ionem quoad quant i ta tem, s imulque eandera 
relat ionem quoad s i tum, inter se t enent , ut e lementa ipsa. Consideremus iam 
e lementum tr iangulare in superficie c u r v a , supponamusque coordinatas trium 
punctorum , quae formant ipsius proiectionem , esse 

œ, 
oc —¡— dec, 
ce -|— ¡8 a?, 

У 
y + dy 
y- +- §y 

Duplex area huius trianguli expr imetur per formulara 

d oc. S y — d y . S oc 

et quidem in forma positiva ve l negativa , prout situs lateris a puncto primo ad 
tert ium respectu lateris a puncto primo ad secundum similis vel oppositus est si
tui axis coordinatarum y respectu axis coordinatarum oc. 

Per inde si coordinatae tr ium punctorum , quae formant proiectionem ele
menti respondentis in superficie sphaerica, a centro sphaerae inchoatae , sunt 

XX 
X+dXjkfd, 
X+êX,X+dX, 
X + ê X , 

Y 
F - f - d Y 
Y-{-S fsY 

duplex area huius proiectionis expr imetur per 

d X . S Y — d F . ^ X 

de c u i u s exp re s s ion i s s i g n o e a d e m v a l e n t q u a e supra . Q u o c i r c a m e n s u r a c u r v a -
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integral curvature. However, we must reserve for another occasion the more extended 
exposition of the theory of these figures viewed from this very general standpoint. 

7. 
We shall now find a formula which will express the measure of curvature for 

any point of a curved surface. Let dor denote the area of an element of this surface ; 
then Zdo- will be the area of the projection of this element on the plane of the coor
dinates x, y; and consequently, if d % is the area of the corresponding element on the 
sphere, Zd^ will be the area of its projection on the same plane. The positive or 
negative sign of Z will, in fact, indicate that the position of the projection is similar or 
inverse to that of the projected element. Evidently these projections have the same 
ratio as to quantity and the same relation as to position as the elements themselves. 
Let us consider now a triangular element on the curved surface, and let us suppose 
that the coordinates of the three points which form its projection are 

x, 
x + dx, 
x + Sx, 

y 
y + dy 
y + Sy 

The double area of this triangle will be expressed by the formula 

dx . Sy — dy . Sx 
and this will be in a positive or negative form according as the position of the side 
from the first point to the third, with respect to the side from the first point to the 
second, is similar or opposite to the position of the y-axis of coordinates with respect 
to the .r-axis of coordinates. 

In like manner, if the coordinates of the three points which form the projection of 
the corresponding element on the sphere, from the centre of the sphere as origin, are 

X, 
X + dX, 
X + SX, 

Y 
Y+ dY 
7 + 8 7 

the double area of this projection will be expressed by 

dX .SY—dY.SX 
and the sign of this expression is determined in the same manner as above. Where-
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turae in hoc loco superficiei cu rvae er i t 

7 dJT.S Y— d Y.ÒX 
dar.oy — di/ . òx 

Q u o d s i i a m supponimus , i ndo l em superficiei cu rvae da tam esse s e c u n d u m m o d u m 
te r t ium in art. 4 c o n s i d e r a t u m , h a b e b u n t u r X e t F in forma func t ionum q u a n -
t i t a tum x,y. unde eri t 

d X = эх эх  
эх эх  

+ ( § 7 ) ^ 

s x = ( эх эх эх a#)«* - эх May)** 
d F = эх эх эх  

эх эх эх  
эх эх эх  
эх эх эх  SJT = эх эх эх  

эх эх эх  
+ (37)«* 
эх  Subs t i tu t i s his va lo r ibus , express io p raecedens t ransi t in hanc : 

эх 7. ,d A\ dT, fdX ,dY 

эх эх эх эх  

эх эх эх  
эх эх эх  

S t a t u e n d o u t supra 
dz . d z эх эх  
da; ' dy 

a tque insuper 
ddz rp d d z JJ d d z j-r 
d x 2 ' cUT. ' dy* 1 V 

sive 

d* = Tdcc-^Udy, du = l m U d x - \ - V d y 

h a b e m u s e x formul is supra dat is 

X = — tZ, Y =. —uZ, { \ - \ - t t - \ - u u ) Z Z k l m = 1 
a tque h i n c 

d X = — Z d t — tdZ 
dY = —Zdu—udZ 
(l-\-tt-{-uu)dZ-\-Z(tdt- эх эх \-udu) = 0 

sive 
dZ = — Z3{tdt-\ эх эх эх эх эх -udu) эх эх эх  
dX = —Z3{l-\-uu эх ) эх d эх t -\- Z3 tudu 
d F = -+-Z3tudt эх — эх эх Z3(l-+-tt)dic 
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Investigation rales Investigation Investi 

les Inves 

Investigation rales Investigatiosti 

fore the measure of curvature at this point of the curved surface will be 

k — dX.oY—dY. oX 
dx . Sy— dy. ox 

If now Ave suppose the nature of the curved surface to be defined according to the third 
method considered in Art . 4, X and Y will be in the form of functions of the quanti
ties x, y. We shall have, therefore, 

,„ эх, эх ,„ эх, эх 
,„ эх, эх ,„ эх, эх ,„ эх эх, 

,„ эх, эх эх эх эх  
dY 

,„ эх, эх ,„ эх, 
,„ эх, эх эх  

x v д Г Х - 4 - 3 K S 8 7 = — oa; + — ò fi dx or/ 'J 

When these values have been substituted, the above expression becomes 

^ a x dY dX dY 
dx dy dy dx 

Setting, as above, 
C Z 

die ' 
эх  dz 

— = u 
d?y 

and also dz 
— 
d?y = T, 

d2z 
dx . dy 

d2z 
dy2 эх  

or 
dt = Tdx + Udy, du = Udx + Vdy 

we have from the formulae given above 
X=—tZ, Y= —uZ, ( 1 + f-v-u2) Z2=l 

and hence 
dX= — Zdt—t dZ 
dY= — Zdu — u dZ 

(l + f+u2)dZ+ Z(tdt + udu) = 0 
or 

dZ= —Z3(tdt + udu) 
dX = — Z3(l-T- u2) dt + Z3tudu 
dY= + Z3tudt—Z3 (1 + 0 du 
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adeoque 

* f = Z\— (l + MM) T + «H ¡7) 

£ f = Z* (— (1 + « M) « 7 + *« V) 

| f = Z'(tuT— + t o 
£f = Z* (— (1 + « M) «7+ *« V) 

quibus valoribus m expressione praecedente substitutis , prodit 

A- = ET6 ( T "F— UU){\-\-tt-\-uu) = ^ ' { T F — Z7*7) = _rjr— u u 

эх эх m 
S. 

Per idoneam electionem initii et axium coordinatarum facile offici potest, ut 
pro puncto determinato A. valores quantitatum t, u, XJ evanescant. Scilicet duae 
priores conditiones iam adimplentur, si planum tangens in hoc puncto pro plano 
coordinatarum «r, y adoptatur. Quarum initium si insuper in puncto A. ipso 
col locatur, manifesto expressio coordinatarum z adipiscitur formam tale m 

z = T°xx-\- klU°xy-\-±V°yy-\-Q 

ubi Q erit ordinis altioris quam secundi. Mutando dein situm axium ipsarum 
x, v ansmlo M tali ut habeatur 

t a n - 2 M = tan- 2 M 

facile perspicitur, prodituram esse aequationem huius formae 

z = \ TXX-+-1- Vyy-+-Q 

quo pacto etiam tertiae conditioni satisfactum est. Quibus ita factis , patet 
I. Si superficies curva secetur piano ipsi normali et per axem coordinata

rum x t ranseunte , oriri curvam planam, cuius radius curvaturae in puncto A. 
riat = y, , signo positivo vel negativo indicante concavitatem vel convexitatem 
versus plagam earn, versus quam coorclinatae z sunt positivae. 

II. Simili modo ^ erit in puncto A. radius curvaturae curvae planae, quae 
oritur per sectionem superficiei curvae cum piano per axes ipsarum y, z transeunte. 
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les Invesles Invesles Invesles Invesles Inves 

les Inves 

^==Z3(-—(l+u2)T+tu Z7) 

and so 

^==Z3(-—(l+u2)T+tu Z7)mllkэх  

^==Z3(-—(l+u2)T+tu Z7) эх  
^==Z3(-—(l+u2)T+tu Z7) 

dY 
дх 

эх = ^ 3 (*t* SP— (1 + t2) Z7) 
o y 

4^ =^o«ir—(î + on 
Substituting these values in the above expression, it becomes 

k=^ZQ(T V— U2) (1 + t2 + u2)=Z*(T V— U2) 
TV—U2 

~"(l + ^ 2 4 - w 2 ) 2 

8. 

By a suitable choice of origin and axes of coordinates, we can easily make the 
values of the quantities t, u, U vanish for a definite point A. Indeed, the first two 
conditions will be fulfilled at once if the tangent plane at this point be taken for the 
#y-plane. If, further, the origin is placed at the point A itself, the expression for 
the coordinate z evidently takes the form 

z = I T°x2 + U°xy + h n 
where fl will be of higher degree than the second. Turning now the axes of x and y 
through an angle M such that 

tan 2 M = 2 U° 
T° v° 

it is easily seen that there must result an equation of the form 
z = h Tx2 + \ Vy2 + ft 

In this way the third condition is also satisfied. When this has been done, it is evi
dent that 

I. If the curved surface be cut by a plane passing through the normal itself and 
through the rr-axis, a plane curve will be obtained, the radius of curvature of which 

at the point A will be equal to MM the positive or negative sign indicating that the 

curve is concave or convex toward that region toward which the coordinates z are 
positive. 

II. In like manner i will be the radius of curvature at the point A of the plane 

curve which is the intersection of the surface and the plane through the y-axis and 
the 2-axis. 
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I I I . Statuendo œ = rcoscp, y = rsincp, fit 

z = 4 - ( T c o s c p 2 + F s i n < p 2 ) r r + Q 

uncle col l igi tur, si sectio fiat per planum superficiel in A. normale et cum axe 
ipsarum x angulum 9 eflîciens, oriri curvam plan am, cuius radius curvaturae in 
puncto A- sit 

1 
Tcoscp 2-}- Fsincp2 

I V . Qtioties i taque habetur T = v, radii curvaturae m cunctis planis 
normalibus aequales erunt . Si vero T et V sunt inaequales , manifestum est, 
quum jTcos<p2-|— T^sincp2 pro quovis valore anguli cp cadat intra T et "F", radios 
curvaturae in sectionibus principal ibus , in I et I I consideratis , referri ad cur
vaturas ex tremas , puta al terum ad cúrvaturam maximam , alterum ad minimam, 
si T e t T eodem signo affectae sint, contra a l terum ad maximam convexitatem, 
a l terum ad maximam concavitatem, si T et V signis oppositis gaudeant. Hae 
conclusiones omnia fere continent, quae ill . EULER de curvatura superficierum cur-
varum primus docuit. 

V . Mensura curvaturae superficiei curvae in puncto AL autem nanciscitur 
expressionem simplicissimam k = T V, unde habemus 

THEOREMA. Mensura curvaturae in quovis superficiei puncto aequalis est 
fractioni, cuius numerator unit as, denominator autem productum cluorum radiorum 
curvaturae extremorum in sectionibus per plana normalia. 

Simul patet, mensuram curvaturae fieri positivam pro superficiebus concavo-
concavis vel convexo-convexis (quod discrimen non est essentiale), negativam vero 
pro concavo-convexis. Si superficies constat e partibus utriusque gener is , in ea-
rum confiniis mensura curvaturae evanescens esse debebit. De indole superficie
rum curvarum talium, in quibus mensura curvaturae ubique evanescit, infra p lu-
ribus agetur. 

9. 
Formula generalis pro mensura curvaturae in fine art . 7 proposita, omnium 

simplicissima est, quippe quae quinqué tantum elementa implicat ; ad magis com-
pl icatam, scilicet novem elementa involventem , defer imur , si adhibere volumus 
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Setting x = r cos (f>, y = r sin </>, X+dX fdfsgdg 

f>, y = r s 

Setting x = r cos (f>, y = r sin </>, 

III. Setting x = r cos (f>, y = r sin </>, the equation becomes 

z = ì (T cos2 (f>+ V sin2 <£) r 2 + H 

from which we see that if the section is made by a plane through the normal at A 
and making an angle cf> with the #-axis, we shall have a plane curve whose radius of 
curvature at the point A will be 

1 

Tcos2<t>+ Vsin24> 

IV. Therefore, whenever we have ± — V, the radii of curvature in all the normal 
planes will be equal. But if T and V are not equal, it is evident that, since for any 
value whatever of the angle </>, T cos2 <f> + V sin2 </> falls between T and V, the radii of 
curvature in the principal sections considered in I. and II. refer to the extreme curva
tures ; that is to say, the one to the maximum curvature, the other to the minimum, 
if T and V have the same sign. On the other hand, one has the greatest convex 
curvature, the other the greatest concave curvature, if T and V have opposite signs. 
These conclusions contain almost all that the illustrious Euler was the first to prove 
on the curvature of curved surfaces. 

V. The measure of curvature at the point A on the curved surface takes the 
very simple form 

k = TV, 
whence we have the 

THEOREM. The measure of curvature at any point whatever of the surface is equal to a 
fraction zvhose numerator is unity, and ivhose denominator is the product of the two extreme 
radii of curvature of the sections by normal planes. 

A t the same time it is clear that the measure of curvature is positive for con
cavo-concave or convexo-convex surfaces (which distinction is not essential), but nega
tive for concavo-convex surfaces. If the surface consists of parts of each kind, then 
on the lines separating the two kinds the measure of curvature ought to vanish. Later 
we shall make a detailed study of the nature of curved surfaces for which the meas
ure of curvature everywhere vanishes. 

9. 

The general formula for the measure of curvature given at the end of Ar t . 7 is 
the most simple of all, since it involves only five elements. We shall arrive at a 
more complicated formula, indeed, one involving nine elements, if we wish to use the 

2 7 



C.F. GAUSS 

Disquisition Generales 

Cisca 
Superficies Curvas 

modum primum indolem superficiei curvae exprimendi. Retinendo notationcs 

art . 4 íiisuper statuernus : 

d d W p , d Q == ITd<r 
-f- Q'dy + P"dz 

d d i r j ^ ' 
d z" 

ddW jy, 
dy . dz ' 

d d l F n„d Q == ITd<r-f- Q'dy + P"dz ddlf j£'> 
dar.dy 

ita ut ñat 

d Q == ITd<r-f- Q'dy + P"dz эх эх эх эх  
d Q == ITd<r-f- Q'dy + P"dz 
dP = Q 'dx-+-P di/-+-P'dz 

Iam quum habeatur ¡ i 3 

invenimus per differentiationein 

PPdt ^ — JRdJP-h ^PdJR - : (P Q"—PP) dx + {PP"—jRJT)dv+ (PP'— PQ")dz 

si v e , eliminata d^ adiumento aequationis Pd¿v-+- Qdy-\-Udz = 0 , 

P3dt = (—PPP-+- 2PPQ"—PPP')dx-\-{PPP"-\- QP Q"— PQP — PPP)dj/ 

Prorsus simili modo obtinemus 

R3du = rpRP"-\- QP Q'—PQP— PPP")dx + {—PPQ'-i- 2QRP"—QQP')d¿/ 

Hinc itaque colligimus 

RST = — PPP-+- 2PP Q"— PPP' 
P3U= PPP"-\- QP Q"—PQP'—PPP,f 

P;' V = — Plí Q'-f-2 QPP"— QQP' 

Substituendo hos valores in formula art. 7 , obtinemus pro mensura curvaturae k 
expressionem symmetricam sequentem : 

(PP-\- Q Q-±-RRfk 
^PP(Q'P'—P'P") + QQ(P'P'—Q"Q')-1-PP(P,Q'--P "JRT ) 

+ 2 QP(Q"P'—PP')-t-2PP(P'P"— Q'Q")A-2PQ(P"Q'—P'P') 

1 0 . 

Formulam adhuc magis complicatam, puta e quindecim elementis con-
rlatam, obtinemus, si methodum generalera secundam, indolem superficierum 
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f>, y = r s urArt. 4, let uset alsoet als^$ ^$ ^$ 

et also 

ved surface. Keeping the notation of 

first method of representing a curved surface. Keeping the notation of Art . 4, let us 
set also 

X+dX, X+dX, 
X+êX, 

tan- 2 M tan- 2 M 
tan- 2 M tan- 2 M 

X+dX, X+yry 
X+dX, 

X+dX, X+dX, X+dX, 
X+dX, 

tan- 2 M tan- 2 M 
tan- 2 M tan- 2 M dx .dytan- 2 M 

so that 
dP^P' dx + fi" dy + ^ 
dQ = fi" dx + Q' dy+P"dz 
dfi = + + ¿2' ¿2 

Now since t~~ IV 
we find through differentiation 

Il2dt = -RdP + P dfi = (P Q"—fiP') dx + (PP"—fifi") dy + (PR—fi Q") dz 

or, eliminating dz by means of the equation 

Pdx + Qdy + fidz = 0, 
fi*dt = (—fi2P'+2PfiQ"—P2fi') dx +(PfiP"+ Q fi Q"— P Q fi'—R2 fi") dy. 

In like manner we obtain 

fi3du = (PfiP"+ QfiQ"—PQR'—fi2fi")dx + (—fi2Q'+ 2 QfiP"—Q2Rf)dy 

From this we conclude that 
fi*T= — R2P'+2 PfiQ"—P2fif 

KSU=PRP" + QfiQ"—PQfi'—fi2fi' 
fi* V= —fi2 Q' + 2 Q fiP" — Q2 fi' 

Substituting these values in the formula of A r t . 7, we obtain for the measure of curv
ature Jc the following symmetric expression : 

(jP2+ Q2 + fi2)2k=P2(Q'fi'—P"2)-\- Q2(P'R' — Q"2) +fi2(P'Q'—fi"2) 
+ 2 Qfi(Q"R"—P'P") + 2 PR(P" fi" — Q' Q") + 2PQ (P" Q" — R'R") 

10 . 

We obtain a still more complicated formula, indeed, one involving fifteen elements, 
if we follow the second general method of defining the nature of a curved surface. It 
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curvarum exprimendi, sequimur. Magni tarnen momenti est , hanc quoque ela
borare. Retinendo signa art. 4 , insuper statuemus 

d dχ ^ ddx ^ ddχ ^,, 
dp* * dp. dg- ' dq* 
ddy β ddy _ ^ , ddj/ _ fi» 
dp3 ' dp.dq ' dqz 

ddz d d ζ r d d s „ 
dp* Τ ' d~p~dq Ί » dq^ Τ 

Praeterea brevitatis caussa faciemus 
bc—cb' = A 
c d — a c = JB 
a b'— b d = C 

Primo observamus, haberi Adx-\-JBdy —f- Cdz = 0, sive dz = —^dx— ~dy\ 
nnn.t.í»nns itnniifi ζ s r» ftp.tat.11r tamrmam fnnntio in.sarura .τη u _ fît 

dz_ 
dx f ^ 

= w = — C 

Porro deducimus, ex dec = α dp -f- dd q , dy = δ dp -f- ¿>'d 

Ο d jt? = &'d «a? — ddy 
Cdq = — 6 d Λ7 —f- α d j / 

Hinc obtinemus differentialia completa ipsarum t, u 
C* d t = 2 | — C ̂  ) (b'd oo — α dy) + ( C ̂  - A | £ ) (6 d « — α dy) 
C 3 d M = (2?ï£— c £ f ) (6'd»— a'dy) + (C £ f - (fc'd* - α dy) 

Iam si in his formulis substituimus 

if = c6 + by-c$' — by 
<g =c'e'+b-r—ce"—b'f-
¿- = α γ + c a — «γ — ca 
¿- = αγ-f-ca — αγ — c a 

= δ'α + αβ'—¿a'—a'Ó* 
3— = b'öi-\-aß"—b oí'—aß' 
dq 
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^é^e-rte-bti^ *_^*&&6'àée^&>t'tona 
is, however, very important that we develop this formula also. Retaining the nota
tions of A r t . 4, let us put also 

d2x__ 
X+dX, 

d2x ,h 
dp.dq~~ga> 

d2x 
X+dX, X+dX, 

df P' dp.dq gdf 
P' 

tanX+d 
- 2 M tX+dX, 
an- 2 M 

3 2 _ tan- 2 Mc 3tan- 2 M 
2z „ 

and let us put, for brevity,tan- 2 M 
bc'—cb'^A 
co!—ac'=B 
ab' — ba' = C 

Firs t we see that 
Adx+Bdy + Cdz = 0, 

or 
dz = tan- 2 M tan- 2 M 

Thus, inasmuch as z may be regarded as a function of x, y, we have 

dx tan- 2 M Atan- 2 M 

dz 
tan- 2 M c 

Then from the formulae 
dx = a dp + a' dq, dy = b dp + b' dq, 

we have 
Odp = b' dx — a' dy 
Odq = —b dx + a dy 

Thence we obtain for the total differentials of t, u 

O3 dt = A™ 
dp dp (V dx — a' dy) + 

tan- 2 M da tan- 2 M dq (b dx — a dy) 

C3du = dp -If) (b'dx — a'dy) + 
tan- 2 M dq dq I (b dx — a dy) 

If now we substitute in these formulae 
dA 
dp = c' /3 +by' —cP —b'y 

dA 
do = c' P + b y d f — c p ' — b ' Y 

dB 
dp = a' y 4- c a! — ay' — c' a 

dB 
dq = a'y'+c a"— a y" — cr of 

dC 
dp = V a + a /3' — bo! —a'/3 

dO 
dq - = b' *'+ aP'—ba!'—a' /3' 
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atque perpendimus , valores differentialium dt, du sic prodeuntium, aequales 
esse deberé, independenter a differentialibus d < r , d y , quantitatibus Td¿v-\- TJdy, 
JJdx-\- Vdy resp. inveniemus, post quasdam transformationes satis obvias: 

C3T = a A b'V-\- fi B b'b'-+- y Cb'b' 
— 2 a A b b'— 2 fi'Bb b'— 2 y Cb b' 
\-OL'Abb-\-fi"Bbb-\-y"Cbbfds 

c3 u 
— a A db'— fi B db'— y Cab' 
+ a A (a b'-{- bd)-\-fi'B(a è ' + 6 a ) + y C (a b'-\- b a ) 

- a" A ab — fi "B a b — y" C ab 
C3 V = a A a'd-\- fi B da'-\- y Cd a' 

— 2 cc'Aad— 2 fi'Bad— 2 y Cad 
—(— a" A a a -f- fi"B a a -f- y" Caa 

Si i taque brevitatis caussa statuimus 

Aa -+-Bfi klk = Z> (1) 
Aa! -\-Bfi' -\- Cy = D' (2) 
Aa!'-{-Bfi"-\- Cy" = X > " ( 3 ) 

fit 

C3T = ПЪ'Ь'— 2ПЪЬ' -\-П"ЪЪ 
C3U = —JDab-{- П\аЪ'-+-Ъа)— JD'ab 
C3V = Da а — 2 D 'aa-\-D"aa 

Hinc in veni mus , evolutione facta , 

C\TV— UU) = {DD',— D'D'){ab'—bdf = DD'— DD) CC 

et prom íormularn pro mensura curvaturae 

k = I) I) "—-1) n ' 
[st sí BIS -\- CC)% 

1 1 . 
Formulae raodo inventae iam aliam superstruemus, quae inter fertilissima 

theoremata in doctrina de superficiebus curvis referenda est. Introducamus se-
quentes notationes: 
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et alsoat the values of the differentials dt, du 

dt, 

lsoat the values of the differen lsoat the va 

and if we note that the values of the differentials dt, du thus obtained must be equal, 
independently of the differentials d x, dy,to the quantities Tdx + Udy, Udx+Vdy 
respectively, we shall find, after some sufficiently obvious transformations, 

C3 T=aAb'2+ f3Bb,2+ y Cb'2 

— 2 a! Abb'—2 ¡3' Bbb,— 2y' Cbb' 
+ a " Ab2 + /3" Bb2 + y" Cb2 

C3 U= —aA a'V— /3 B a'b'—y C a'V 
+ a! A(ab'+ ba') + & B{ab'+ ha') + / C(ab' + ba' 
— al'Aab — p'Bab — y" Cab 

C*V= a. A a'2-Y /3 B af2 + y Oa'2 

— 2 a! A aa' — 2 /3' B aa'~2 y' C aa' 
+ a " A a2 + f3" B a2-\- y" Ca2 

Hence, if we put, for the sake of brevity, 

A a -\-B fi -h C'y =JJ ( 1 ) 

Aa! + B + Cy* =&' (2) 
Aa"+Bp"+ Cy"=D" (3) 

we shall have 
CzT=DV2—2D'bb' + D"b2 

C* U=—Da'b' + Df (ab'+ b a') —D" a b 
C3 V=Da'* — 2 D' aa' + D" a* 

From this we find, after the reckoning has been carried out, 

CG (TV— U2) = (DD"—D'2) (ab'—ba'f = (DD" — D'2) C2 

and therefore the formula for the measure of curvature 

k = 
D D"—D'2 

(A2 + B2+C2)2 

1 1 . 

By means of the formula just found we are going to establish another, which may 
be counted among the most productive theorems in the theory of curved surfaces. 
Let us introduce the following notation : 
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a a —|— bb -f- cc = E 
a a -f- b b' —f- c c = F 
da —|— b'b' —j— cV = G 

a a -\-bfi -\-cy = w (4) 
a a + 6 6 ' + cy' = iri (5) 

aa!'-\-bfi"-\-cy" = m" ( 6 ) 
a ÖL —f- ò'ó* -(- c'y = w (7 ) 

da.'-\-b'fi' cy = n (8) 
da!'-\- b'fi"-\-cy" = n" ( 9 ) 

AA-\-BB-\-CfqdC = EG— FF — A 

Eliminemus ex aequationibus 1, 4 , 7, quantitates o\ y, quod fit mult ipl i -
:ando illas per òc'—-'ce', b'C—c'B, cB — b C, et addendo : ita oritur 

{A (b c — c b') a (b'C — cB) + d(c B — b C)) a 
= D(bc— cb') -f- m(b'C—c'B)-+-n{cB— b C) 

quam aequationem facile transformamus in hanc : 

AD = oL&-\-a{nF—m fsG)- \ -a\mF—nE) 

Simil i modo eliminatio quantitatum oc, y vel a., fi ex iisdem aequationibus sup-
peditat 

BD = fiA-+-b(nF—mG)-\- b'(mF—n E) 
CD=yA-+-c(nF—mfdG)-\-c'(??iF—nEgfg)gf 

Moltiplicando has tres aequationes per a", fi", y" et addendo obtinemus 

DD" = (afi"-+fifi"-\-yY')A-+-m'(nF—?nG)-{-ri'(mF—ngEfsg)... ( 10 ) 

Si perinde tractamus aequationes 2, 5, 8 , prodit 

AD' = a A + a (n'F — mG) + d(m'F—ri E) 
BD' = G'b + b{riF—m'G)-\-b\m'F—ri JE) 
CD' = Y&-4-c(n'F— mG) + c(m'F — riE) 

quibus aequationibus per a\ fi', 7' multiplicatis , additio suppeditat : 

DD' = (a'a'-f- fi 'fi ' + y V ) A -f- m\n'F— mfdG)-\-ri{m'F—nE) 
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lsoat the values of the differen lsoat the value 

differe 

lsoat the values of the differen 

a2+b2+c2=F 
aa'+ bb'+ cc' = F 
a'2 + b'2 + c'2=G 

a a. + b fi -Y c y =m (±) 
a a! + b & + c yf = m' (5) 
a a"+ b c y"—m" (6) 
fl'a + i ' j 8 = » (7) 

a' a' + b' +c'Y =n' . . ! • • . (8) 
a' a"+ b' e' y " = n " ( 9 ) 
A£ + JJ'-f- U —su tr —Jb"-= A 

Let us eliminate from the equations 1, 4, 7 the quantities /3, which is done by 
multiplying them by be'—cb', b'C—cf B, cB— b C respectively and adding. In this 
way we obtain 

(A (bc'—cbf) + a(b'C—c'B) + a' (cB — b.C)) a 
= D (be'— cb') + m(b' C— c'B)+ n(cB — b C) 

an equation which is easily transformed into 

AD = a A + a (nF— mG)-\-a' (mF — nF) 

Likewise the elimination of a ? y or a, /3 from the same equations gives 

BD — / 3 A + b (nF — m G) + V (mF—nF) 
CD = y A + c (nF—mG) + c' (?nF—nF) 

Multiplying these three equations by a"ft", y" respectively and adding, we obtain 

DZ)"=(aa."-\-¡3/3"+yy")A+m" (nF— m G) + n" (mF— nF) . . . (10) 

If we treat the equations 2, 5, 8 in the same way, we obtain 

A JD' = a! A + a (nr F — m' G) + a' (m'F — n' F) 
BD'= /3'A+b (n'F — m' G) + b' \m'F—n'F) 
CD' = y A + c (n'F — m' G) + c' (m'F — n'F) 

and after these equations are multiplied by a.', /3', y' respectively, addition gives 

D,2 = ( a ' 2 + /3 ' 2 + y'2) A + m' (n'F — m' G) + n'(m'F—n'E) 
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Combinatio huius aequationis cum aequatione (10) producit 

T>D"— D JD' = (a c t " + 6 6 " + y y " — a! a.'— fi'fi'— y'y ' ) A 
+ F {nn — n n )-\-F(n m" — 2 mri-\- m n ) -+- G im'm— m m ) 

l a m patet esse 

dE tan- 2 M 
dp 

tan- 2 M - — = = 2 m , 
dq 

dtan- 2 M i ' 1 , , dF » \ ' -— = m H— n , d q 1 ' 
d <; _ t 
- - = 2 w , 
D/> 

d G _ „ 
= 2 w 

d*/ 

si ve 

m tan- 2 M tan- 2 M tan- 2 M i d ^ tan- 2 M tan- 2 M . (17? 
£ d q 

d.F t d f f 

dq ~ dp 

tan- 2 M n = dF J DF 

dp 2 d q ' 
tan- 2 M t d (5 « dG 

tan- 2 M & dq 
Porro facile confirmatur, haberi 

a a"-f- £> Ó* "—|— y y " — a ' a '— fi 'fi '— y ' y ' 
d n d ?i' d m" d ?»' 

d q dp dp dq 
t d dF d d F v d d G 

2 * d q'~ ' dp . d q ~ ' dp~ 

Quodsi iam lias expressiones diversas in formula pro mensura curvaturae in fine 
art . praec. eruta substituimus, pervenimus ad formulam sequentem, e solis quan-
titat ibus JF, JP, G atque earum quotientibus difFerentialibus primi et secundi or-
dinis concinnatam : 

4 (EG — FFfk = 1 7 , dF d G d_F dO , f d G ^ . 

^ V d y dq dp ' dq ' \dp ' ) 

• jp / dE d_G_ dF d G 2 dF dF dF dF 0 d_*' d G v 

' ^dp dq dq dp dq dq • d » dq "dp dp ' 
+ G ( i ^ . ^ _ 2 . ^ . ^ + ( ^ ) 2 ) 

1 Kdp d p dp dq 1 Kdq ' 1 

tan- 2 Mtan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M 

1 2 . 

Quum indefinite habeatur 

d ^ + d j ^ - f - d * 2 = Ed2^+elFdfdpds. dq-\- Gdq2 

pate t , \J(Edp2-\-lFdfdpds .dq-\- Gdq2) esse expressionem generalem elementi l i 
nearis in superficie curva. Docet i taque analysis in art . praec. expl icata , ad in-
veniendam mensuram curvaturae baud opus esse formulis fìnitis, quae coordina-
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(aa!'+ BB"+yy"-*'2-/3'2-y'2)A{n'2—nn") + 

+ E{ 

+ E{n'2—nn") + 

A combination of this equation with equation (10) gives 

DD"-Di*=(X+dX, X+dX, X+dX+dX, X, X+dX, X+dX, aa!'+ 
X+dX, BB"+yy"-*'2-/3'2-y'2)A + E{n'2—nn") + F{nm" — 2m'n'+ mn") + G(m'2— mm") 

It is clear that we have 

DEtan- tan- 2 M 2 M tan- 2 M tan-
2 M 

— = m ' -f- n 

dp 7 

dFtan- 2 M tan- 2 M 
dq ' tan- 2 M tan- 2 M dp 

tan- 2 M ta 
n- 2 M 

or 
, ЪЕ 

m = t -z—? a j) 
, dE 

m = 2 - r — ? dq 
tan- 2 M „ dF dG 

dq dp 
dF 1 dE 

71 = ~r 2 ~r ? 

dp dq 
U — t~z—? dp tan- 2 M dq 

Moreover, it is easily shown that we shall have 

o a / ' + i 3 / ? / /
 + y y " - a , 2 - ^ 2 - y / 2 = 

dn 
dq~ 

dn' __ 
dp -

dm" dm' 
~~dV 

?M2_ 
~~ dq* 

[ d2F 
dp .dq 

d2G 
* * dp2 

If we substitute these different expressions in the formula for the measure of curva
ture derived at the end of the preceding article, we obtain the following formula, whioh 
involves only the quantities E, F, G and their differential quotients of the first and 
second orders: 

4 (EG—F*flc=E 
'dE dG t ) dF djG ^ 
, dq dq ^ dp dq 

fdG 
k dp 

v 2, 

+ F 
'dE dG _ d_E_ dJJ_ _ 2 dE_ dF_ 4 dE dF_ _ g dF_ dG' 
. dp dq dq dp dq dq dp dq dp dp. 

+ G >dE dG 2dE^ dF (dEy\ 2 ( E a _ _ F 2 ) f E 2 #F d2G 
\dp dp dp dq \ dq 9 J r \d ql ^dp.dq dp1 

12. 

Since we always have 
dz* + ds/2 + dz2 = Udp2 + 2 F dp . dq+G dq2, 

it is clear that 
l/(Edp2+2Fdp .dq+G dq2) 

is the general expression for the linear element on the curved surface. The analysis 
developed in the preceding article thus shows us that for finding the measure of cur
vature there is no need of finite formulae, which express the coordinates x, z as 
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tas x, y, z tamquam functiones indeterminatarum p, q exhibeant, sed sufficere 
expressionem generalem pro magnitudine cuiusvis elementi l inearis. Progredia-
mur ad aliquot applicationes huius gravissimi theorematis. 

Supponamus, superficiem nostram curvara explicari posse in aliam superfi-
ciem , curvam seu p lanam, ita ut cuivis puncto prioris superficiei per coordina-
tas o?, y> z determinato respondeat punctnm determinatum superficiei posterio-
ris , cuius coordinatae sint x\ y'» z'- Manifesto itaque x, y\ z' quoque conside
r a r ! possunt tamquam functiones indeterminatarum pt qt unde pro elemento 

(da/ 2 - j - dj / ' 2 -f- dz'2) prodibit expressio talis 

V/ {JE'dp2 + 2 F'dp . d q + G'd q2 ) 

denotantibus etiam E\ F\ G' functiones ipsarum p, q. A t per ipsam notionem 
explicationis superficiei in superficiem pate t , elementa in utraque superficie cor
respondencia necessario aequalia esse, adeoque identice fieri 

JE = E\ F = F\ G = G' 

Formula itaque art. praec. sponte perducit ad egregium 
THEOREMA. Si superficies curva in quamcunque aliam superficiem explicatur, 

mensura curvaturae in singulis punctis invariata manet. 
Manifesto quoque quaevis pars finita superficiei curvae post explicationem in 

aliam superficiem eandem curvaturam integram retinebit. 
Casum specialem, ad quem geometrae hactenus investigationes suas res tr in -

x e r u n t , sistunt superficies in planum explicabiles. Theoria nostra sponte docet, 
tal ium superficierum me ri sur am curvaturae in quovis puncto fieri = 0 , quocirca, 
si earum indoles secundum modum tert ium expr imitur , ubique erit 

d d z d d z , d d z >.2 ^ 
da;2 d y~ ^dar-dy' 

quod cr i ter ium, dudum quidem notum, plerumque nostro saltern iudicio haud eo 
rigore qui desiderari posset demonstratur. 

1 3 . 

Quae in art . praec. exposuimus, cohaerent cum modo peculiari superficies 
considerandi , summopere digno, qui a geometris diligenter excolatur. Scilicet 
quatenus superficies consideratur non tamquam limes solidi, sed tamquam soli-
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functions of the indeterminates p, q ; but that the general expression for the magnitude 
of any linear element is sufficient. Let us proceed to some applications of this very 
important theorem. 

Suppose that our surface can be developed upon another surface, curved or plane, 
so that to each point of the former surface, determined by the coordinates x, y, z, will 
correspond a definite point of the latter surface, whose coordinates are x'', y', zf. Evi
dently yr, z' can also be regarded as functions of the indeterminates p>y <?> a n ( l there
fore for the element V (dxf2 + dy'2Jr dz'2) we shall have an expression of the form 

V(E'df+ 2 F dp . dq + G'dq2) 

where E', F\ G' also denote functions of p, q. But from the very notion of the devel
opment of one surface upon another it is clear that the elements corresponding to one 
another on the two surfaces are necessarily equal. Therefore we shall have identically 

E=E', F=F\ G=G\ 

Thus the formula of the preceding article leads of itself to the remarkable 
THEOREM. If a curved surface is developed upon any other surface zohatever, the 

measure of curvature in each point remains unchanged. 

Also it is evident that any finite pa?-t whatever of the curved surface toill retain the 
same integral curvature after development upon another surface. 

Surfaces developable upon a plane constitute the particular case to which geom
eters have heretofore restricted their attention. Our theory shows at once that the 
measure of curvature at every point of such surfaces is equal to zero. Consequently, 
if the nature of these surfaces is defined according to the third method, we shall have 
at every point 

a2z d2z i d2z \ 2 _ n 

dx2 ' dy2 \dx.dyf ~ 0 

a criterion which, though indeed known a short time ago, has not, at least to our 
knowledge, commonly been demonstrated with as much rigor as is desirable. 

1 3 . 

What we have explained in the preceding article is connected with a particula 
method of studying surfaces, a very worthy method which may be thoroughly clevel 
oped by geometers. When a surface is regarded, not as the boundary of a solid, bu 
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d u m , cuius dimensio una pro evanescente habetur , flexile quidem, sed non ex-
tensibi le , qualitates superficiei partim a forma pendent, in quam ilia reducta con-
cipitur , partim absolutae sunt, atque invariatae manent, in quamcunque formam 
ilia fiectatur. A d lias posteriores, quarum investigatio campum geometriae novum 
fert i lemque aper i t , referendae sunt mensura curvaturae atque curvatura Integra 
eo sensu, quo hae expressiones a nobis accipiuntur; porro hue pertinet doctrina 
de l ineis brevissimis , p luraque alia , de quibus in posterum agere nobis reserva-
mus. In hoc cons iderat ions modo superficies plana atque superficies in planum 
explicabilis, e. g. cyl indrica, conica etc. tamquam essentialiter identicae spectan-
t u r , modusque genuinus indolem superficiei ita consideratae generaliter expr i -
mendi semper innit i tur formulae \J (JE dp2 2 Fdp . d q -f- G d q~), quae nexum 
elementi cum duabus indeterminatis py q sistit. Sed antequam hoc argumentum 
ulterius prosequamur, principia theoriae l inearum breviss imarum in superficie 
curva data praemittere oportet. 

1 4 . 

Indoles l ineae curvae in spatio general i ter ita d a t u r , ut coordinatae x, yy z 
singulis i l l ius punctis respondentes exhibeantur in forma functionum unius var ia 
bilis , quam per w denotabimus. Longitudo talis l ineae a puncto init ial i arb i -
trario usque ad punctum, cuius coordinatae sunt x,y,z, expr imitur per integrale 

/ d - . v / ( ( ^ ) 2 + ( | i ) 2 + ( | f j 2 ) 

Si s u p p o n i m u s , s i tum l ineae curvae Variationen! infinite parvam pati, ita ut coor

dinatae s ingu lorum p u n c t o r u m accipiant variationes Cx, Sy, &z, variatio totius 

longitudinis inveni tur 

J» d a : , dox d ?/ . do y -J- d z . d ò = 

v / ( d ^ -h d y 2 + d s s ) 

quam expressionem in hanc formam trans m u t a m u s : 

dx.hx-X+dX, \-dy.oy-\-dz.hz 

tan- 2 M tan- 2 M tan-

J ( S ^ - d ^ d ^ + dyS + d s » ) + % ' d

v / ( d x * + d y 2 + d r ) + ^ ( d ^ + d ^ + d z * ) ) 

In casu eo, ubi l inea est brevissima inter puncta sua extrema, constat, ea, quae 
hie sub signo integrali sunt, evanescere debere. Quatenus l inea esse debet in su-
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as a flexible, though not extensible solid, one dimension of which is supposed to 
vanish, then the properties of the surface depend in part upon the form to which we 
can suppose it reduced, and in part are absolute and remain invariable, whatever may 
be the form into which the surface is bent. To these latter properties, the study of 
which opens to geometry a new and fertile field, belong the measure of curvature and 
the integral curvature, in the sense which we have given to these expressions. To 
these belong also the theory of shortest lines, and a great part of what we reserve to 
be treated later. From this point of view, a plane surface and a surface developable 
on a plane, e. g., cylindrical surfaces, conical surfaces, etc., are to be regarded as essen
tially identical; and the generic method of denning in a general manner the nature of 
the surfaces thus considered is always based upon the formula 

V(Edp2+2Fdp .dq + Gdq2), 
which connects the linear element with the two indeterminates p, q. But before fol
lowing this study further, we must introduce the principles of the theory of shortest 
lines on a given curved surface. 

1 4 . 

The nature of a curved line in space is generally given in such a way that the 
coordinates x, y, z corresponding to the different points of it are given in the form of 
functions of a single variable, which we shall call w. The length of such a line from 
an arbitrary initial point to the point whose coordinates are x, y7 z, is expressed by 
the integral 

{n'2—nn") + + E{n'2E{n' jkv; 
(dw) ) 

If we suppose that the position of the line undergoes an infinitely small variation, so 
that the coordinates of the different points receive the variations Sx, Sy, Sz, the varia
tion of the whole length becomes 

/
dx . dSx -\~dy . d 8y + tan- 2 M tan- 2 M dz . tan- 2 M dSztan- 2 M 

Vidx^-V dy2\ dz2) 
which expression we can change into the form 

dx . Sx + dy . Sy + tan- 2 M dz . Sz 
V(dx*+ dy2 + dz2) 

f(Sx'dV(dx2+dy2+dz2) tan- 2 M " tan- 2 M tan- 2 M tan- 2 M v 
tan- 2 M tan- 2 M tan- 2 M v 

a 7 <?± \ 
O Z ' a V (dx*+ dy2+ dz2)> 

We know that, in case the line is to be the shortest between its end points, all that 
stands under the integral sign must vanish. Since the line must lie on the given 
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perficie data, cuius indoles exprimitur per aequationem JPdx-\- Qdj/-f- Hdz = 0, 
etiam varia tiones 8a?> Sj/, Sz satisfacere debent aequationi JPàœ—\- Qèì/—j— Uè s = 0, 
unde per principia nota facile col l igitur, difFerentialia 

A d x 
d

v / ( d a ;

3 + d y ï + d 2

i ) J d d ? /  

^ v/(da:2 4 - d ^ + d z 8 ) ' 

dz 
a y / ( d ^ - h d ^ - h c l z 2 ) 

resp. quantitat ibus _P, Q, JR proportionalia esse debere. Iam sit d r e lementum 
lineae curvae , X punctum in superficie sphaerica repraesentans directionem huius 
e lementi , L punctum in superfìcie sphaerica repraesentans directionem normalis 
in superfìciem curvam ; denique sint TJ, C coordinatae puncti X, atque X, Yy Z 
coordinatae puncti L, respectu centri sphaerae. Ita erit 

dœ = £dr, dy = r ]dr , d^ = Cdr 

unde colligimus, difFerentialia i l la fieri d i , drj , d£. Et quum quantitates JP, Q, M 
proportionales s int ipsis X, Y, Z, character l ineae brevissimae consistit in ae-
quationibus 

d j drj dC 

X Y Z 

Ceterum facile perspicitur, \J(d£2 —f- dTJ 2 —|— dC2) aequari arculo in superficie sphae
rica, qui mensurat angulum inter directiones tangent ium in initio et fine elementi 
d r , adeoque esse = y , si p denotet radium curvaturae in hoc loco curvae b r e 
vissimae ; ita net 

pd£ = Xdr, pdij = F d r , pdC = Zdr 

1 5 . 

Supponamus , in superficie curva a puncto dato A proficisci innumeras cur-
vas brev iss imas , quas inter se distinguemus per angulum, quem constituit sin-
gularum e lementum primum cum elemento primo unius ex his l ineis pro pr ima 
assumtae: sit <p il le angulus , vel generalius functio illius anguli , nec non r Ion-
gitudo talis l ineae brevissimae a puncto A. usque ad punctum, cuius coordinatae 
sunt «a?, yt z. Quum itaque valoribus determinatis variabi l ium r, <p respondeant 
puncta determinata superficiei, coordinatae <a?, y, z considerari possunt tamquam 
functiones ipsarum r, <p. Notationes X, Z/, E, ÎJ, C, ^X, Y, Z in eadem signhica-
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surface, whose nature is defined by the equation 

Pdx + Q dy + Rdz = Q, 
the variations Sx, By, Sz also must satisfy the equation 

PSx + QSy + R8z = 0, 
and from this it follows at once, according to well-known rules, that the differentials 

dx 
dV(dx*+ dy2 + dz2Y 

7 dy_ 
a V'(dz* + dy2 + dz2)' 

3 
d v• (dx*+ dy2+ dz2) 

must be proportional to the quantities P, Q, R respectively. Let dr be the element 
of the curved line ; X the point on the sphere representing the direction of this ele
ment ; L the point on the sphere representing the direction of the normal to the curved 
surface ; finally, let 77, £ be the coordinates of the point X, and A , Y, Z be those of 
the point L with reference to the centre of the sphere. We shall then have 

dx — % dr, dy = r) dr, dz= £ dr 
from which we see that the above differentials become d%, drj, dr. And since the 
quantities P, Q, R are proportional to A", Y, Z, the character of shortest lines is 
expressed by the equations 

d£ drj d£ 
~X~~Y ~~~Z 

Moreover, it is easily seen that 

V(de+dyf+dÇ) 

is equal to the small arc on the sphere which measures the angle between the direc
tions of the tangents at the beginning and at the end of the element dr, and is thus 

dr 

equal to — > if p denotes the radius of curvature of the shortest line at this point. 

Thus we shall have pd£~Xdr, pdr) = Ydr, pdr=Zdr 

15 . 

Suppose that an infinite number of shortest lines go out from a given point A 
on the curved surface, and suppose that we distinguish these lines from one another 
by the angle that the first element of each of them makes with the first element of 
one of them which we take for the first. Let <f> be that angle, or, more generally, a 
function of that angle, and r the length of such a shortest line from the point A to 
the point whose coordinates are x, y, z. Since to definite values of the variables r, cf> 
there correspond definite points of the surface, the coordinates x, y, z can be regarded 
as functions of r, <f>. We shall retain for the notation %, L, f, 77, £ , X, Y, Z the same 

4 3 



C.F. GAUSS 

Disquisition Generales 

Cisca 
Superficies Curvas 

tione ret inebimus, in qua in art . praec. acceptae fuerunt , modo indefinite ad 
punctum indefinitum cuiuslibet l inearum brevissimarum referan tur. 

I^ineae brevissimae omnes , quae sunt aequalis longitudinis r, terminabun-
tur ad aliam l ineam, cuius longitudinem ab initio arbitrario numeratam denota-
mus per v. Considerari poterit itaque v tamquam functio indeterminatarum r, cp, 
et si per X designamus punctum in superficie sphaerica respondens directioni ele
menti di?, nec non per r¡, V coordinatas huius puncti respectu centri sphae-
r a e , habebimus : 

d X f. t d v d y r dv dz r r dr 

dcp * d cp ' dcp ^ * d cp ' d co "° * d cp 

Hinc et ex 

dx 

dr ' ' 

dy 
tí = ^> 

dz _ r 

dr " 

sequitur 

d X dx j dy dy . ds dz 
dr d cp 1 d r d cp ' d r " d cp 

= ( S S ' + T J T I ' H - C C ) - % == cos XX'. J? 
Membrum primum huius aequationis, quod etiam erit functio ipsarum r, cp, per 
>S denotamus ; cuius difFerentiatio secundum r suppeditat : 

d s  
dr 

d dx dx . d dy dy . d dz dz ) t 

d r2" " dip ' d ? * dip ' d r 2 " dip ~* '~ * 

tan- 2 M tan- 2 M tan- 2 M 

d cp 
dj; d X . d t- dy . d Ç dz . 1 

d r * dcp » dr d cp ' d r " d cp ' ~^ 
d(SS + T¡T¿-t-CC) 

d co 

Sed ^z-\~r]7] -\- CC = 1 , adeoque ipsius difFerentiale = 0 ; et per art. praec. 

habemus, si etiam hic p dénotât radium curvaturae in l inea r , 

d j Jl 
dr p ' 

d^ Y 

dr p ' 

d_C Z 

dr p 

Ita obtinemus 

tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan 
tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan 

quoniam manifesto X' iacet in circulo maxirao, cuius polus L*. Hinc itaque con-
cludimus, <S independentem esse ab r et proin functionem solius cp. A t pro r = 0 
manifesto fit v = 0, et proin etiam ^~ — 0, nec non >S — 0, independenter a cp. 
Necessario itaque generaliter esse debebit & = 0, adeoque c o s X X ' = 0 , i . e . 
X X ' = 9 0°. Hinc colligimus 
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dx X+dX, X+dX,X+dX, X+dX, dv dy / dv dz 

X+dX, X+dX, / dv 

X+dX, X+dX, X+dX, X+dX, X+dX, X+dX, 

meaning as in the preceding article, this notation referring to any point whatever on 
any one of the shortest lines. 

All the shortest lines that are of the same length r will end on another line 
whose length, measured from an arbitrary initial point, we shall denote by v. Thus v 
can be regarded as a function of the indeterminates r, <f>, and if X' denotes the point 
on the sphere corresponding to the direction of the element dv, and also 17/ f 
denote the coordinates of this point with reference to the centre of the sphere, we 
shall have 

dx dv dy / dv dz y , dv 
d<f> ~~ * ' a a</> ~ 1 7 ' â >' d<j>~~^ *â > 

From these equations and from the equations 

dr dr v ' dr *» 
we have 

dx dx dy dy dz dz ,x_YYf\ d v \\f d v 

d?' d$ + d?' dj> + dr" ^ = ( « + ™ + « ) - a ? = c o s x x d$ 

Let S denote the first member of this equation, which will also be a function of r, </>. 
Differentiation of /S with respect to r gives 

BS д2х дх . д2?/ dt/ . d2z dz 
дг дгг дф дг2 дф дг2 дф 

i 
i 

tan- 2 M tan- 2 M tan- 2 M 
tan- 2 M tan- 2 M tan- 2 M tan 

defy 

д£ дх дг) ду Э£ dz 
дг дф дг дф дг дф jkl kjjjjkjjjkjjjjjklm 

дф 
But 

tan- 2 M tan- 2 M 

and therefore its differential is equal to zero ; and by the preceding article we have, 
if p denotes the radius of curvature of the line r, 

af ^ X a77 Y dC _ z 
dr dr p* dr p 

Thus we have 
dS_ 1 
дг p ' dr ptan- 2 M tan- 2 M d(f) p tan- 2 M tan- 2 M tan- 2 M d<f> 

since X evidently lies on the great circle whose pole is L. From this we see that 

S is independent of r, and is, therefore, a function of <f> alone. But for r = 0 we evi

dently have v = 0, consequently ~ = 0, and 0 independently of 0 . Thus, in general, 

we have necessarily S = 0, and so cos X \'= 0, i. e., X X ' = 9 0 ° . From this follows the 
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THEOREMA. Ductis in superficie curva ab eodem puncto initiali innutneris Un eis 
brevissimis aequalis longitudinis, linea ear um extr emitat es iungens ad illas singu las 
erit normalis. 

Operae pretium esse duximus, hoc theorema e proprietate fundamentali l i -
nearum brevissimarum deducere : ceterum eius Veritas etiam absque calculo per 
sequens ratiocinium intelligi potest. Sint A 23, A23' duae lineae brevissimae eius-
dem longi tudinis , angulum infinite parvum ad A includentes, supponamusque, 
al terutrum angulorum elementi 2323' cum lineis 23A, 23'A differre quantitate 
finita ab angulo recto , unde per legem continuitatis alter maior alter minor erit 
angulo recto. Supponamus, angulum ad 23 esse = 9 0° — to, capiamusque in 
linea 23 A punctum C, ita ut sit 23 C = 2323'. cosec to: hinc quum triangulum 
infinite parvum 2323 C tamquam planum tractare l iceat, erit C23' = 23 C. cos UJ, 
et proin 

i C + C23' = A C-\-B C. cos co = AB — 23 C. (1 — cos to) = AB'—BC(ì — costo) 

i. e. transitus a puncto A ad B' per punctum C brevior linea brevissima. Q. E. A . 

1 6. 

Theoremati art . praec. associamus al iud, quod ita enunciamus. Si in su-
perfide curva concipitur linea qualiscunque, a cuius punctis singulis proficiscantur 
sub angiitis rectis et versus eanclem plagam ìnnumerae lineae brevissimae aequalis lon-
gitudinis, curva, quae ear uni extremitates alteras iungit, illas singulas sub angulis 
rectis secabit. A d demonstrationem nihil in analysi praecedente mutandum est, 
nisi quod cp designare debet longitudinem curvae datae inde a puncto arbitrario 
numeratam, aut si mavis functionem huius longitudinis ; ita omnia ratiocinia 
etiamnum valebunt, ea modificatione, quod Veritas aequationis S = 0 pro r = 0 
nunc iam in ipsa hypothesi implicatur. Ceterum hoc alterum theorema genera-
lius est praecedente , quod adeo in ilio comprehend! censeri potest, dum pro l i 
nea data adoptamus circulum infinite parvum circa centrum A descriptum. De-
nique monemus , hic quoque considerationes geométricas analyseos vice fungi 
posse , quibus tamen, quum satis obviae s int , hic non immoramur. 

1 7 . 

Revert imur ad formularli sj (JEdj)2 -f- 2 2?dp . dq'~]~ Gdq2), quae indefinite 
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dv dy / dv cv dzfgllgfgfppv dy / dv dzfgllpp 

dzfgllpp 

dv dy / dv dy / dv dzfgllppv dzfgllp 

THEOREM. If on a curved surface an infinite number of shortest lines of equal length 
be draivn from the same initial point, the lines joining their extremities vnll be normal to 
each of the lines. 

We have thought it worth while to deduce this theorem from the fundamentale 
property of shortest lines ; but the truth of the theorem can be' made apparent with
out any calculation by means of the following reasoning. Let AB, AB' be two 
shortest lines of the same length including at A an infinitely small angle, and let us 
suppose that one of the angles made by the element B B' with the lines B A, B'A 
diners from a right angle by a finite quantity. Then, by the law of continuity, one 
will be greater and the other less than a right angle. Suppose the angle at B is 
equal to 90°—co, and take on the line AB a point C, such that 

BC=BB'. cosec co. 

Then, since the infinitely small triangle B B' C may be regarded as plane, we shall have 
CB' = B C . cos co, 

and consequently 
AC + CB'= A C - \ - B C f d . c o s a > = A B — B C g f d . (1 — cos <o)-=AB'—BfdsC . (1 — cos to), 

i. e., the path from A to B' through the point C is shorter than the shortest line, 
Q. E. A. 

16 . 

With the theorem of the preceding article we associate another, which we state 
as follows : If' on a curved surface we imagine any line whatever, from the different points 
of which are drawn at right angles and toward the same side an infinite number of shortest 
lines of the same length, the curve which joins their other extremities will cut each of the 
lines at right angles. For the demonstration of this theorem no change ne«d be made 
in the preceding analysis, except that <f> must denote the length of the given curve 
measured from an arbitrary point; or rather, a function of this length. Thus all of 
the reasoning will hold here also, with this modification, that AS '=0 for r = 0 is 
now implied in the hypothesis itself. Moreover, this theorem is more general than 
the preceding one, for we can regard it as including the first one if we take for the 
given line the infinitely small circle described about the centre A. Finally, we may 
say that here also geometric considerations may take the place of the analysis, which, 
however, we shall not take the time to consider here, since they are sufficiently 
obvious. 

17 . 
We return to the formula 

\/(Edp 2+2fd E dp .dq + Gdq2), 
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magnitudinem elementi l inearis in superfìcie curva exprimit , atque ante omnia 
significationem geometricam coefficientium E, F, G examinamus. Iam in art . 5 
monuimus , in superficie curva concipi posse duo systernata l inearum , alternili, in 
quibus singulis sola p sit var iabi l i s , q constans; alterum , in quibus sola q va 
riabilis , p constans. Quodlibet punctum superficiei considerari potest tamquam 
intersectio lineae primi systematis cum linea secundi : tuncque elementum lineae 
primae huic puncto adiacens et variationi dp respondens erit = \/ E. dp . nec 
non elementum lineae secundae respondens variationi dq erit = \l G.dq; de-

nique denotando per to angulum inter haec e lementa, facile perspicitur, fieri 
F 

coso) = yjE G' ^ r e a autem elementi parallelogrammatici in superficie curva in
ter duas l ineas primi systematis, quibus respondent q, q-\~dq, atque dnas lineas 
systematis secundi , quibus respondent p, p —f- dp, erit y (E G — EE) dp . d q. 

Linea quaecunque in superficie curva ad neutrum il lorum systematum per-
tinens , o r i t u r , dum p et q concipiuntur esse functiones unius variabilis novae, 
vel al tera i l larum functio alterius. Si t s longitudo talis curva e ab initio arbi tra
rio numerata et versus directionem u tram vis pro positiva habita. Denotemus per 
0 a n g u l u m , quei ri effìcit e lementum = y (Edj)2-\- 2 Ed]) . d q —{— Gd q2) cum 
l inea primi systematis per initium elementi ducta, et quidem ne ul la ambiguitas 
remaneat , hunc angulum semper ab eo ramo illius l ineae , in quo valores ipsius 
p crescunt , incboari . et versus earn plagam positive accipi supponemus, versus 
quam valores. ipsius q crescunt. His ita intellectis facile perspicitur haberi 

cosO.ds == s/E.dp-\-\/ G.cosvo.dq == ^ 4 v ^ ^ 
• a J / ^ - i x' (E G — FF) .dq 

sin b . d s = V G . sin in . d q . = *-i —i—* 

1 S. 
Investigabimus nunc , quaenam sit conditio, ut haec l inea sit brevissima. 

Quum ipsius longitudo s expressa sit per integrale 

s = tan- 2 M f\l(Edp2-\-lFdp.dq+Gdq2) 

conditio minimi requir i t , ut variatio buius integralis a mutatione infinite parva 
tractus l ineae oriunda fiat = 0. Calculus ad propositum nostrum in hoc casu 
commodius absolvitur, si p tamquam functionem ipsius q consideramus. Quo 
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dv dyof the coeffnkmlkmlts / dv dzfgllpdv dy / d 

v dzfgllp 

v of the coefficienllpv dzfgllpv 

which expresses generally the magnitude of a linear element on the curved surface> 
and investigate, first of all, the geometric meaning of the coefficients E, E, G. We 
have already said in A r t . 5 that two systems of lines may be supposed to lie on the 
curved surface, p being variable, q constant along each of the lines of the one system ; 
and q variable, p constant along each of the lines of the other system. Any point 
whatever on the surface can be regarded as the intersection of a line of the first 
system with a line of the second ; and then the clement of the first line adjacent to 
this point and corresponding to a variation dp will be equal to vE. dp, and the 
element of the second line corresponding to the variation dq will be equal to V G . dq. 
Finally, denoting by co the angle between these elements, it is easily seen that we 
shall have 

F 
COS CO = p r ^ £ . 

Furthermore, the area of the surface element in the form of a parallelogram between 
the two lines of the first system, to which correspond q, q + dq, and the two lines of 
the second system, to which correspond p, p + dp, will be 

V (EG —F2) dp . dq. 
A n y line whatever on the curved surface belonging to neither of the two sys

tems is determined when p and q are supposed to be functions of a new variable, or 
one of them is supposed to be a function of the other. Let s be the length of such 
a curve, measured from an arbitrary initial point, and in either direction chosen as 
positive. Let 6 denote the angle which the element 

ds = v/(Edp2+ 2 F dp .dq+ Gdq2) 
makes with the line of the first system drawn through the initial point of the ele
ment, and, in order that no ambiguity may arise, let us suppose that this angle is 
measured from that branch of the first line on which the values of p increase, and is 
taken as positive toward that side toward which the values of q increase. These con
ventions being made, it is easily seen that 

cos 6 . ds — V E . dp + V G . cos co . dq = Edp +Fdq 

sin 0 . ds = V G . sin co . dq = y\EG—F2) . dq 
VE 

18. 

We shall now investigate the condition that this line be a shortest line. Since 
its length s is expressed by the integral 

i=zfv/(JSdp2+2 F dp .dq+ Gdq2) 
the condition for a minimum requires that the variation of this integral arising from 
an infinitely small change in the position become equal to zero. The calculation, for 
our purpose, is more simply made in this case, if we regard p as a function of q. 
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pacto, si variatio per characteristicam h denotatur , habemus 

8s = r ( ^ ' á p * + ̂ £ } T ' d p - t a n - 2 M d * + ^ ¿<2*r«tan- 2tan- 2 tan- 2 M tan- 2 M M M P + tan- 2 M {map+ lFdq)dop 
2 D S 

tan- 2 M tan- 2 M tan- 2 M 
vtan- 2 M tan- 2 M tan- 2 M 

dE 2 D P dG A „ 
{ d ¿ - d p + -dp~'áp-á^ + - d ^ ' ^ 

2 ds 
A Edp + Fdg , 

constatque, quae hic simt sub signo integrali, independenter a hp evanescere de
beré. Fit itaque 

dJS -, 2 I 2 dJF' , , , d G -m O = 2 d í . d . ^ ± ^ 
ds 

= 2 d 5 . d . sjE. cosfJ ds . d .2? . eos 9 

7^ - 2 d ¿ y . d 6 . y/_E.sin(j 
(JEd^ + j P d g ) d ^  

E \J(EG— FF).dq.dü 
,Edp + Fdg, ,dE , . dE , % 

( d ^ ' d ^ + d ^ - d ^ ) " 
— 2\J(EG — FF).dq.dQ 

Hinc itaque nanciscimur aequationem conditionalem pro l inea brevissima se-
quentem : 

tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M . F dE , . . dF , 1 . dG -, 

±'E' d ^ .d^R + i - . — . d ^ — _ . d ^ — í . ^ . d ^ 
quam etiam ita scribere licet 

^(EG-FF) . d6 = ± f . d J B + * . | f . dp _ | f . d j 0 - + . * | . d ? 

Ceterum adiumento aequationis 

cotg 0 = E 
sJ{E G — FF) 

dp . 
* d ? "» v/(^ G — FF) 

ex ilia aequatione angulus 6 e l iminari , atque sic aequatio difFerentio-differ entia-
lis inter p et q evolvi potest, quae tarnen magis complicata et ad applicatione* 
minus utilis evaderei , quam praecedens. 

1 9 . 

Formulae generales, quas pro mensura curvaturae et pro variatione directio-
nis lineae brevissimae in artt . 1 1 , 1 8 eruimus, multo simpliciores fiunt, si quan-
titates p, q ita sunt electae, ut lineae primi systematis lineas secundi systematis 
ubique orthogonaliter secent, i. e. ut generaliter habeatur a> = 9 0 ° , sive F= 0 . 
Tunc scilicet fit, pro mensura curvaturae , 
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Generales Investigations tan- 2 M tan- 2 M 

When this is done, if the variation is denoted by the characteristic 8, we have 

tan- 2 M 
tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M 
tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M 

8^ + (2 E dp + 2 Fdq)dhp 

2 ds 
Edp+Fdg g 

¿/5tan- 2 M tan- 2 M 

8̂ ? 

^ . tan- 2 M tan- 2 M + 2 . ttan- 2 M tan- 2 M an- 2 M tan- 2 M tan- 2 M dp. +1*0-. 

2 ds 
-d E d i t il<i 

ds 

nnd we know that what is included under the integral sign must vanish independently 
of 5/>. Thus we have 

fddadpf 
dF 

dp 
dp . dq -f-

da 
dp 

dq2= 2 ds . d . E dp -VFdg 
ds 

= 2 ds.d. VE . cos 0 

ds.dE. cos 0 o j ^ / 3 / • a 
— Àds. du . VE . sin 0 

V E (E dp + F dg) dE 
F! 

-V(EG — F2) .dp.dd 

^Edp + Fdq^ <dE , dE , 
— - a p - j . a q 

<dpt dq 1 

— 2 V(EG — F2).dq.dO 

This gives the following conditional equation for a shortest line : 

V(EG—F2).d6 = __1 F d_E_ 
~~ 2 " E ' dp 

7 1 F dE 
^ ^ 2 ' E ' ^ q - -

7 , 1 D E ,1 
dq+-r dp 

dF d \ d 

~d^ ' F ~ 2 ' T^T ' Q 

which can also be written 

V(EG — F2).d0 1 F , „ 1 dE 
= - . — .dlS+^ — . 

j dF , 1 dG , 
d P - - ^ ' d ^ - 2 ' - d ^ ' d q 

From this equation, by means of the equation 

cot 0 E 
V{EG — F2) dq 

F 
V(EG — F2) 

it is also possible to eliminate the angle 0, and to derive a differential equation of 
the second order between p and q, which, however, would become more complicated 
and less useful for applications than the preceding. 

19 . 

The general formula}, which we have derived in Arts . 1 1 , 18 for the measure of 
curvature and the variation in the direction of a shortest line, become much simpler 
if the quantities p, q are so chosen that the lines of the first system cut everywhere 

orthogonally the lines of the second system; i. c, in such a way that we have gen
erally w = 90° , or F=0. Then the formula for the measure of curvature becomes 
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4 EEG Gk = E . ^ / ^ + E ( ^ ) * + G . d ^ . ^ + G ( ^ f — 2 E G ( ^ t a n - 2 M mù 
d q d q 1 v dp J ' dp dp 1 d y / ^ dy' • 

et pro variation e anguli 0 

tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 Mt- 
tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M 

In ter varios casus, in quibus haec conditio orthogonalitatis valet , primari urn 
locum tenet i s , ubi l ineae omnes a l terutr ius systematis . e. g. p r i m i , sunt l ineae 
breviss imae. Hie i taque pro valore constante ipsius q, angulus 0 fit = 0 , unde 
aequatio pro variat ione anguli Ö modo tradita docet, fieri debere GHG = 0 , sive 
coefficientem E a q independentem , i. e. E esse debet vel constans vel functio 
solius p. Simplicissimum er i t . pro p adoptare longitudinem ipsam cuiusque l i 
neae primi systematis , et quidem, quoties omnes l ineae primi systematis in uno 
puncto concurrunt , ab hoc puncto riunìeratam , ve l , si communis intersectio non 
adest , a qualibet l inea secundi systematis. Quibus ita intellectis patet , p et q 
iam eadem denotare , quae in art t . 1 5 , 1 6 per r et 9 expresseramus , atque fieri 
E = 1 . I ta duae formulae praecedentes iam transeunt in lias : 

AGGk = JKKL 2 G^L 
x dp ' dp-V G . d e = — ^ . ^ . d ^ 

vel statuendo ^ G = m , 

1 ddm 

m " dpz ' 
clO = — DFdq dp L 

Genera l i t er loquendo m erit functio ipsarum py q atque mdq expressio elementi 
cuius vis l ineae secundi systematis. In casu speciali autem , ubi omnes l ineae p 
ab eodem puncto proficiscuntur, manifesto pro p = 0 esse debet m = 0 ; porro 
si in hoc casu pro q adoptamus angulum ipsum , quern e lementum p ri mum cu
ius vis l ineae primi systematis facit cum elemento alicuius ex ipsis ad arbi tr ium 
electae, quum pro valore infinite parvo ipsius p, e lementum lineae secundi sy
stematis (quae considerari potest tamquam circulus radio p descriptus) , sit 
= pdqy erit pro va lore infinite parvo ipsius pt m = p, adeoque, pro p = 0 
simul m = 0 et =REZ 1 . 

dp 

2 0 . 

Immoremur adhuc eidem suppositioni, puta p designare indefinite longitu
dinem l ineae brevissimae a puncto determinato A ad punctum quodlibet super-
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, dq', will he, dq', will he, dq', will hetan- 2 M ^$ 

, dq', will he 

, dq', will he, dq', will he, dq', ^$will he 

tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M^$ 
tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M tan- 2 M ^$ 

and for the variation of the angle 6 

VEG .d0 = ± . ^ - d p - l . ™ L . dq 
2 dq r 2 dp * 

Among the various cases in which we have this condition of orthogonality, the 
most important is that in which all the lines of one of the two systems, e. g., the 
first, are shortest lines. Ilere for a constant value of q the migle 6 becomes equal to 
zero, and therefore the equation for the variation of 6 jus t given shows that we must 
v, dE 
have —̂ = 0, or that the coefficient E must be independent of g; i. c, E must be 
either a constant or a function of p alone. It will be simplest to take for p 
the length of each line of the first system, which length, when all the lines of the 
first system meet in a point, is to be measured from this point, or, if there is no 
common intersection, from any line whatever of the second system. Having made 
these conventions, it is evident that p and q denote now the same quantities that 
were expressed in A r t s . 1 5 , 1G by /* and <f>, and that E = l . Thus the two preced
ing formulae become : 

4 ( ? 2 ^ ld^S-2 G^ \dp1 dp1 

4(?2^ ld^S-2 G^ 
\dp1 dp1   

\dp1 dp1 

. . da 
dp 1 

or, setting v G = in, 
k 1 d2 mtan- 2 M 

in dp2,7 tan- 2 M tan- 2 M dp 1 

Generally speaking, m will be a function of j>, q, and mdq the expression for the ele
ment of any line whatever of the second system. But in the particular case where 
all the lines p go out from the same point, evidently we must have m = 0 for p — 0. 
Furthermore, in the case under discussion we will take for q the angle itself which 
the first element of any line whatever of the first system makes with the element of 
any one of the lines chosen arbitrarily. Then, since for an infinitely small value of 
p the element of a line of the second system (which can be regarded as a circle 
described with radius p) is equal to j) dq, we shall have for an infinitely small value 

of p,m = p, and consequently, for p = 0, ni = 0 at the same time, and R ^ = l . 

20. 

We pause to investigate the case in which we suppose that p denotes in a gen
eral manner the length of the shortest line drawn from a fixed point A to any other 
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ficiei ductum , atque q angulum , quern prim urn e lementum hums lineae efricit 
cum elemento primo alicuius l ineae brevissimae ex A proficiscentis datae. Sit 
B punctum determinatum in hac l inea pro qua q = 0 , atque C al iud punctum 
determinatum superficiei . pro quo valorem ipsius q simpliciter per A designabi-
mus. Supponamus , puncta B, C per l ineam brevissimam iuncta , cuius partes, 
inde a puncto B numeratas , indefinite u t in art . 18 per s denotabimus, nec non 
perinde ut illic, per 0 angulum, quern quodvis e lementum ds facit cum elemento 
dp: denique sint 0°, 6' valores anguli 8 in punctis B} C. Habemus i taque in 
superficie curva tr iangulum lineis brevissimis inclusum, eiusque anguli ad B et C, 
per has ipsas l iteras simpliciter designandi aequales erunt ille complemento an
guli 6° ad 18 0° , hic ipsi angulo 0'. Sed quum analysin nostram inspicienti fa 
cile pateat, omnes angulos non per gradus sed per numeros expressos concipi, ita 
ut angulus 5 7 ° I 7' 4 5", cui respondet arcus radio aequal is , pro unitate habeatur, 
statuere oportet , denotando per 2 iz peripheriam circuli 

0° = ir — B, 0' = C 

Inquiramus nunc in curvaturam integram huius trianguli , quae fit = Jkda, de
notante d a elementum superficiale tr iangul i ; quare quum hoc e lementum expr i -
matur per mdp.dq, eruere oportet integrale JJkmdp.dq supra totam trianguli 
superficiem. Incipiamus ab i n t e g r a t o n e secundum p, quae propter k = — ^'1T~? * 
suppeditat dq. (Const. —^-^) pro curvatura integra areae iacentis inter l ineas 
primi systematis, quibus respondent valores indeterminatae secundae q, q-\-dq: 
quum haec curvatura pro p = 0 evanescere debeat , quantitas constans per in -
tegrationem introducta aequalis esse debet valori ipsius pro p = o, i. e. uni 

tati. Habemus itaque dq(l— d~) ^ u ° i P r o ¿̂ 7 accipere oportet valorem respon-
dentem fini i l l ius areae in l inea CB. In hac l inea vero fit per art . praec. 
^- .d<£ = — d o , unde expressio nostra mutatur in d^-j—d6. Accedente iam 
integratione al tera a q = 0 usque ad q = A extendenda, obtinemus curva tu 
ram integram trianguli = A -f- 0 ' — 6° = A -f- B -f- C— TZ. 

C u r v a t u r a integra aequalis est areae eius partis superficiei sphaericae, quae 
respondet tr iangulo , signo positivo vel negativo affectae, prout superficies curva, 
in qua tr iangulum iacet , est concavo - concava vel concavo - convexa : pro unitate 
areae accipiendum est q u a d r a t u m , cuius latus est unitas (radius sphaerae) , quo 
pacto superficies tota sphaerae fit = 4, it. Est itaque pars superficiei sphaericae 
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Generales Investigations , dq', will hetan- 2 M 

point whatever of the surface, and q the angle that the first element of this line 
makes with the first element of another given shortest line going out from A. Let 
B he a definite point in the latter line, for which q = 0, and C another definite point 
of the surface, at which we denote the value of q simply by A. Let us suppose the 
points B? C joined by a shortest line, the parts of which, measured from B, we denote 
in a general way, as in Art . 18 , by s; and, as in the same article, let us denote by d 
the angle which any element ds makes with the element dp; finally, let us denote 
by 0°, 6' the values of the angle 6 at the points B, C. We have thus on the curved 
surface a triangle formed by shortest lines. The angles of this triangle at B and C 
we shall denote simply by the same letters, and B will be equal to 180°—0, C to 6f 

itself. But, since it is easily seen from our analysis that all the angles are supposed 
to be expressed, not in degrees, but by numbers, in such a way that the angle 57° 17' 
45", to which corresponds an arc equal to the radius, is taken for the unit, we must set 

0° = t t — B , 0f=C 

where 2tt denotes the circumference of the sphere. Let us now examine the integral 
curvature of this triangle, which is equal to 

J k d a , 

da- denoting a surface element of the triangle. Wherefore, since this element is ex 
pressed by mdp.dq, we must extend the integral 

f f m dp . dq 
over the whole surface of the triangle. Let us begin by integration with respect to 

jo, which, because lc — — — — m dp2 9 gives dq. 
, d m 1  

const —— 
L dip < 

for the integral curvature of the area lying between the lines of the first system, to 
which correspond the values q, q -f- dq of the second indeterminate. Since this inte
gral curvature must vanish tor p = 0, the constant introduced by integration must be 

equal to the value of | ^ for p = 0, i. e., equal to unity. Thus we have 

tan- 2 M ta 
n- 2 M 

where for ~r must be taken the value corresponding to the end of this area on the dp 
line OB. But on this line we have, by the preceding article, 

^L.dq= —d0, dq 
whence our expression is changed into dq -f dO. Now by a second integration, taken 
from q=0 to q = A,we obtain for the integral curvature 

A + $' — 0°, 
or 

A +B + C—TT. 

The integral curvature is equal to the area of that part of the sphere which cor
responds to the triangle, taken with the positive or negative sign according as the 
curved surface on which the triangle lies is concavo-concave or concavo-convex. For 
unit area will be taken the square whose side is equal to unity (the radius of the 
sphere), and then the whole surface of the sphere becomes equal to 4 i t . Thus the 
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tr iangulo respondent ad sphaerae superficiem integram ut + (^4-{- i3- f -C——) 
ad 4 K . H O C theorema, quod ni fa l l imur ad elegantissima in theoria superficie-
rum curvarum referendum esse v idetur , etiam sequenti modo enuntiari potest : 

Excessus summae angulorum trianguli a lineis brevissimis in superficie curva 
concavo - concava formati ultra 18 0° , vel defcctus summae angulomm trianguli a li
neis brevìssimis in superfìcie curva concavo - convexa formati a 18 0° mensuratur jjer 
aream partis superficie! sphaericae, quae UH triangulo per directiones normaliuni 
respóndete si superficies integra 7 2 0 gradibus aequiparatur. 

General ius in quovis polygono n l a t e r u m , quae singula forman tur per l i 
neas brevissimas , excessus summae angulorum supra 2?i—4 rectos , vel cle-
fectus a 2 n — 4 rectis (pro indole curvaturae superficiei), acquatur areae poly-
goni respondentis in superficie sphaerica, dum tota superficies sphaerae 7 2 0 gra
dibus aequiparatur, uti per discerptionem polygoni in triangula e theoremate prae -
cedenti sponte demanat. 

2 1 . 

Hestituamus characteribus p, q, E, E, G, u> significationes generales, qui
bus supra accepti fuerant , supponamusque, indolem superficiei curvae praeterea 
alio simili modo per duas alias variabiles q' de terminar i , ubi elementum l i 
neare indefinitum expr imatur per 

SJ{E'dp"¿-\- iF'dp. dq'-{- G'dq*) 

Ita cuivis puncto superficiei per valores determinatos variabi l ium p, q definito 
respondebunt valores determinati variabi l ium p\ q\ quocirca hae erunt functio
nes ipsarum p, q, e quarum differentiatione prodire supponemus 

dp ==. a dp —\- t)dq 

d q = y dp -f- èdq 

Iam proponimus nobis investigare significationem geometricam horum coefficient 
tium rx, y, o". 

Quatuor i taque nunc systemata l inearum in superficie curva concipi possunt, 
pro quibus resp. q, p> q\ p sint constantes. Si per punctum determinatum, cui 
respondent variabi l ium valores p, q, jj\ q'. quatuor l ineas ad singula illa syste
mata pert inentes ductas supponimus, harum e lementa , variat ionibus positivis 
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, dq', will he, dq', will he,, dq', will he dq', will he 

, dq', will he 

, dq', will he, dq', will he, dq', will he 

part of the surface of the sphere corresponding to the triangle is to the whole surface 
of the sphere as ± (A + B-\-C — it) is to 4 rr. This theorem, which, if we mistake 
not, ought to be counted among the most elegant in the theory of curved surfaces, 
may also be stated as follows : 

The excess over 180° of the stun of the angles of a triangle formed by shortest lines 
on a cone aim-concave curved surface, or the deficit from 180° of the sum of the angles of 
a triangle formed by shortest lines on a concavo-convex curved surface, is measured by the 
area of the part of the sphere which corresponds, through the directions of the normals, to 
that triangle, if the ivJtole surface of the sphere is set equal to 7%0 degrees. 

More generally, in any polygon whatever of n sides, each formed by a shortest 
line, the excess of the sum of the angles over (2 K — 4) right angles, or the deficit from 
(2 n — 4) right angles (according to the nature of the curved surface), is equal to the 
area of the corresponding polygon on the sphere, if the whole surface of the sphere is 
set equal to 72Q degrees. This follows at once from the preceding theorem by divid
ing the polygon into triangles. 

2 1 . 

Let us again give to the symbols p, q, E, F, G, co the general meanings which 
were given to them above, and let us further suppose that the nature of the curved 
surface is defined in a similar way by two other variables, pf, q'7 in which ease the 
general linear element is expressed. by 

V(E' dp'2+ 2E' dp'. dq'+G' dq'2) 
Thus to any point whatever lying on the surface and defined by definite values of 
the variables p, q will correspond definite values of the variables p', qf, which will 
therefore be functions of p, q. Let us suppose we obtain by differentiating them 

dp' = <X dp + /3 dq 
dq' — y dj) + 8 dq 

We shall now investigate the geometric meaning of the coefficients a, /3, y, 8. 
Now four systems of lines may thus be supposed to lie upon the curved surface, 

for which p, q, //, q' respectively are constants. If through the definite point to 
which correspond the values p, q, j / , q' of the variables we suppose the four lines 
belonging to these different systems to be drawn, the elements of these lines, corres-
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dp, dq, dp', d q, respondentes e r u n t 

\JE.dp, \jG.dq, sjE'.dq, \JG'.dq 

A n g u l o s , quos horum e lementorum directiones faciunt cum directione fixa arb i -
t r a r i a , denotabimus per ifcf, JV, M\ JV', numerando eo sensu, quo iacet secunda 
respectu p r i m a e , ita u t sin (JV M) fiat quantitas positiva : eodem sensu iacere 
supponemus (quod licet) quartam respectu ter t iae , ita ut etiam sin (JV'—M') sit 
quant i tas positiva. His i ta intel lectis , si consideramus punctum a l iud , a priore 
infinite parum distans, cui respondeant valores variabi l ium 

p-t-dp, q-\-dq, p'-\-dp', q'+dq 

l ev i at tent ione adhibita cognoscemus, fieri genera l i t er , i. e. independenter a 
valor ibus var iat ionum dp, dq, dp', dq\ 

\/ E. dp. s i n i V f + V / G.dq . sin JV = \jE'.dp. sin Jfcf'-f- \J G'. d q. sin JV' 

quum utraque expressio nihi l al iud s i t , nisi distantia puncti novi a l inea , a qua 
angul i direct ionum incipiunt . Sed habemus , per notat ionem iam supra i n t r o -
ductam N—M = to, et per analogiam statuemus JV'—M' = to', nec non in-
super J V — M' = <p- aequatio modo inventa exhiber i potest in forma sequent! 

yj E. dp . sin (31'— cd -f- <[/) -f- y/ G .dq . sin [M'-{- d») 
= s/E'. dp. s inM'- \ - \ j G'.dq . sin (M'-\-to') 

vel i ta 
\J E . dp . sin (JV'— co — to'-f- <p) -f- \J G. d q . sin (JV' a/-f- <\>) 

— \J E\ dp. sin (JV'— to') -f- \/ G'. d q. sin JV' 

E t quum aequatio manifesto independens esse debeat a directione init ial i , hanc 
ad lub i tum accipere l icet. S ta tuendo i taque in forma secunda JV' = 0 , vel in 
p r i m a JLf ' = 0 , obtinemus aequationes sequen tes : 

sj E'. s ino/ , dp = sj E. sin (to —}— t o ' — <p). dp-}-\/ G. sin (io'—<p). d^ • 
\J G'. sin to', d q = • \J E. sin (cp — co). dp -f- yj G. sin .dq 

quae aequationes quum identicae esse debeant cum his 
dp' = a dp -f- fi d q 
d q = y dp —f- £ d q 
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ng to the positive increments dp, dq, dp', dq', 

, dq', will he 

, dp', dq', will he, dp', dq', will he 

ponding to the positive increments dp, dq, dp', dq', will he 
VE. dp, VG.dq, VE', dp', VG'.dq'. 

The angles which the directions of these elements make with an arbitrary fixed direc
tion we shall denote by 31, N, 3T, N', measuring them in the sense in which the 
second is placed with respect to the first, so that s i n ( A r — 3 1 ) is positive. Let us 
suppose (which is permissible) that the fourth is placed in the same sense with respect 
to the third, so that sin (A 7 7— 3T) also is positive. Having made these conventions, 
if we consider another point at an infinitely small distance from the first point, and 
to which correspond the values p + dp, q + dq, pl'+ dp'', q'+dq' of the variables, we 
see without much difficulty that we shall have generally, e., independently of the 
values of the increments dp, dq, dp', dq', 

VE . dp . sin + v G . dq . s i n A ^ VE'. dp'. sinihT + vyG'. dq'. sinA^ 

since each of these expressions is merely the distance of the new point from the line 
from which the angles of the directions begin. But we have, by the notation intro
duced above, 

N—3I—co. 
In like manner we set 

N' — 31'— co', 

and also tan- 2 M tan- 2 M 

Then the equation just found can be thrown into the following form : 

VE . dp . sin (31'—co 4- xjj) + V G . dq . sin (3f' + i// 
— VE', dp'. sinJTjP-f- VG'. dq'. sin (3F + co') 

or 
i /E . dp . sin (N'—co — co'+ xb) + V G . da . sin (N>—co'+ xb) 

— VE', dp', sin (A7—co') + VG'. da', sin N' 

And since the equation evidently must be independent of the initial direction, this 
direction can be chosen arbitrarily. Then, setting in the second formula A^'=0 , or in 
the first 3F—0, we obtain the following equations: 

VE', sin co', dp'—VE . sin (co + co' xfß) . dp + VG . sin (co' xjj) . dq 
VG'. sin co', dq' — VE . sin (xjj— co) . dp + V G . sin tp . dq 

and these equations, since they must be identical with 
dp' — a dp + ß dq 
dq' — y dp -f- S dq 
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suppeditabunt determinationem coefficienti urn a, b\ y, o*. Erit scilicet 

OL = 
/ E sin (tu 4- «/— <|>) 

V JS ' sin tu' ' 

y = y sm {<l> — t») 

' ' 6R'' S i n TU' ' 

°tan-tan- 2 M 2 ̂ $MJE~" sino,' 

tan- tan- 2 M t 
2 M 

Adiungi debent aequationes 

cos a> = F 
sfJS G ' c o s co'= - ^ > f t a n - 2 M hg sin CO = V/ ^ V , , 

I E'Gr '— F'F' 
sin TO = v7 ^ T - ö ' — 

unde quatuor aequationes ita quoque exhiberi possunt 

a\J{E'G'— F'F') = \JE G\ sin (cd + C U ' — <[ , ) 
fi\l{E'G'—FF') = \l GG'.sin(<o'—à) 

y\/(E'G'—F'F') = V-S^' .s in ( 6 — C O ) 
6 \l (E'G'— F'F') = v 'GJS ' . s in^ 

Quum per substitutiones DJL> ' = a dp —(- Üd<7 , dq' = y d p £ d q trinomium 
E'dp'2-{- iF'dp. dq'-\- G'dq'2 transire debeat in JEdp2-\- 2 Ed?) . dq -f- Gdq2, fa
cile obtinemus 

EG — FF = (E'G'— F'F')((xè — fiyf 

et q u u m vice versa t r inomium posterius rursus transire debeat in prius per Sub

stitutionen! 

(oto — ̂ y ) d ^ = o*d/ /—lid^ ' , ( c t S — fiy)dq = — y d / Z - j - a d ^ ' 

invenimus 

E8d — 2Fy8 + Gyy = 
EG —FF j^r 

E'G'— F'F' ' 

El38 — F{ac + fiy)-{-Gay = G — FF jp, 
'- E'G'—F'F' 

Efifi—lF<xfi-\-Gaatan- 2 M 
EG —FF r , 

E'G'—F'F' ' 

2 2 . 

A disquis i tone generali art. praec. descendimus ad applicationsm latissime 
patentem, ubi , dum jy e^ q etiam significatione generalissima accipiuntur, pro 
p\ q\ adoptamus quantitates in art . 1 5 per r, <p denotatas, quibus cbaracteribus 
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determine the coefficients a, ß, y withons 

, 8. We shall have 

with the equations with bffhg 

determine the coefficients a, ß, y, 8. We shall have 

_ I E sin (co + co' — \p) 
a~~^E' SHT^7 ' 

ß = I O SINtan- 2 M (A/-./,) 

tan- 2 M tan- 2 M S i l l Ctì 

I A' SIN — ftj) 
7 ~~ \ tf7 ' SIN a,' ' \ G' sin a/ 

These four equations, taken in connection with the equations 

c o s w = 1 T 5 y ; ' 

sin co = 

F' 
c o a t a = — - , 

tan- 2 M \EG—F- I E' O' — E'2  

S " " " V E<r ' 

may be written 
aV(E'G' — I"2) = VEG'. sin (co + a/—i//) 
/Si/C'JE"^' — JF"2) = v^67<7/. SIN (co' — xjj) 
y \/(E' G' — F'2) = VEE'. sin (xjj— co) 
8 i/(.E' G'—F'2) =VG E'. sin xp 

Since by the substitutions 
dp' = a dp + ß d q, 
dq'—y dp + 8 ¿7*/ 

the trinomial 
Er dp'2 + 2F' dp'. dq' H- G' dq'2 

is transformed into 
E dp2 + 2 Fdp .dq + G dq2, 

we easily obtain 
EG — F2 = (£' G' — F'2)(a8 — ßyf 

and since, vice versa, the latter trinomial jnust be transformed into the former by the 
substitution 

(a 8 — ß y) dp ='S dp' — ß dq", (a 8 — ß y) dq = — y dp' + a D^', 

we find 

E82—2Fy8 + Gytan- 2 M 2 
EG —F 2 

E'G'—F'2 ' И 

— E ß 8 + F ( a 8 + ß t a n - 2 M y) — Gay =tan- 2 M 
EG—F2 

EG' — F'2 F' 

Eß2-2FaßJrG*2 tan- 2 M = 
EG — F2 

E'G'—F'2'G' G' 

22. 

From the general discussion of the preceding article we proceed to the very 
extended application in which, while keeping for p, q their most general meaning, we 
take for j)', q' the quantities denoted in Art . 15 b} r r, <£. We shall use r, <f> here 
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etiam hie u t e m u r , scilicet ut pro quovis puncto superficiei r sit distantia minima 

a puncto determinato , atque cp angulus in hoc puncto inter e lementum primum 

ipsius r atque directionem fix am. I ta habemus E' = 1 , F' = 0 , t o ' = 9 0 ° : 

statuemus insuper \j G' = TU , i ta ut e lementum l ineare quodcunque fiat 

= \j(dv2, —|— TYITÌIÒ.cp2). I l inc quatuor aequationes in art . praec. pro a, o\ y, ò\ 

erutae , suppeditant : 

S/E.cos^ — 4,) = |T (1) 

^ G . c o s ^ = ^ (2) 

V - E . s i n f t — < » ) = «,.£2 (3) 

S/Ö.SINTP = W . | | (4) 

Ult ima et penult ima vero has 

OJ=90°OJ=90°OJ=90°OJ=90°OJ=90°OJ=90°OJ=90°OJ=90°OJ=90°OJ=90°/OJ=90°OJ=90°OJ=90° 

OJ=90°OJ=90°tan- 2 M (5) OJ=90°O OJ=90° OJ=90°v 
J=90° aq tan- 2 tan- 2 M M v tan- 2 M aq ap/ dp 

Q_ d r V d_cp 
" d p ' ' d p tan- 2 M (E) 

Ex his aequationibus petenda est determinatici quanti tatum r , cp, <\> et (si 

opus videatur) m , per p et q : scilicet integratio aequationis ( 5 ) dabit r , qua in

venta integratio aequationis (6) dabit cp, atque a l terutra aequationum ( l ) , (2) 

ipsam <p: denique m habebitur per a l terutram aequationum ( 3 ) , ( 4 ) . 

Integratio generalis aequationum (5), (6) necessario duas functiones arb i -

trarias introducere debet, quae quid sibi ve l int facile intel l igemus , si perpendi-

m u s , i l las aequationes ad casum eum quem hie consideramus non l imi tar i , sed 

per inde va lere , si r et cp accipiantur in significatione general iore art . 1 6 , i ta ut 

sit r longitudo lineae brevissimae ad lineam arbitrariam determinatam normal i ter 

ductae , atque cp functio arbi trar ia longitudinis eius partis l ineae , quae inter l i 

neam brevissimam indefìnitam et punctum arbi trar ium determinatum intercipitur. 

Solutio itaque generalis haec omnia indefinite amplecti debet , functionesque a r -

bitrariae tunc demum in definitas abibunt , quando l inea i l la arbi trar ia atque 

functio partium, quam cp exhibere debet , praescriptae sunt. In casu nostro c ir-

culus infinite parvus adoptari potest, centrum in co puncto habens, a quo distan-

tiae r numerantur , et 9 denotabit partes huius circuii ipsas per radium divisas, 
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the surface, r will be thethe surface, r will be 

r will be-s 
the surface, r will be thethe surface, r 

also in such a way that, for any point whatever on the surface, r will be the shortest 
distance from a fixed point, and cf> the angle at this point between the first element 
of r and a fixed direction. We have thus 

E'=l, J F = 0 , O / = 9 0 ° . 
Let us set also 

V G' = m, 

so that any linear element whatever becomes equal to 

V(dt* + m2 deb2). 

Consequently, the four equations deduced in the preceding article for a, /3, y, S give 

i /^.cos(cü — <W = §^ .............................................. 1 

VG.cosxp = ~ (2) 

V E . a i n ( x b — € o ) = m . K L ^ F (3) 
dp L 

VG. sin xp — m . ^-i (4) 

But the last and the next to the last equations of the preceding article give 

EG — F2 =E 
d?' 
d?* 

V 2 

- 2 F 
d?' d?* 
dp dq 

opop 
d<f> 
d<f> \

2 

• • (5) 

d?' 
d?* 

- F 
d<f> 
d<f> 
d<f> 

d<f> 
d<f> 

d<f> 
d<f> 

dq ' 
— (7. 3r1 

d<f> 
3^ 

d<f> 
• (6) 

From these equations must be determined the quantities r, <£, \p and (if need be) 
m, as functions of p and q. ' Indeed, integration of equation (5) will give r ; r being 
found, integration of equation (6) will give cf> ; and one or other of equations (1), (2) 
will give t/i itself. Finally, m is obtained from one or other of equations (3), (4). 

The general integration of equations (5), (6) must necessarily introduce two arbi
trary functions. We shall easily understand what their meaning is, if we remem
ber that these equations are not limited to the case we are here considering, but are 
equally valid if r and are taken in the more general sense of Art . 16 , so that r is 
the length of the shortest line drawn normal to a fixed but arbitrary line, and is 
an arbitrary function of the length of that part of the fixed line which is intercepted 
between any shortest line and an arbitrary fixed point. The general solution must 
embrace all this in a general way, and the arbitrary functions must go over into 
definite functions only when the arbitrary line and the arbitrary functions of its 
parts, which <f> must represent, are themselves defined. In our case an infinitely 
small circle may be taken, having its centre at the point from which the distances r 
are measured, and <f> will denote the parts themselves of this circle, divided by the 
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unde facile colligi tur, aequationes (5), ( 6 ) pro casu nostro complete sufficere, dum-
modo ea, quae indefinita re l inquunt , ei condition! accommodentur. ut r et ^ pro 
puncto ilio initiali atque punctis ab eo infinite parum distantibus quadrent . 

Ceterum quod att inet ad integrationem ipsam aequationum ( 5 ) , (6 ) , con
s tat , earn reduci posse ad integrationem aequationum differentialium vulgarium, 
quae tamen plerumque tarn intricatae evadunt , ut parum lucri inde redundet. 
Contra evolutio in series, quae ad usus practicos , quoties de partibus superficie! 
modicis agi tur , abunde sufficiunt, null is difficultatibus obnoxia est, atque sic for
mulae allatae fontem uberem aperiunt , ad multa problemata gravissima solvenda. 
Hoc vero loco exemplum unicum ad metbodi indolem monstrandam eyolvemus. 

2 3 . 

Considerabimus casum eum, ubi omnes l ineae , pro quibus p constan: 
est , sunt l ineae brevissimae ortbogonaliter secantes l ineam, pro qua cp = 0, e 
quam tamquam lineam abscissarum contemplari possumus. S i t A punctum 
pro quo r = 0 , D punctum indefinitum in l inea abscissarum, AIJ ^= p, 1 
punctum indefinitum in l inea brevissima ipsi AD in D normali , atque 13 I) = q 
ita ut p considerar! possit tamquam abscissa, q tamquam ordinata punct i JB ; ab 
scissas positivas assumimus in eo ramo l ineae abscissarum, cui respondet cp = 0 
dum r semper tamquam quantitatem positivam spec tarn us ; ordinatas positiva 
statuimus in plaga ea, ubi cp numeratur inter 0 et 18 0° . 

Per theorema art . 16 habebimus to = 9 0° , F = 0 , nec non G = 1; sta 
tuemus insuper \fF = n. Erit i taque n functio ipsarum pt q, et quidem talis 
quae pro q = 0 fieri debet = 1. Appl icat io formulae in art . \ 8 al latae ad ca 
sum nostrum docet, in quavis l inea brevissima esse debere dÖ = — ^ . djj , de 
notante Ö angulum inter e lementum buius l ineae atque e lementum l ineae, pr< 
qua q constans: iam quum linea abscissarum ipsa sit brevissima, atque pro ei 
ubique 0 = o , pate t , pro q = 0 ulìique fieri debere *~ = 0. Hinc igitu 
coliigiinus, si n in seriem secundum potestates ipsius q progredientem evolvatui 
banc habere debere formarn sequentem 

ii= i-\-fqq-i-#q3-\-àq/k-+- etc. 

ubi y , g, h etc. erunt functiones ipsius p, et quidem statuemus 
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radius. Whence it is easily seen that the equations (5), (G) are quite sufficient for 
our case, provided that the functions which they leave undefined satisfy the condi
tion which r and <\> satisfy for the initial point and for points at an infinitely small 
distance from this point. 

Moreover, in regard to the integration itself of the equations (5), (6), we know 
that it can be reduced to the integration of ordinary differential equations, which, how
ever, often happen to be so complicated that there is little to be gained by tlie reduc
tion. On the contrary, the development in series, which are abundantly sufficient for 
practical requirements, when only a finite portion of the surface is under considera
tion, presents no difficulty ; and the formulae thus derived open a fruitful source for 
the solution of many important problems. But here wre shall develop only a single 
example in order to show the nature of the method. 

23. 

We shall now consider the case where all the lines for which p is constant are 
shortest lines cutting orthogonally the line for which = 0, which line we can regard 
as the axis of abscissas. Let A be the point for which r " 0, D any point whatever 
on the axis of abscissas, AD~p, B any point whatever on the shortest line normal 
to AD at D, and BD=q? so that p can be regarded as the abscissa, <y the ordinate 
of the point 7?. The abscissas we assume positive on the branch of the axis of 
abscissas to which (f> = 0 corresponds, while we always regard r as positive. We take 
the ordinates positive in the region in which <f> is measured between 0 and 180° . 

By the theorem of Art . 16 we shall have 

O J = 9 0 ° , ^ = 0 , ( 7 = 1 , 
and we shall set also 

V E = n. 

Thus n will be a function of 2h qy such that for q — 0 it must become equal to unity. 
The application of the formula of Ar t . 18 to our case shows that on any shortest 
line whatever we must have 

OJ=90° дп 
OJ=90° 

. dp* 

where d denotes the angle between the element of this line and the element of the 
line for which q is constant. Now since the axis of abscissas is itself a shortest line, 
and since, for it, we have everywhere 0 = 0, we see that for q = 0 we must have 
everywhere 

дп 
d'à 

: = 0. 

Therefore wTe conclude that, if n is developed into a series in ascending powers of q, 
this series must have the following form : 

n = 1 +fq2 + gqz + hq* -f etc. 
where f, g, h, etc., will be functions of p, and we set 
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disquitiones generales disquitiones generales 

circa 
superficies curvas erficies curvas 

f =f°=f°=f°-hf'p-hf"PPf"pp++pp+etc. 

9 = 9 ° - \ - 9 P - \ - 9 " P P - p p + e t c . 

h =. h° -\- h'p -f- h!'pp -\- e t c . 

e t c . s i v e 

n = l - \ - f ° q q - \ - f ' p q q + f " p p q q - \ - f " p p + e t c . 

+ <? q + f / p q q ² + e t c . 

H - / ¿ ° < 7 4 -f- e t c . e t c . 

2 4 . 

A e q u a t i o n e s art. 2 2 in casu nostro s u p p e d i t a n t 

7¿ sm d> = -, — , coscos <b -= , — n?¿n cos cL» = m. r

I , smin f d» = ? 

nn = nn{-z-) A- (-¡— ) nnnnnn (F. DR)² + DF²= 0 

A d i u m e n t o h a r u m aequat ionum, q u a r u m quinta et sexta i am in re l iquis c o n t i n e n -

tur, series evo lv i p o t e r u n t pro r, 9, <p, m y ve l pro qu ibus l ibe t funct ion ibus h a r u m 

q u a n t i t a t u m , e q u i b u s eas , q u a e impr imis a t tent ione sunt d i g n a e , hic s i s temus. 

Q u u m pro va lor ibus infinite parvis ipsarum p , q fieri debeat r r = Pl^ - \ - qq> 

series pro r r inc ip ie t a terminis p p - ^ - q q ' q q . términos a l t iorum o r d i n u m o b t i n e -

m u s p e r m e t h o d u m coëfï ic ientium inde terminatorum *) a d i u m e n t o aequat ionis 

(F. DR)² + DF² = 4rr 44rr 4rr 

sci l icet 

[1] (F. DR)² + DF²(F. DR)² + DF²(F. DR)² + DF²(F. DR)² + DF²(F. DR)² + DF² 
-\-qq + \ 9 ppq +^9Pgpqq 

(F. DR)² + DF²(F. DR)² + DF 

D e i n h a b e m u s , d u c e n t e formula r sin cj; = 
1 d r r 
in' dp 

[2] sin Y (F. DR)² + DF²(F. DR)² + DF²(F. DR)² + DF²(F. DR)² + DF²(F. DR)² e t c . 
— ±£>°pq3 — iff'pp <f 

(F. DR)² + DF²(F. DR)² + DF 

*) Calculum , qui pei- nonnulla artificia paullulum contrahi potest, hic adscribere supertluum duximus. 
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of 

curved infesgdd curved 

g = </° + g' p + g"p* + etc 
g = </° + g' p + g"p* + etc. 
h = h° + A > + h"p* + etc. 

or 
n = 1 + / ° ^ 2 + / > y 2 + / , V ^ 2 + e t c . 

•f gg° <73 + q' pqà
 + e t c . 

+ / i ° y 4 + e t c . e t c . 

2 4 . 

The equations of Ar t . 22 give, in our case, 

n sin i// = FG COS xiy; = ~FG — « COS xfj — ifl . FG s i n \p = m . —FG 

n² = n² (GF)² (GF) n² = (GF)(GF)(GF)(GF)(G=0 

B y the aid of these equations, the fifth and sixth of which are contained in the others, 
series can be developed for r, <f>, xjj, m, or for any functions whatever of these quan
tities. We are going to establish here those series that are especially worthy of 
attention. 

Since for infinitely small values of p, q we must have 

(GF)(GF)(G 
the series for r 2 will begin with the terms jr 2 -f- q1. We obtain the terms of higher 

order by the method of undetermined coefficients,* by means of the equation 

+(GF+(GF +(GF) = 4 rr²2 

Thus we have 

[ 1 ] r'=p* + */"°;>V + é / * > V + ( I f - A/"°*)/>V etc. 
+ q² (GF)(GF)(GF)(GF) 

(GF)(GF)(GF)(GF) q²² 
Then we have, from the formula 

[ 2 ] 

r sin(GF)(GF)(GF)(G 

r sin yb = p — \ f°pq2 - i fp2q2 ~ (\f" + A / * 0 2 ) />V etc. 
(GF)(GF)(GF)(GF) 

(GF)(GF)(GF)(GF) 

* We have thought it useless to give the calculation here, which can be somewhat abridged by-
certain artifices. 
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disuiqtiones generalee disuiqtiones general 

circa 
suprefices suprefices suprefices 

nec non per formulam r c o s ^ = ^ . - ~ 

[ 3 ] r e o s <b = q + £ / > > > dqqssff+if'/y <7 + № / " — T V / ° / Ü ) / > 4 < 7 e tc . 

+ F g° pppqq+ G g' p² q g' p² 
+ F g° pppqq+ G g' p² q g' p² 

H i n c s imul innotescit a n g u l u s cp. Per ìnde ad c o m p u t u m angul i cp concinnius 
evolvimtur series pro r e o s 9 a tque rsincp, qu ibus inserviunt aequat iones difFe-
rentiales part ía les 

d . r eos cp 

dp = n cos cp . sin <p — r sin c p . —GF 
d . r e o s cp 

dq 
= cos cp . eos cp — r sin cp .GF 

d . r sin cp 

(i r> = n s m cp . sin <p - J — r eos Cp .GF 
d . r sin cp 

dq 
= sin cp . c o s ^ —f- r eos cp .GF 

/z c o s cb . -~- -4~ s i n o . -~ = O0 

q u a r u m combinatio supped i ta t 

r sin '1» 

n 

d . r eos cp 

dp —{— r e o s Y. 
d . r eos cp 

dq 
= r eos cp 

r sin 4> 

n 

d . r s in cp 

dp -j— r eos Y . 
d . r sin cp 

- d i 
= r s i n ip 

H i n c f a c i l e e v o l v u n t u r s e r i e s p r o r e o s e p , í - s in ' f , q u a r u m t e r m i n i p r i m i m a n i f e s t o 
e s s e d e b e n t p e t q, p u t a 

[4 ] r c o s c p = p + %f°pqq-+-^fppqq^-(-^f"— -fef°f°)p*qq e t c . 4 - ( А Г - А / У ° ) / ? ? e t c . 
+F g° qp& + FGF g' pp q² 

+ ( | A ' - A / V a ) M 4 

[5 ] r s i i K f , = q — t f O p p q p q q — ± f ' p 3 q p ² q — ( T V / " — ^rf°f°)P* <7 e t c . 

— i a ° p p p p qq — F G ^ f f p 3 q q 
-{\h°^-^f°r)ppq3 r)ppq3 

E eombinat ione aequat ionum [ 2 ] , [ 3 ] , [ 4 ] , [5] derivari posset series pro r r cos (cp-j-cp), 
a tque hinc, dividendo per ser iem [ l ] , series pro cos (cp-|-cp), a q u a ad seriem pro 
ipso ángulo cp-f-cp descenderé liceret. E l egant ius tarnen eadem obtinetur s e -
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curved surface surface 

and from the formula 

r COS xp = \ 
d(r2) 

dq 

[ 3 ] r cost// = q - h 4ff°u jrq + ±f i f q q -+- ( 4 / — 4% /f°² ) ^ 9 e t c -

G g° p² q² + F g' p² q² 
+ (ih° — Hf )p2ç3 

These formulae give the angle xp. In like manner, for the calculation of the angle cf>, 

series for r cos <f> and r sin <f> are very elegantly developed by means of the partial 

differential equations 

3 . ?• COS <b 

dp 
= w cos . sin xp — r sin <f> . _DFx 

3 . r cos q 

3 ? 
= COS <f> . COS xp — r sin </> . DF 

3 . r sin q 

dp 
= ft Sin </> . Sin l// -f- r COS </> . DF 

3 . r SHI <h 
dq 

= Sin <f> . COS l// -f-?' COS (j> .DF 

w cos ili. —* + sin ^ . —9- — 0 

A combination of these equations gives 

r Sill Xp 
n 

3 . r cos <b 
dp 

-f- r COS \p 3 . r cos <b 
do 

= r COS <p 

r sin \2* 

n 

3 . r sin <f> 

ds 
+ r COS xp . 

3 . r sin cb 

dq 
= r Sin <j> 

From these two equations series for r cos <j>, r sin <f> are easily developed, whose first 
terms must evidently be p, q q respectively. The series are 

[ 4 ] r cos A = p + A / " pq* + Afp*? + U\f" - f°²f°²«» q* e t c . 
- F g° t² q² - DF g' p² d² 

- F g° t² q²- DF g' p² d² 
[5] rSm<t> = q - i r p 2 ? - i / 7 ? - ( T V / " - A/02fdgq°²)q²p² etc. 

- F g° t² q² - DF g' p² d² 
- F g° t² q² - DF g' p² d² 

From a combination of equations [2 ] , [3 ] , [4 ] , [5] a series for r 2 cos (xp + </>), may 

be derived, and from this, dividing by the series [ 1 ] , a series for cos (xp + <f>), from 
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quenti modo. DifFerentiando aequat ionem pr imam et secundara ex i is , quae ini
tio huius art. a l latae sunt , obt inemus 

SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0 

qua combinata cum hac 

n cos cp. ^~ —|— sin Y dGH. = 0 

prodit 

r sin <lt 

n 

d n 
5? + 

r sin 4> d(g + g) 
dp 

- \ - reos Cp 
d(.̂  + cp) 

dq 
= 0 

E x hac aequat ione adiumento methodi coefrìcientium indeterminatorum facile eli-
ciemus seriem prò cp —|— cp , si perpendimus, ips ius terminum pr imum esse debere 
^-TC, radio prò unitate accepto , a tque denotante 2TZ per ipheriam circuii , 

[e] *+<? = -K—fpq—if'pp<iffd— {ïf"—*fhhff'f0)'fddfPsq etc. 
— 3°pqq —iffppqq 

~{h0 — ìf°f°)pq3 

Operae pret ium videtur , et iam a r e a m tr iangul i A.JBD in seriem evolvere. 
H u i c evolutioni inservit aequatio conditionalis sequens , quae e considerationibus 
geometricis satis obviis facile der ivatur , et in q u a >S aream quaes i tam dénotât: 

r sin ò 
n 

dS . 
" dp ' r COS cp d S r sin 4» 

n 
f n d q 

integratione a q = 0 incepta. H i n c scilicet obt inemus per methodum coëffi-
cientium indeterminatorum 

[ 7 ] *+<? = -K—fpq—if'pp<iffd— {ïf"—*fhhff'f0)'fddfPsq etcetc.<7°p3qq —%\gpkqq 
— ̂ f ° p q 3 — * \ < 7 ° p 3 q q < 7 ° p 3 q q — % \ g p k q q q q 

—T*irf'pp q3— ( T V ^ + Ä / ' W - W / V ° ) j * V 
— -TV^ j p q — -&>gpp q 

<7°p3qq —%\gpkqq<7°p3qqpq² 

2 5 . 

A formulis art. praec. , quae refer un tur ad triangulum a lineis brevissimis 
formatum rectangulum , progredimur ad generalia. S i t C a l iud punctum in ea-
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which may be found a series for the angle xp -f- <p itself. However, the same series 
can be obtained more elegantly in the following manner. B y differentiating the first 
and second of the equations introduced at the beginning of this article, Ave obtain 

SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0 

and this combined with the equation 

n cos xp . —Ì -f- sin xp . —5* = 0 

gives 

r sin Xp 

n 
dn + 
dq 

r sm xp 
n 

3 U + A) 

dp 
-f- r cos xp 

d(xp + <b) 

dq 
= 0 

From this equation, by aid of the method of undetermined coefficients, Ave can easily 
derive the series for xp + cp, if Ave observe that its first term must be -J- tt, the radius 
being taken equal to unity and 2 n denoting the circumference of the circle, 

[6 ] * + 4> = i*-f°pqpg - i/Yq ~ (if" ~ lf°2)p3<! e t c . 

9° Pr — t9 FT 
- ( A ° - i / ° 2 ) ; ^ 3 

I t seems worth Avhile also to develop the area of the triangle A B D into a series. 
For this development Ave may use the following conditional equation, which is easily 
derived from sufficiently obvious geometric considerations, and in which & denotes the 
required area : 

r sin xb 
n 

d_S 

dp 
r COS xp 

d S 
d~q ~~ 

r sin Xp 

n 
I n dq 

the integration beginning Avith q — 0. From this equation AAre obtain, by the method 
of undetermined coefficients, 

[7] SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0SIN Y FG + N CONS Y + etc.et 
SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0 

SIN Y FG + N CONS Y + SI DY + SIN Y GH =IN 

— TV 9°Pi q² ~h9'P*<f 
- { -hV-4 j s f °* )P< tq ²pq ² 

25. 

From the formulas of the preceding article, which refer to a right triangle formed 
by shortest lines, we proceed to the general case. Let C be another point on the 
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disquitiones generales disquitiones generales 

cirva 

superficies curva superficies curva 

clem linea breviss ima DJB, pro quo, manente p, cliaracteres q , r, cp\ cp', >S' eadem 
désignent, quae q, r, cp, S i>ro puncto JB. I t a oritur tr iangulum inter puncta 
A., By C,S cuius angulos per A, JB, C , latera opposita per a, b, c, aream per a 
denotamus ; mensuram curvaturae in punctis A.y B, C resp. per a , 5\ y expr i -
memus . Supponendo i taque (quod l icet) , quant i tates p, q, q—q' esse posit i 
vas , habemus 

A = cp—cp', J5 = cp, C = — — cp', a =- q — q, b = r\ c = r, a = S—S' 

Ante omnia aream a per seriem exprimemus. Mutando in [7] s ingulas 
quant i tates ad J5 relatas in eas, quae ad C referuntur, prodit formula pro S\ 
unde , u sque ad quantitates sexti ordinis obtinemus 

G = irp (q — q')\i — if0 kpi> + qq-\-q q'qq'-hqq) 
-ifofp fp(Gpp 4 - 7 qq + 7 qq-\-7 qq) 

— x°s (q-\-q')(3pp-}-4qq + 4 # q ' - \ - 4 q q )\ 

H a e c formula , adiumento seriei [2 ] puta 

c sin JB = p ( 1 If0 qq — ±fp q q — g ° qpq3 — etc.) 

transit in sequentem 

SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0SIN Y FG + 

SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0 

— SIN Y FG + N CONS Y + SI DY + SIN Y GH = 0SIN Y FG + N CONS Y +QP² 

Mensura curvaturae pro quovis superficiel puncto fit (per art. 1 9, ubi m,p, q 
erant quae hie sunt nt q, p) 

= - l 
n 

d d n 

d o * = -
2 f-\- G qq 4- 12 h qq -\- e t c . 

1+ sdff+ etc 
= — 2 f — 6 a q g h p (12Ä 2ff)qqqq — etc. 

Hinc fit, quatenus p, q ad punctum B re feruntur , 

б = — 2 / ° — 2fp — &g°q— If VP— dff'pq — ( 1 2 A ° — 2f°f°)qq- etc. 

nec non 

T = — 2f°—2fp — &g°q — 2f"pp—<ìffpq — {\<2h'>—2f0f0)qq pp— e t c . 

a = = — 2 / ° • 
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same shortest line D B , for which point p> remains the same as for the point B , and 

r/, r' <j>f, i//, >S" have the same meanings as q, r, c/>, \p, jS have for the point B . There 

will thus be a triangle between the points A, B , C, whose angles we denote by 

yl, B , C, the sides opposite these angles by «, b, c, and the area by cr. We represent 

the measure of curvature at the points A, B , C by a, ¡3, y respectively. And then 

supposing (which is permissible) that the quantities p , q, q — qf are positive, we shall 

have 

A==d> — <//, B = xp, C = 7 r — xh', 

a = q — q', b = rf, c = r, cr = JS— S'. 

We shall first express the area cr by a series. B y changing in [7] each of the 

quantities that refer to B into those that refer to C, we obtain a formula for 

Whence we have, exact to quantities of the sixth order, 

<>• = ip (q - <?') ( i - i f ° (p2+ ?2+ qq' + ?'2) 

• A / X 6 / + 7 q* + 7 qq' + 7 q'*) 
-^ôû°(q + q') ( 3 / + 4 ?

2 + 4 ? ' 2 ) ) 

This formula, by aid of series [2] , namely, 

c sin B =p ( 1 - i/o q 2 - i / ' p q 2 - \ g ° q*~ e t c . ) 

can be changed into the following : 

cr = \ ac sin B ( 1 — i / ° (p2— q2 + qq'+ q'2) 

— ^ f ' p ( 6 p2 — 8 < 7 2 + 7 o o ' + 7 a ' 2 ) 

— -iô9° ( 3 p * q + 3 p 2 q ' — 6 p * + 4 q*q' + 4 q q , 2 + 4 r / 3 ) ) 

The measure of curvature for any point whatever of the surface becomes (by Ar t . 
19, where m, p , q were what n, q, p are here) 

k = - JH d n 

dg = -
2 / + 6 gq + 1 2 hq2 + e t c . 

1 + / < 7 2 + e t c . 

= — 2 / — 6 gq — ( 1 2 h — 2/2) q2 — e t c . 

Therefore we have, when p , q refer to the point B , 

ß = - 2 / ° - 2/'p - 6 g ° q ~ 2 / ' > 2 - Q g ' p q - ( 1 2 h° - 2 / ° 2 ) q2 - e t c . 

Also 

y = - 2 / o - 2 f ' / > - 6 * V - 2 / ' V ~ 6 a'Po> - (12 /*o - 2 / - 2 i r/ 2 - ftfn 

a = 2 f° 

73 



G.F. GAUSS GA 

disquinitones generala disquinitones generala 

circa 
superficies generalz superficies gene 

I n t r o d u c e n d o has mensuras c u r v a t u r a e in serie prò a, o b t i n e m u s expres s ionem 

s e q u e n t e m , usque ad quant i ta te s sext i ordinis (excl.) e x a c t a m : 

a = ±-a c sin \ l + T - ^ i r a ( 4 p p — 2 qq -f- 3q q'-\- 3 q q ) 

-h irho^ T(3 pp — 6pp + 6(7 q'-\- 3 tfV) 

• J r-T^oi i^pp~^qqqq + qqqq-\-±qq)\ 

Praec i s io e a d e m m a n e b i t , si pro p , q, q subs t i tu imus csinZ?, c s i n 5 , c sin JB — «, 

q u o pac to prodi t 

[8] a = ^ a e s i n B [ 1 + 1FGa (3 a a - f - 4 c e — 9 a c sinJ5) 

-f- x-l-o- ̂ ( 3 a a + 3 c c — 1 2 a c sin B ) 

+ T - } ^ T ( 4 « « + 3 C C 9 a c c s i n j B ) j 

Q u u m e x hac aequat ione omnia , quae ad l i n e a m A . D normal i ter ad B C d u c t a m 

referuntur , evanuer int , e t iam p u n c t a A., B , C c u m correlat is inter se p e r m u t a r e 

licebit, quapropter erit e a d e m praec i s ione 

[ 9 ] a = | è c sin A . j 1 -f- 1FH0 & cc(3b b -f- 3 ce 12bc sin AL) 

+ ^ 0 - 0 ( 3 b 6 + 4 c e — 9 6c*sin-4) 

+ T4-ÌT7( 4 è & + 3 c c — 9 6 c sin^l)j 
[ 1 0 ] a = \ a 6 sin C { 1 —f--r4-oOC (3 a a -f- 4 ¿»6 9aòsin C ) 

- f - T Ì - o ^ ( 4 a a + 3 & ò — 9 a ò sin C ) 

+ T Ì T T ( 3 « O - f - 3 & Z > — 1 2 a 6 c sin C ) } 

2 6 . 

M a g n a n i u t i l i ta tem afFert considerat io t r iangul i p lan i rect i l inei , cu ius latera 

a e q u a l i a sunt ipsis a, b, c; a n g u l i i l l ius t r i a n g u l i , quos per A* , B * , C * d e s i g n a -

b i m u s , different ab angu l i s t r iangul i in superficie curva, p u t a a b A., B , C , q u a n -

t i ta t ibus s ecundi ordinis , operaeque p r e t i u m er i t , has differentias a c c u r a t e evo l 

vere . Calculorum autem pro l ix iorum q u a m dif f ic i l iorum, pr imaria m o m e n t a a p -

posuisse sufflciet. 

M u t a n d o in formul is [ l ] , [4], [5], quant i ta tes , q u a e re feruntur ad B , in eas, 

q u a e referuntur ad C , n a n c i s c e m u r formulas pro r r \ r'coscp', r'sincp'. Tunc evo-

lut io express ionis r r + r'r — ( q — q ' ) 2 — 2 r cos cp . r'eos cp' 2 r sin cp. r'sin cp', q u a e fit 

= b b - \ - c c — a a — 2 & c * c o s ^ i == 2òc(cos^cos A — cos-A) , c o m b i n a t a c u m evo lut ione 
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Introducing these measures of curvature into the expression for cr, we obtain the fol
lowing expression, exact to quantities of the sixth order (exclusive) : 

er = J а с s i n В ( 1 + } a ( 4 p 2 — 2 с/ + 3 2 / + 3 < / 2 ) 

+ Th>ß ( З Р " - G f + b qq + 3 q") 

+ T - b r ( 3 ^ 2 - 2 r + qq' + ^q'-)) 

The same precision will remain, if for jo, q' we substitute <? sin B , c cos Z?, <? cos B — a. 
This gives 

[ 8 ] cr = \ a c sin B ( 1 + Y2"o a ( 3 « 2 + 4 c 2 — 9 a c c o s i ? ) 

+• T2U- /3 ( 3 a 2 + 3 cl — 12ac c o s i>>) 

+ T]nry ( 4 « 2 + 3 c 2 — 9 « < ? c o s Z ? ) ) 

Since all expressions which refer to the line A D drawn normal to B C have disap
peared from this equation, we may permute among themselves the points A, B , C and 
the expressions that refer to them. Therefore we shall have, with the same precision, 

[ 9 ] cr = \ b c sin A ( 1 + -3-J-ô a ( 3 b2 + 3 c2 — 1 2 be cos . 1 ) 

+ T ^ T J ^ ( 3 ^ 2 + 4 ^ — 9 6 < ? c o s . 4 ) 
+ r L ô 7 ( 4 è 2 - f 3 6 - 2 — 9 Ô C c o s . / 1 ) ) 

[ 1 0 ] c r = - L « £ s i n 6 7 ( 1 + y - i b - a ( 3 a 2 + 4 £ 2 - 9 a b cos 67) 

+ i + t r £ ( 4 t f 2 + 3 £ 2 — 9 « i cos 67) 

+ 1FG y ( 3 a2 - b 3 £ 2 — 1 2 a b cos 67) ) 

26. 

The consideration of the rectilinear triangle whose sides are equal to a, b, c is of 
great advantage. The angles of this triangle, which we shall denote by A * 9 2?*, 67*, 
differ from the angles of the triangle on the curved surface, namely, from A, B , 67, 
by quantities of the second order; and it will be worth while to develop these differ
ences accurately. However, it will be sufficient to show the first steps in these more 
tedious than difficult calculations. 

Replacing in formulae [ 1 ] , [4 ] , [5] the quantities that refer to B by those that 
refer to 67, we get formulae for r' 2 , r' cos c//, r' sin </>'. Then the development of the 
expression 

,,2 i , / 2 _ ( n _ _ r / \ 2 — 2r cos 6 . r' cos <bf — 2 r sin d> . r s i n d> 

= b2 + c2— a 2 — 2 bc cos A 

= 2 be (cos / 1 * — cos /1), 
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expressionis r sincp . r eos rs> — r cos cp . r'sin cp', quae fit = 6 c sin ^ 1 , suppedi tat for
mulara sequentem 

cos^L* — c o s ^ . = — {q — q')p siri A \ ± f ° + ± f ' p p + g°g°° (q + q') 
- *V/°/° (2^ + 1 1 ? * — 8 $ £'+ 8 </'</)}8 $ £'+ 8 </'< 
- *V/°/° (2^ + 1 1 ? * — 8 $ £'+ 8 </'</)}8 $ etc 

H i n c fit porro , usque ad quanti tates quinti ordinis 

A" — A = — (q — (i )p \ kf° + hf'p + iff0 (q + q ) + T V / > J > 

-+- vV^> (<? + </' ) -+-1 A " (<? q + ? ? ' + ?V ) 
8 $ £'+ 8 </'</)}8 $ £'+ 8 </'</)}8 $ £'+ 8 </'</)}8 $ £'+ 8 </'</ 

Combinando hanc formulati! cum hac 

2 a = ap{\ — \f°(j)p-\-qq-\-qqpq-\-q'qqp— etc.)) 

a tque cum valoribus quant i tatum a, í>. y in art. praec. allatis, obtinemus usque 
ad quant i tates quinti ordinis 

[ 1 1 ] A.* = A ^ - o a ¡ i a a ++ T V 6 + T V 7 + T V / > + l ^ í ' / + í ' ) 

+ i à° ( 3 q q 2 q q-\- 3q'q) 
+ n V / 0 / ° ( 4 ^ — 1 1 ? ? + 1 4 ? ? ' — 1 1 <?Y) I 

Per operationes prorsus similes evolvimus 

[ 1 2 ] B* = B — a { T v « + i 6 + X V 7 + T V / > / > + - i V y > (2 ? + 
-+-±h°(4qq — 4qq'-{-3qq) 

— i r V / Y ° ( 2 p jp + 8 <? q — 8 ^ + 1 1 q'q ) { 
[ 1 3 ] C * = C - a j ^ a + r V O + i y + T V / ^ + T V ^ t í + a ? ' ) 

+ - ^ ° ( 3 ? ? — 4qq-\-4q'q) 
- * V / ° / ° ( 2 ^ + 1 1 ? * — 8 $ £ ' + 8 < / ' < / ) } 

H i n c s imul deducimus , q u u m s u m m a A*-\-B*-\- C* duobus rectis aequal is sit, 
excessum s u m m a e Ai + B + C supra dúos ángulos rectos , puta 

[ 1 4 ] . 4 + ^ + C = ^ + a J 4 - a + 4-Ü + 4 - T + i - / > i 9 + ^ > ( g + ^ ) 

8 $ £'+ 8 </'</)}8 $ £'+ 8 </'</)}8 </'</ 

H a e c ul t ima aequatio etiam formulae [ 6 ] superstrui potuisset. 
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combined with the development of the expression 

r sin </> . r' cos d>' — r cos <b . r' sin <b' = be sin A , 

gives the following formula : 

cos A * — cos A — ~ { q — q') p sin A ( \ f ° + -J-/' p -f (7 +S GEN 

+ (4, A° — -n7n/"°2) (*2 + <7</+<7/2) H- etcì 

+ (4, A° — -n7n/"°2) (*2 + < 7 < / + < 7 / 2 ) H- e t c ì 

From this we have, to quantities of the fifth order, 

A" - A = + ( q - q') p Uf° + If'P + iff" (</ + <>') + V n / ' V 

+ --ha'V (9 + 9') + i A ° ( ? 2 + 99'+ 9'*) 

- ^ f ° * ( 7 P*+7 q*+12 qq' + 7 9qq'²)) 

Combining this formula with 

2 o- = - J - / ° ( / / + ?

2 + qq' + q'2) - e t c . ) 

and with the values of the quantities a, /3, y found in the preceding article, we obtain, 

to quantities of the fifth order, 

[ 1 1 ] A* = A - a - d a + TV JS + rVr + T \ / " P 2 + iff'p (9 + ?') 

+ - I 1 ' "AT y + TV/'>2 + TV9'P (2 
+ <faf°2 ( 4 P 2 - l l q ' + U q q ' - 1 1 q")) 

B y precisely similar operations we derive 

[ 1 2 ] B * = B - r ( J J a + i- /3 + -AT y + T V / ' > 2 + T V 9 ' P ( 2 ? + 9') 
+ l-h° ( 4 « 2 — 4 « ? ' + 3 < ? ' 2 ) 

- » V / ° 2 (2/>* + 8 ? « - 8 qq' + 1 1 ? ' 2 ) ) 

[ 1 3 ] B*=B-r(JJa + i- /3 + -AT y + TV/'>2 + TV9'P (2 ? + 9')AT y + TV/'>2 + TV9'qq² 
+ -\k° ( 3 ?

2 — 4 o ? ' + Aq'2) 

~ T V / ° 2 ( 2 ^ + H 92 - 8 ? 9' + 8 2 ) ) 

From these formulae we deduce, since the sum ^4* + B * + 67* is equal to two right 

angles, the excess of the sum A + B + C over two right angles, namely, 

[ 1 4 ] B*=B-r(JJa + i- /3 + -AT y + TV/'>2 + TV9'P (2 ? + 9')AT y + TV/'>2 + TV+ TV/'>2 + TV 

+ ( 2 A ° - + / o 2 ) ( ? 2 - ? ? ' + ? ' 2 ) ) 

This last equation could also have been derived from formula [6] . 
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2 7 . 

S i superficies curva est s p h a e r a , cuius rad ius = -R, erit 

a = 6 = y = — 2f° = ^ ; = 0, </ = 0, 6 h"—f°f°= 0 sive * » = HG^ 

H i n c f o r m u l a [ 1 4 ] fit 

A + B + FGC = P HGHG 
q u a e praecis ione a b s o l u t a g a u d e t ; formulae 1 1 — 1 3 autem suppedi tant 

A* = A.— re 3RR o o 
1 9 0 R* 

(2pp — qq-J^Aqppq — qq) 

ir == JB — RR 
3 RR + o 

1 8 0 - ß * 
(pp—2qq-i-2qq'-+pp- q'q) 

C * = C — RR 3 RR + o 
1 SO R* 

{pp-h +- q'q) qq+Zqq—^q'q) 

sive a e q u e exacte 

ir == JB —3 RR+o1 80-ß*(pp—2qq-i-2qq'-+- q'q)+- q'q) 

ir == JB —3 RR+o1 80-ß*(pp—2qq-i-2qq'-+- q'q)+- q'q) 
ir == JB —3 RR+o1 80-ß*(pp—2qq-i-2qq'-+- q'q)+- q'q) 

Neglect i s quant i ta t ibus quart i ordinis , prodit fiinc theorema notum a clar. L E -
GENDRE pr imo propos i tum. 

2 8 . 

F o r m u l a e nos trae genera les , reiectis terminis quart i ordinis , pers impl ices 
e v a d u n t , scil icet 

A* = A — T V ° ( 2 a 2 o t + ö + 7 ) 
J 5 * = 23 —1FG a + 2 6 + y ) 
C* = C - T V o ( a + 6 + 2 y ) 

A n g u l i s i taque -4, 23, C in superficie non spbaer ica reduct iones inaequales a p -
p l i candae s u n t , ut muta torum sinus la ter ibus opposit is fiant proport ionales . I n -
aequal i tas general i ter loquendo erit tertii ordinis , at si superficies p a r u m a s p h a e r a 
d i s crepat , i l ia ad ordinem alt iorem referenda eri t : in tr iangulis vel m a x i m i s in 
superficie tel luris , quorum qu idem angulos dimetiri l icet, differentia semper pro 
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2 7 . 

If the curved surface is a sphere of radius R. we shall have 

a = / 8 = rY = - 2 / ° = ^ ; / " = 0 , ff' = 0, 6/<°-ff°²°* = 0, 

or 

h° = 1 

2 4 2 ? * 

Consequently, formula [14] becomes 

A + B + £ 7 = ^ + ™ , 

which is absolutely exact. But formulae [ 1 1 ] , [ 1 2 ] , [13] give 

A* = A - RR² - RR² RR²(2p² - q² -²s(²)(2p² - q² -²s(²) 

A* = A - RR² - RR² RR²(2p² - q² -²s(²)(2p² - q² -²s(²) 

A* = A - RR² - RR² RR²(2p² - q² -²s(²)(2p² - q² -²s(²) 
or, with equal exactness, 

vi* =A — 
cr 

SB2 

cr 
180 R² (*

2 + e2 - 2 a2) 

vi* = —crSB2cr8 R²(*2 + e2 - 2 a2)(2p² - q² -²s 

vi* = —crSB2cr8 R²(*2 + e2 - 2 a2)(2p² - q² -²s 

Neglecting quantities of the fourth order, we obtain from the above the well-known 
theorem first established by the illustrious Legendre. 

2 8 . 

Our general formulae, if we neglect terms of the fourth order, become extremely 
simple, namely : 

A* = A — <r ( 2 a + / 3 + y 
B* = B — - j L cr ( a + 2 / 3 + y 

C* = C— T V a - ( a + / 3 + 2 y ) 

Thus to the angles A, B , C on a non-spherical surface, unequal reductions must 
be applied, so that the sines of the changed angles become proportional to the sides 
opposite. The inequality, generally speaking, will be of the third order; but if the 
surface differs little from a sphere, the inequality will be of a higher order. Even in 
the greatest triangles on the earth's surface, whose angles it is possible to measure, 
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insensibil i haberi potest. I ta e.g. in triangulo máximo inter ea, quae annis prae -
cedentibus dimensi suníus , puta inter pune ta Hohehagen, Brocken , Inselsberg, 
ubi excessus summae angulorum fuit = 1 4 " 8 5 3 4 S , calculus sequentes reductio-
nes ancrulis appl icandas prodidit: 

Hohehagen — 4"9 5 1 1 3 
Brocken — 4 . 9 5 1 0 4 

Inse lsberg 4 . 9 5 1 3 1 

2 9 . 

Coronidis caussa adhuc comparationem areae trianguli in superfìcie curva 
cum area trianguli rectilinei, cuius latera sunt a, b, c, adiiciemus. Aream poste
riorem denotabimus per a*, quae fit = \ be sin A* = i \ a e sin J3* = *-«òsin C* 

I i a b c m u s , usque ad quanti tates ordinis quarti 

sin A* = sin A 1

,

z - a cos A . (2 oc —f- t? —[— y ) 

sive aeque exacte 
sin A = sin A*. ( 1 -4- ^Vòc cos A . (2 a-f- *>-+- y) ) 

Substituto hoc valore in formula [ 9 ] , erit usque ad quantitates sexti ordinis 

a = -i-be sin A.*. Í l - f - T 4-n -c t (3 bb-\- 3 c c — 2 b e cos A) -4- - r-i ̂  o (3 b b -4 - 4 c c — 4Ab bcvosA 

-+- -r-air 7 (4 ¿/ Z> -f- 3 c c — 4 & c cos yl) J 

sive aeque exacte 

o = o* ( 1 + iFG a(aaa+ 2 bb + 2 vv) + 1FGFT(2aa + 2 bb + 2 ccdgggdgg 
1FGFT(2aa + 2 bb + 2 ccdgggdgg 

Pro superficie spliaerica haec formula sequentem induit formam 

a = a * ( 1 -f- FG a (a a - | - b b -f- cc)) 
cuius loco etiam sequentem salva eadem praecisione adoptari posse facile confirmatu] 

a = a*\ sm J . sin J? . sin C 
sin -dt* . sin B *'. sin C* 

Si eadem formula triangulis in superficie curva non sphaerica applicatur , erro 
generaliter loquendo erit quinti ordinis , sed insensibilis in omnibus triangulis 
qual ia in superficie telluris dimetiri licet. 

8 0 



DISQUISITION ES GENERALES 

investigations general investigations ge 

of 

superficies general general 

the difference can always be regarded as insensible. Thus, e. g., in the greatest of 
the triangles which we have measured in recent years, namely, that between the 
points Hohehagen, Brocken, Inselberg, where the excess of the sum of the angles was 
14".85348, the calculation gave the following reductions to be applied to the angles : 

-Hohehagen —4". 95113 
Brocken — 4 / / .95104 
Inselberg —4".95131 . 

2 9 . 

We shall conclude this study by comparing the area of a triangle on a curved 
surface with the area of the rectilinear triangle whose sides are «, b, c. We shall 
denote the area of the latter by cr* ; hence 

cr* = -\ b c sin A * = }¿ a c sin B * = }¿ ab sin ¿7* 

We have, to quantities of the fourth order, 

sin yl* = sin A — T

l , j cr cos A . (2 a + /3 + y) 

or, with equal exactness, 

sin A = sin yl* . ( 1 + 2V h c cos A . (2 a + /3 + y) ) 

Substituting this value in formula [9] , we shall have, to quantities of the sixth order, 

cr = vi be sin yl* . ( 1 + r.Vn cl (3 ¿ 2 + 3 c2 — 2 be cos A) 
+ T1Ü/3 ( 3 ô 2 + 4 c 2 — 4 k cos yl) 

+ т4тг У ( 4 b -Г ас'—4 be cos А) )у 

or, with equal exactness, 

cr = cr* ( 1 + FG a ( « 2 + 2 ' ¿ 2 - f 2 c 2 ) + ThrP(2 ^+ ¿ 2 + 2 e2) + Tfa y ( 2 a 2 + 2 ¿ 2 + c 2 ) ) 

For the sphere this formula goes over into the following form : 

Cr = C r * ( 1 + T V * ( « 2 + b² + c² b² 

It is easily verified that, with the same precision, the following formula may be taken 
instead of the above : 

cr = cr* 
sin yl . sin B . sin O 
sin yl* . sin 2?* . sin 6'* 

If this formula is applied to triangles on non-spherical curved surfaces, the error, gen
erally speaking, will be of the fifth order, but will be insensible in all triangles' such 
as may be measured on the earth's surface. 
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A N Z E I G E 

Göttingische gelehrte Anzeigen. 13 27 November 5. 

A m 8 . October überreichte H r . Hofr . GAUSS der K ö n i g l . Societät eine V o r 
lesung : 

D i s q u i s i t i o n e s n e s g e n e r a l e s l e s circa superficieses c u c u r v a s . 

Obgleich die Geometer sich viel mit a l lgemeinen Untersuchungen über die k r u m 
men F lächen beschäft igt h a b e n , und ihre R e s u l t a t e einen bedeutenden Thei l des 
Gebie t s der höhern Geometr ie ausmachen , so ist doch dieser Gegenstand noch so 
weit davon entfernt , erschöpft zu s e in , dass m a n vielmehr behaupten kann, es 
sei bisher nur erst ein kle iner Thei l eines höchst fruchtbaren F e l d e s angebauet . 
Der Verf. hat schon vor e inigen J a h r e n durch die Auf lösung der Aufgabe , alle D a r 
ste l lungen einer gegebenen F l ä c h e a u f einer andern zu f inden, bei welchen die 
kle insten Thei le ähnl ich bleiben, dieser L e h r e eine neue Seite abzugewinnen g e 
sucht: der Zweck der gegenwärt igen A b h a n d l u n g ist, abermals andere neue G e 
s i chtspunkte zu eröffnen, und einen Thei l der neuen Wahrhe i ten , die dadurch 
zugängl ich werden , zu entwickeln. W i r werden davon hier anzeigen, was ohne 
zu grosse W e i t l ä u f i g k e i t verständl ich gemacht werden k a n n , m ü s s e n aber dabe i 
im V o r a u s bemerken, dass sowohl die neuen BegrifFsbildungen, als die Theoreme , 
wenn die gröss te Al lgemeinheit umfass t werden sol l , zum The i l noch einiger B e 
schränkungen oder nähern B e s t i m m u n g e n bedürfen, welche hier übergangen wer
den müssen . 
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GAUSS'S ABSTRACT OF THE DISQUISITIONES GENERALES CIRCA 
SUPERFICIES CURVAS, PRESENTED TO THE ROYAL 

SOCIETY OF GÖTTINGEN. 

Göttingische ge lehrte Anzeigen. No. 1 7 7 . Pages 1761—1768. 1827. November 5. 

On the 8th of October, Hofrath Gauss presented to the Royal Society a paper : 

Disquisitiones generelles circa superficies eurvas. 

Although geometers have given much attention to general investigations of curved 
surfaces and their results cover a significant portion of the domain of higher geometry, 
this subject is still so far from being exhausted, that it can well be said that, up to 
this time, but a small portion of an exceedingly fruitful field has been cultivated. 
Through the solution of the problem, to find all representations of a given surface upon 
another in which the smallest elements remain unchanged, the author sought some 
years ago to give a new phase to this study. The purpose of the present discussion 
is further to open up other new points of view and to develop some of the new truths 
which thus become accessible. We shall here give an account of those things which 
can be made intelligible in a few words. But we wish to remark at the outset that 
the new theorems as well as the presentations of new ideas, if the greatest generality 
is to be attained, are still partly in need of some limitations or closer determinations, 
which must be omitted here. 
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3 4 2 

Bei Untersuchungen , wo eine Mannigfalt igkeit von Richtungen gerader Li 
nien im R ä u m e ins Spiel k o m m t , ist es vortheilhaft, diese Richtungen durch die
jen igen Punkte auf der Oberfläche einer festen K u g e l zu bezeichnen, welche die 
E n d p u n k t e der mit jenen parallel gezogenen Radien sind: Mitte lpunkt und H a l b 
messer dieser Iliilfskugel sind hierbei ganz wil lkürlich: für letztern mag die L i -
neareinheit gewählt werden. Diess Verfahren kommt im Grunde mit demjenigen 
überein, welches in der Astronomie in stetem Gebrauch ist , wo man alle Rich
tungen auf eine fingirte Himmel skuge l von unendlich grosem Halbmesser bezieht. 
Hie sphärische Trigonometr ie , und einige andere L e h r s ä t z e , welchen der Verf. 
noch einen neuen von häufiger Anwendbarke i t beigefügt hat . dienen dann zur 
Auflösung der Aufgaben, welche die Vergleichung der verschiedenen vorkommen
den Richtungen darbieten kann. 

AVenn man die Richtung der an j edem P u n k t einer krummen Fläche auf 
diese errichteten Normale durch den nach dem angedeuteten Verfahren entspre
chenden P u n k t der Kugelf läche bezeichnet, also j edem P u n k t der krummen Fläche 
in dieser Beziehung einen P u n k t der Oberfläche der Hül f skuge l entsprechen lässt, 
so wird , allgemein zu reden, jeder L in i e auf der krummen Fläche eine L in i e auf 
der Oberfläche der H ü l f s k u g e l , und j e d e m Flächenstück von jener ein Flächen
stück von dieser entsprechen. J e geringer die Abweichung jenes Stücks von der 
E b e n e i s t , desto kleiner wird der entsprechende Thei l der Kugelf läche sein, und 
es ist mithin ein sehr natürlicher G e d a n k e zum M a a s s s t a b e der Tota lkrümmung, 
welche einem S t ü c k der krummen Fläche beizulegen i s t , den Inhal t des entspre
chenden S tücks der Kugelf läche zu gebrauchen. Der Verf. nennt daher diesen 
Inhalt die ganze Krümmung des entsprechenden Stücks der krummen Fläche . 
Ausser der G r ö s s e kommt aber zugleich noch die Lage der Theile in Betracht, 
d ie , ganz abgesehen von dem Grössenverhäl tn iss , in den beiden Stücken entwe
der eine ähnliche, oder eine verkehrte sein k a n n : diese beiden Fä l l e werden durch 
das der Tota lkrümmung vorzusetzende positive oder negative Zeichen unterschie
den werden können. Diese Laiterscheidung hat jedoch nur insofern eine be
st immte B e d e u t u n g , als die F iguren auf best immten Seiten der beiden Flächen 
gedacht werden: der Verf. n immt sie bei der Kugelf läche auf der äussern und bei 
der krummen Fläche auf derjenigen Se i te , wo man sich die Normale errichtet 
denkt , und es folgt dann , dass das positive Zeichen bei convex-convexen oder 
concav-concaven Flächen fdie nicht wesentlich verschieden sind), und das nega-
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In researches in which an infinity of directions of straight lines in space is con
cerned, it is advantageous to represent these directions by means of those points upon 
a fixed sphere, which are the end points of the radii drawn parallel to the lines. The 
centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may 
be taken equal to unity. This procedure agrees fundamentally with that which is con
stantly employed in astronomy, where all directions are referred to a fictitious celestial 
sphere of infinite radius. Spherical trigonometry and certain other theorems, to which 
the author has added a new one of frequent application, then serve for the solution of 
the problems which the comparison of the various directions involved can present. 

If we represent the direction of the normal at each point of the curved surface by 
the corresponding point of the sphere, determined as above indicated, namely, in this 
way, to every point on the surface, let a point on the sphere correspond; then, gener
ally speaking, to every line on the curved surface will correspond a line on the sphere, 
and to every part of the former surface will correspond a part of the latter. The less 
this part differs from a plane, the smaller will be the corresponding part on the sphere. 
It is, therefore, a very natural idea to use as the measure of the total curvature, 
which is to be assigned to a part of the curved surface, the area of the corresponding 
part of the sphere. For this reason the author calls this area, the integral curvature of 
the corresponding part of the curved surface. Besides the magnitude of the part, there 
is also at the same time its position to be considered. And this position may be in 
the two parts similar or inverse, quite independently of the relation of their magni
tudes. The two cases can be distinguished by the positive or negative sign of the 
total curvature. This distinction has, however, a definite meaning only when the 
figures are regarded as upon definite sides of the two surfaces. The author regards 
the figure in the case of the sphere on the outside, and in the case of the curved sur
face on that side upon which we consider the normals erected. It follows then that 
the positive sign is taken in the case of convexo-convex or concavo-concave surfaces 
(which are not essentially different), and the negative in the case of concavo-convex 
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tive bei concav-convexen Statt hat. W e n n das in R e d e stehende S tück der k r u m 
men F läche in dieser Bez iehung aus Thei len ungleicher A r t bes teht , so werden 
noch nähere Bes t immungen nothwendig , die hier übergangen werden müssen. 

Die Vergle ichung des Inhal ts zweier einander correspondirender S tücke der 
krummen F läche und der Oberfläche der Hül f skuge l führt nun (auf dieselbe A r t 
wie z. B . aus der Vergle ichung von Volumen und M a s s e der Begriff von Dicht ig 
keit hervorgeht) zu einem neuen Begriffe. Der Verf. nennt nämlich Kriimmungs-
?naass, in einem P u n k t der k r u m m e n Fläche den Werth des B r u c h e s , dessen N e n 
ner der Inhal t eines unendl ich kleinen S tücks der krummen F läche in diesem 
P u n k t , und der Zähler der Inhal t des entsprechenden Stücks der F läche der 
Hül f skuge l , oder die ganze K r ü m m u n g j enes E lements ist. Man sieht, dass , in 
dem Sinn des Verf., ganze K r ü m m u n g und K r ü m m u n g s m a a s s bei k r u m m e n F l ä 
chen dem analog ist, was bei krummen Linien resp. Amplitudo und schlechthin 
K r ü m m u n g genannt wird; er fand B e d e n k e n , die letztern mehr durch Gewohn
heit als wegen Angemessenhe i t recipirten Ausdrücke auf die k r u m m e n F lächen 
zu übertragen. Uebrigens liegt weniger an den Benennungen se lbs t , als daran, 
dass ihre E in führung dnrch prägnante Sätze gerechtfert igt wird. 

Die Auflösung der A u f g a b e , das K r ü m m u n g s m a a s s in j e d e m P u n k t einer 
k r u m m e n F läche zu f inden, erscheint in verschiedener G e s t a l t , nach M a a s s g a b e 
der Art , wie die N a t u r der k r u m m e n Fläche gegeben ist. Die einfachste A r t ist, 
indem die Punkte im R a u m al lgemein durch drei rechtwinklige Coordinaten 
je, z unterschieden werden, eine Coordinate als Funct ion der beiden andern 
darzuste l len: dabei erhält man den einfachsten A u s d r u c k für das K r ü m m u n g s 
maass . Zugle ich ergibt sich aber ein merkwürdiger Z u s a m m e n h a n g zwischen d ie 
sem K r ü m m u n g s m a a s s und den K r ü m m u n g e n derjenigen Curven, die durch den 
Schnitt der k r u m m e n F läche mit E b e n e n senkrecht auf d iese lbe , hervorgehen. 
Bekannt l i ch hat EULER zuerst geze igt , dass zwei dieser schneidenden Ebenen , die 
e inander gleichfalls unter einem rechten W i n k e l schneiden, die Eigenschaf t h a 
ben , dass in der einen der gröss te , in der andern der kleinste K r ü m m u n g s h a l b 
messer S ta t t f indet, oder r icht iger , dass in ihnen die beiden äussersten K r ü m 
mungen vorkommen. Hier ergibt sich nun aus dem erwähnten A u s d r u c k für das 
K r ü m m u n g s m a a s s , dass dieses einem B r u c h e gleich wird , dessen Zähler die E i n 
heit , der Nenner das Product der beiden äussersten K r ü m m u n g s h a l b m e s s e r 
wird. — Weniger einfach wird der A u s d r u c k für das K r ü m m u n g s m a a s , wenn 
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surfaces. If the part of the curved surface in question consists of parts of these differ
ent sorts, still closer definition is necessary, which must be omitted here. 

The comparison of the areas of two corresponding parts of the curved surface and of 
the sphere leads now (in the same manner as, e. (/., from the comparison of volume and 
mass springs the idea of density) to a new idea. The author designates as measure of 
curvature at a point of the curved surface the value of the fraction whose denominator is 
the area of the infinitely small part of the curved surface at this point and whose numer
ator is the area of the corresponding part of the surface of the auxiliary sphere, or the 
integral curvature of that element. It is clear that, according to the idea of the author, 
integral curvature and measure of curvature in the case of curved surfaces are analo
gous to what, in the case of curved lines, are called respectively amplitude and curva
ture simply. He hesitates to apply to curved surfaces the latter expressions, which 
have been accepted more from custom than on account of fitness. Moreover, less 
depends upon the choice of words than upon this, that their introduction shall be justi
fied by pregnant theorems. 

The solution of the problem, to find the measure of curvature at any point of a curved 
surface, appears in different forms according to the manner in which the nature of the 
curved surface is given. When the points in space, in general, are distinguished by 
three rectangular coordinates, the simplest method is to express one coordinate as a func
tion of the other two. In this way wTe obtain the simplest expression for the measure of 
curvature. But, at the same time, there arises a remarkable relation between this 
measure of curvature and the curvatures of the curves formed by the intersections of 
the curved surface with planes normal to it. Eu ler , as is wrell known, first showed 
that two of these cutting planes- which intersect each other at right angles have this 
property, that in one is found the greatest and in the other the smallest radius of cur
vature ; or, more correctly, that in them the two extreme curvatures are found. I t will 
follow then from the above mentioned expression for the measure of curvature that this 
will be equal to a fraction whose numerator is unity and whose denominator is the product 
of the extreme radii of curvature. The expression for the measure of curvature will be 
less simple, if the nature of the curved surface is determined by an equation in x, ?/, z. 
And it will become still more complex, if the nature of the curved surface is given so that 
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die Natur der krummen Fläche durch eine Gleichung zwischen ¿v, y, z, bestimmt 
ist, und noch zusammengesetzter wird jener, wenn die Natur der krummen 
Fläche dadurch gegeben ist, dass cc,yy ζ in der Gestalt von Functionen zweier 
neuen veränderlichen Grössen p, q dargestellt sind. Im letzten Fall enthält der 
Ausdruck fünfzehn Elemente, nemlich die partiellen Differentialquotienten der 
ersten und zwreiten Ordnung von cc, y, ζ nach ρ und q : allein er ist weniger 
wichtig an sich, als weil er den "Übergang zu einem andern bahnt, der zu den 
merkwürdigsten Sätzen in dieser Lehre gerechnet werden muss. Bei jener Art, 
die Natur der krummen Fläche darzustellen, hat der allgemeine Ausdruck für 
irgend ein Linearelement auf derselben , 

oder für \J(dœ2-+- dy2-\- d* 2), die Form \J (JEdx2-f- 2 JF'dx. dy -j- Gdy2) 

wo JE, F1, G wiederum Functionen von ρ und q werden, der erwähnte neue werden 
Ausdruck für das Krümmungsmaass enthält nun bloss diese Grössen, und ihre 
partiellen Differentialquotienten der ersten und zweiten Ordnung. Man sieht also, 
dass zur Bestimmung des Krümmungsmaasses bloss die Kenntniss des allgemei
nen Ausdrucks eines Linearelements erforderlich ist, ohne dass es der Ausdrücke 
für die Coordinaten x, y, ζ selbst bedarf. Eine unmittelbare Folge davon ist 
der merkwürdige Lehrsatz : "Wenn eine krumme Fläche, oder ein Stück dersel
ben auf eine andere Fläche abgewickelt werden kann, so bleibt nach der Ab
wickelung das Krümmungsmaass in jedem Punkt ungeändert. Als specieller Fall 
folgt hieraus ferner: In einer krummen Fläche, die in eine Ebene abgewickelt 
werden kann, ist das Krümmungsmaass überall = 0. Man leitet daraus sofort die 
characteristische Gleichung der in eine Ebene abwickelungsfähigen Flächen ab, 
nemlich, in so fern ζ als Function von χ und y betrachtet wird, 

ddz 
dr 

ddz 
dys 

ddz 
dx dy 

= 0 
eine Gleichung, die zwar längst bekannt, aber nach des Verf. Urtheil bisher nicht 
mit der erforderlichen Strenge bewiesen war. 

Diese Sätze führen dahin, die Theorie der krummen Flächen aus einem 
neuen Gesichtspunkte zu betrachten, wo sich der Untersuchung ein weites noch 
ganz unangebautes Feld öffnet. AVenn man die Flächen nicht als Grenzen von 
Körpern, sondern als Körper, deren eine Dimension verschwindet, und zugleich 
als biegsam, aber nicht als dehnbar betrachtet, so begreift man, dass zweierlei 
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χ, ί/7 ζ are expressed in the form of functions of two new variables p, q. In this last case 
the expression involves fifteen elements, namely, the partial differential coefficients of the 
first and second orders of x, y, ζ with, respect to ρ and q. But it is less important in itself 
than for the reason that it facilitates the transition to another expression, which must be 
classed with the most remarkable theorems of this study. If the nature of the curved 
surface be expressed by this method, the general expression for any linear element upon 
it, or for ι (fix2 + d/y2 + dz% has the form ν (E dp2 + 2 F dp . dq + Gdq% where E, F, G 
are again functions of ρ and q. The new expression for the measure of curvature men
tioned above contains merely these magnitudes and their partial differential coefficients 
of the first and second order. Therefore we notice that, in order to determine the 
measure of curvature, it is necessary to know only the general expression for a linear 
element; the expressions for the coordinates x, ?/, ζ are not required. A direct result 
from this is the remarkable theorem : If a curved surface, or a. part of it, can be devel
oped upon another surface, the measure of curvature at every point remains unchanged 
after the development. In particular, it follows from this further : Upon a curved 
surface that can be developed upon a plane, the measure of curvature is everywhere 
equal to zero. From this we derive at once the characteristic equation of surfaces 
developable upon a plane, namely, 

d'z d'z _ / d'z y_ = 0 

when ζ is regarded as a function of χ and y. This equation has been known for some 
time, but according to the' author's judgment it has not been established previously 
with the necessary rigor. 

These theorems lead to the consideration of the theory of curved surfaces from a 
new point of view, where a wide and still wholly uncultivated field is open to investi
gation. If we consider surfaces not as boundaries of bodies, but as bodies of which 
one dimension vanishes, and if at the same time we conceive them as flexible but not 
extensible, we see that two essentially different relations must be distinguished, namely, 
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wesentlich verschiedene Relationen zu unterscheiden sind, theils nemlich solche, 
die eine bestimmte Form der Fläche im Räume voraussetzen, theils solche, welche 
von den verschiedenen Formen, die die Fläche annehmen kann, unabhängig sind. 
Die letztern sind es, wovon hier die Rede ist : nach dem . was vorhin bemerkt ist, 
gehört dazu das Krümmungsmaass; man sieht aber leicht, dass eben dahin die 
Betrachtung der auf der Fläche construirten Figuren , ihrer AVinkel, ihres Flä
cheninhalts und ihrer Totalkrümmung , die Verbindung der Punkte durch kür
zeste Linien u. dgl. gehört. Alle solche Untersuchungen müssen davon ausge
hen , dass die Natur der krummen Fläche an sich durch den Ausdruck eines un
bestimmten Linearelements in der Form \¡{Edp~-{~ 2 I^dp . dq —f- Gdq2) gegeben 
ist. Der Verf. hat gegenwärtiger Abhandlung einen Theil seiner seit mehreren 
Jahren auf diesem Felde angestellten Untersuchuneen einverleibt, indem er sich 
auf solche einschränkte, die von dem ersten Eintritt nicht zu entfernt liegen und 
zum Theil als allgemeine Hülfsmittel zu vielfachen weitern Untersuchungen die
nen können. Bei unsrer Anzeige müssen wir uns noch mehr beschränken, und 
uns begnügen, nur einiges als Probe anzuführen. Als solche mögen folgende 
Lehrsätze dienen. 

AVenn auf einer krummen Fläche von Einem Anfangspunkte ein System 
unendlich vieler kürzester Linien von gleicher Länge ausläuft, so schneidet die 
durch ihre Endpunkte gehende Linie jede derselben unter rechten AVinkeln. AArenn 
an jedem Punkte einer beliebigen Linie auf einer krummen Fläche kürzeste Li
nien von gleicher Länge senkrecht gegen jene Linie gezogen sind, so sind diese 
alle auch senkrecht gegen diejenige Linie, welche ihre andern Endpunkte ver
bindet. Diese beiden Lehrsätze, wovon der zweite als eine öeneralisirung des 
ersten betrachtet werden kann, werden sowohl analytisch, als durch einfache geo
metrische Betrachtungen bewiesen. Der Überschuss der Summe der Winkelel eeines 
aus kürzestenen Linienen gebildetenen Dreiecksks über zweii Rechtete ist der TotaTotalkrümmung 
des Dreiecks gleich. Es wird hiebei angenommen, dass für die AVinkel derjenige, 
dem ein dem Halbmesser gleicher Bogen entspricht, (57° 17' 4 5"), und für die 
ganze Krümmung, als Stück der Fläche der Hülfskugel, der Inhalt eines Qua
drats, dessen Seite der Halbmesser der Hülfskugel ist, als Einheit zum Grunde 
liegt. Offenbar kann man diess wichtige Theorem auch so ausdrücken : der Über
schuss der AVinkel eines aus kürzesten Linien gebildeten Dreiecks über zwei 
Rechte verhält sich zu acht Rechten , wie das Stück der Oberfläche der Hülfsku-
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on the one hand, those that presuppose a definite form of the surface in space ; on the 
other hand, those that are independent of the various forms which the surface may 
assume. This discussion is concerned with the latter. In accordance with what has 
been said, the measure of curvature belongs to this case. But it is easily seen that 
the consideration of figures constructed upon the surface, their angles, their areas and 
their integral curvatures, the joining of the points by means of shortest lines, and the 
like, also belong to this case. All such investigations must start from this, that the 
very nature of the curved surface is given by means of the expression of any linear 
element in the form v\E dp1+ 2 Fdp . dq -h G dq"). The author has embodied in the 
present treatise a portion of his investigations in this field, made several years ago, 
while he limits himself to such as are not too remote for an introduction, and may, to 
some extent, be generally helpful in many further investigations. In our abstract, we 
must limit ourselves still more, and be content with citing only a few of them as 
types. The following theorems may serve for this purpose. 

If upon a curved surface a system of infinitely many shortest lines of equal lengths 
be drawn from one initial point, then will the line going through the end points of 
these shortest lines cut each of them at right angles. If at every point of an arbitrary 
line on a curved surface shortest lines of equal lengths be drawn at right angles to this 
line, then will all these shortest lines be perpendicular also to the line which joins their 
other end points. Both these theorems, of which the latter can be regarded as a gen
eralization of the former, will be' demonstrated both analytically and by simple geomet
rical considerations. The excess of the sum of the angles of a triangle formed by shortest lines 
over ttvo right angles is equal to the total curvature of the triangle. It will be assumed here 
that that angle (57° 17'45") to which an arc equal to the radius of the sphere corresponds 
will be taken as the unit for the angles, and that for the unit of total curvature will be 
taken a part of the spherical surface, the area of which is a square whose side is equal to 
the radius of the sphere. Evidently we can express this important theorem thus also : 
the excess over two right angles of the angles of a triangle formed by shortest lines is to 
eight right angles as the part of the surface of the auxiliary sphere, which corresponds 
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gel, welches jenem als ganze Krümmung entspricht, zu der ganzen Oberfläche 
der Hülfskugel. Allgemein wird der Überschuss der Winkel eines Polygons von 
η Seiten, wenn diese kürzeste Linien sind , über 2 η — 4 Rechte, der ganzen 
Krümmung des Polygons gleich sein. 

Hie allgemeinen in der Abhandlung entwickelten Untersuchungen werden 
am Schluss derselben noch auf die Theorie der durch kürzeste Linien gebildeten 
Hreiecke angewandt, wovon wir hier nur ein paar Haupttheoreme anführen. Sind 
a, b, c die Seiten eines solchen Dreiecks (die als Grössen der ersten Ordnung be
trachtet werden) ; Ay JB, C die gegenüberstehenden AVinkel ; α, o\ γ die Krüm-
mungsmaasse in den Winkelpunkten ; σ der Flächeninhalt des Dreiecks, so ist, 
bis auf Grössen der vierten Ordnung, (α —f- ß -f- y) σ der Überschuss der Summe 
A—\-JB-\-C C über zwei Rechte. Ferner sind, mit derselben Genauigkeit, die 
AVinkel eines ebenen geradlinigen Dreiecks, dessen Seiten a, b, c sind, der Ord
nung nach 

i - A ( 2 « + ^ + γ) o 
B — T V ( a + 2 é + Τ ) α 
C -ÏV( tt-f- tf-f- 2 γ)α 

M a n sieht sogleich, dass das letzte Theorem eine Generalisirung des bekannten 
von LEGENDRE zuerst aufgestellten ist, nach welchem man, bis auf Grössen der 
vierten Ordnung, die AVinkel des geradlinigen Dreiecks erhält, wenn man die 
AVinkel des sphärischen jeden um den dritten Theil des sphärischen Excesses ver
mindert. Auf einer nichtsphärischen Fläche muss man also den AVinkeln un
gleiche Reductionen beifügen , und die Ungleichheit ist allgemein zu reden eine 
Grösse der dritten Ordnung; wenn jedoch die ganze Fläche nur wenig von der 
Kugelgestalt abweicht, so involvirt jene noch ausserdem einen Factor von der 
Ordnung der Abweichung von der Kugelgestalt. Es ist unstreitig für die höhere 
Geodaesie wichtig, dass man im Stande ist, die Ungleichheiten jener Reductio
nen zu berechnen, und dadurch die volle Ueberzeugung zu erhalten, dass sie für 
alle messbaren Dreiecke auf der Oberfläche der Erde als ganz unmerklich zu be
trachten sind. So finden sich ζ. B. in dem grössten Dreiecke der von dem Arerf. 
ausgeführten Triangulirung, dessen grösste Seite fast 15 geographische Meilen 
lang ist, und in welchem der Ueberschuss der Summe der drei AVinkel über zwei 
Rechte fast 15 Secunden beträgt, die drei Reductionen der Winkel auf die AVin-
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to it as its integral curvature, is to the whole surface of the sphere. in general, the 
excess over 2 η — 4 right angles of the angles of a polygon of η sides, if these are 
shortest lines, will be equal to the integral curvature of the polygon. 

The general investigations developed in this treatise will, in the conclusion, be applied 
to the theory of triangles of shortest lines, of which we shall introduce only a couple of 
important theorems. If <γ, b, c be the sides of such a triangle (they will be regarded as 
magnitudes of the first order) ; /l, B, O the angles opposite ; α, /3, γ the measures of 
curvature-at the angular points; cr the area of the triangle, then, to magnitudes of the 
fourth order, -J- (α+/3 + γ) cr is the excess of the sum A.-f- Β + C over two right angles. 
Further, with the same degree of exactness, the angles of a plane rectilinear triangle 
whose sides are a, b, c, are respectively 

Λ - τ \ ( 2 α + β B + γ)<τ 
Β- τ\ Ι(αa + 2β + γ)σ 

0 - Τ \ ( α + β B + 2γ) er. 

We see immediately that this last theorem is a generalization of the familiar theorem first 
established by LEGENDRE. By means of this theorem we obtain the angles of a plane 
triangle, correct to magnitudes of the fourth order, if wTe diminish each angle of the cor
responding spherical triangle by one-third of the spherical excess. In the case of non-
spherical surfaces, wTe must apply unequal reductions to the angles, and this inequality, 
generally speaking, is a magnitude of the third order. However, even if the whole sur
face differs only a little from the spherical form, it will still involve also a factor denoting 
the degree of the deviation from the spherical form. It is unquestionably important for 
the higher geodesy that we be able to calculate the inequalities of those reductions and 
thereby obtain the thorough- conviction that, for all measurable triangles on the surface 
of the earth, they are to be regarded as quite insensible. So it is, for example, in the 
case of the greatest triangle of the triangulation carried out by the author. The greatest 
side of this triangle is almost fifteen geographical* miles, and the excess of the sum 
of its three angles over two right angles amounts almost to fifteen seconds. The three 

*This German geographical mile is four minutes of arc at the equator, namely, 7.42 kilome
ters, and is equal to about 4.6 English statute miles. [Translators.] 
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kel eines geradlinigen Dreiecks 4" 95 11 3, 4" 95104, 4" 9 5 131. Übrigens hat der 
Verf. auch die in den obigen Ausdrücken fehlenden Glieder der vierten Ordnung 
entwickelt , die für die Kugelfläche eine sehr einfache Form erhalten ; bei mess
baren Dreiecken auf der Oberfläche der Erde sind sie aber ganz unmerklich, und 
in dem angeführten Beispiel würden sie die erste Reduction nur um zwei Einhei
ten der fünften Décimale vermindert und die dritte eben so viel vergrössert haben. 
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reductions of the angles of the plane triangle are 4".95113, 4".95104, 4".95131. Besides, 
the author also developed the missing terms of the fourth order in the above expres
sions. Those for the sphere possess a very simple form. However, in the case of 
measurable triangles upon the earth's surface, they are quite insensible. And in the 
example here introduced they would have diminished the first reduction by only two 
units in the fifth decimal place and increased the third by the same amount. 
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DIFFERENTIAL GEOMETRY - 150 YEARS AFTER 
CARL FRIEDRICH GAUSS' 

DISQUISITIONES GENERALES CIRCA SUPERFICIES CURVAS 

These days in Brunswick are intended to commemorate the birth of Carl 
Friedrich Gauss, two hundred years ago on 30 April 1777. For differential geo
meters, the year 1977 offers a further occasion for a scientific Gauss anniver
sary : 

One hundred and fifty years ago, on 8 October 1827, Gauss presented his 
essay 
(1) "Disquitiones Disquitiones generales circa superficies curvas" 
(in the form of a lecture) to the "Königlichen Gesellschaft der Wissenschaf-
ten" in Güttingen, an event that can without exagération be described as 
the birth of "Inner (Intrinsic) Differential Geometry". 

In his excellent article "Gauss als Geometer" , (which is well worth 
reading), P. Stackel [24j gives an appreciation of Gauss'work on the differ
ential geometry of curved surfaces, and speaks in this connection (see [24] 
p. 87 line 18) of the "Gebäude der Disqui si ti ones generales" • For many of 
those not familiar with the original article (written in Latin), this quota
tion and many similar statements in the subsequent differential-geometric 
literature have left the impression that, as far as richness of ideas and 
mastery of calculations are concerned, the essay is similar to a monumental 
work such as the "Disquisitiones Arithmeticae" of Gauss' younger years. At 
first sight, however, such an assessment is hardly justified. Compared with 
the 470 printed pages of the "Di squisitiones Arithmeticae" (see G.W. 1_, pp. 

(•) Royal Scientific Society. 
(•*) "Gauss as a Geometer". 
(•••) "Edifice of the Disquisitiones generales". 
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1-474), the 40 printed pages of the nDisqui siti ones generales" (l) (this volu
me, pp.2-80) seem decidedly modest. Unlike the case of the "Disqui siti ones 
arithmeticae", one can easily summarize the contents of the "Disquisitiones 
generales". They contain roughly five essentially new concepts (see below (7), 
(8), (9), (26), (28)), about ten new theorems (see below (10) and (11), (12), 
(14), (15), (22), (27), (32), (34), (35), (36)), as well as an explanation of 
a programme of "Inner Differential Geometry". It is even more impressive since 
we are led in retrospect to confirm what fundamental influence the "Disquisi-
tiones generales" have had on the development of new ideas, on the objectives 
as well as on the nature of the results in differential geometry during the 
last 150 years. Such a review (especially on the occasion of an anniversary!) 
can easily tend to read more substance and prophetical foresight afterwards 
into such a "venerable" work than were intended by the author himself, or 
could, in his time, have been at all conceived of. In order to avoid this 
danger, we first give a complete report of the contents of the "Disquisitiones 
generales" (which are divided in 29 articles), following closely the contents 
of the manuscript but in free translation (i.e. in modern terminology), and 
we shall quote Gauss word by word at several vital places. 
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(i) Articles 1 to 3 (this volume, pp.2-8) give elementary preparations, 
merely summarizing the notational conventions and some (essentially known) 
results of spherical trigonometry. 
In particular : Article 1 fixes the notation of points of the uriijt̂ sr̂ here 

(1) S 2 - {a = ( a 1 , a 2 , a 3 ) € E 3 I <a,a> = l] 

and the canonical basis vectors (1,0,0), (0,1,0), (0,0,1) of E 3 (denoted in 
Gauss by "(l)", "(2)", "(3)"). In Article 2 ,angles between lines and lines, 
planes and planes, and lines and planes in ΊΕ are defined by means of lengths 
of segments of great circles and angles between great circles on S , and the 
following identity is proved ^ : 

(2) <axb,axb> = <_a, a_><b,b> - <a,b><b,_a> for a,b,a,H S 

For ja já J2 and a_¿ _b, (2) is interpreted as a formula for calculating the angle 
between the great circle segments (a_,_b) and (a_,_b) on S . In the draft copy 

of the "Di squi si ti ones generales" (see G.W. _8, p. 416, line 5 from below), 

Gauss remarks concerning (2) : "We add yet another theorem, which to our 

knowledge has not appeared elsewhere, and which can often be used with profit1*. 

(also this volume, p.84 , lines 9/10). [Author's note : (2) is usually called 

"Lagrange's identity" today. However, the article of Lagrange usually quoted 

in support of this (see [16]) does not contain formula (2) explicitely, but 

only shows (see [16], p. 580, line 6 from bel ow and p. 581, line 12) ι 

Ca xa ,a > = det(<a.,a>) i, j = 1, 3, 3f or a , a a € IE E 

(*) 
Here and in the sequel we denote, as is usual today, the canonical inner 
and cross products in IE by <·,·> and . χ . . 
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and, as a special case (a_̂  = a^ x jâ ) 

<£X_b,a_xb> = <a_, a><b ,b> - <a,b>" for a,b6 JE 

Of course, equation (2) can be derived from this equation by polarization.] 
Further, the fundamental identity of spherical trigonometry for a geo-

desic triangle in S with vertices a,b,_c 6 S , angles α, β, γ and sides a, b, 
c is derived : 

(sinoc)(sinb)(sinc) = (sinß)(sina)(sinc) = (siny)(sina)(sinb) =±I<^Í¿.X£>I 

and the right-hand side (which is independent of the order in which the ver

tices are taken I) is interpreted as 6 times the volume of the tetrahedron 

with vertices (), a_, _b, ĉ. 

Article 3 interprets "smoothness" of a surface M in IE at a point 

A6 M as the existence of a plane through A (the tangent plane T^M) which 

contains all limits of straight lines AB with B Ç M\ {A} as Β tends to A. 

(ii) In Articles 4 and 5 (this vo1.,ρ.8-14), normal vectors are cal
culated and a unit normal field (hence an orientation) is selected, in spe
cial representations of some orientable surfaces M in IE3 - More precisely, if 
M is 

(3) a level surface of a di f f erent i ab le function Ψ : U-* TI 
(where U e IE is open and d Ψ / 0 for A Ç M) 

or 
( 4 ) the i nu jLgeofan immersion f : U -• IE 

(where U is open in the (u,v)-plane in Κ ) 
or 
(5) 3 

the graph of a function z(x,y) : U-.E in IE 
(U open in Έ ) 

then the *'gjjjJt̂íLĴ JO1^ unti normal fitd' is defined as being positively proportion
al to 

(6) grad ψ| Μ , f xf , (-ζ ,-z ,1) 
° M u ν x y 

respectively. 
2) 
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(ill) Article 6 introduces the following three central (and fundamental
ly new) concepts of the work : 

a) For a surface M in 1Ê  with continuous unit normal field, a map from 
M to the unit sphere is defined (this volume, p.16, line 1-4), the famous 
(7) Gauss sj3hê ĉal map ^ : M-*S^ 

The idea of introducing this map is explained by the following remark of 
Gauss in another passage (this vol., p. 84, line 6) : "This procedure is basi
cally the same as the one often used in astronomy, where directions in space 
are considered to be points of an imaginary sphere with infinite diameter", 
as well as by the mode of expression, used several times by Gauss, in which 
the image ζ(Α)6 S of a point AÇ M under the map (7), is referred to as the 
"zenith point" of A (see G.W. 8, p. 436, lines 7, 20, 23). 

b) Next a preliminary definition is given of the (absolute value of the) 

"total curvature" ("curvatura totalis" or "curvatura integra", this volume, 

p. 16, line 11) of a compact subset D of a surface M in IE , as the area of 

its spherical image £(D) in S (see (7) and this volume, p. 16, line 10). 

C) Then comes the definition of the f ' mea sû rĝ o f ̂urv;e dness11 (= "mensura 

curvaturae", this volume, p-16, line 14) K(A) at a point A of the surface M, 

which is known today as the 

Gaussian curvature K(A) of M at the point At M (see b)) : 

(8) lK(A)l =lim 
area(G(D^)) 

area(D^) 

(where Dc is the compact E-neighborhood of A in M), together with a topolo

gical ^ determination of the sign of K(A). If lK(A) I 0, then K(A) is defined 

as positive or negative according to whether (in modern terminology) the dif

ferential of ̂  at A followed by the translation T of 1Ê  which sends <̂ (A) 

back to A, i.e. the linear mapping T °C* T : ̂ A^^^A^ of the tangent plane of 

M at A to itself, is orientation preserving or not. This orientation-preser

ving property is defined topologically by Gauss, on the one hand through the 

preservation by ̂  of the intersection numbers of pairs of transverse curves 

on M passing through A (this volume, p.16, line 7 from below), and on the 

other hand through the property of ̂  of mapping the winding direction of <3D̂  

^ The geometric interpretation of K(A)>0 and K(A)<0 as "hump-type" and 

"saddle-type" curvedness of M at A is only given much later (see (13) 

below), and is not part of the definition of K(A) ! 
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around D ("D is to the left of ÔD ", see (8)) onto the same winding direc-
tion of ζ ( óD ) around Ô ( D

£ ) (see G.W. _8, p. 425, line 11 from below). 

d) With the aid of the Gaussian curvature, the total curvature (with 

appropriate sign) of an arbitrary compact subset D of an oriented surface M 

in E² is then defined as : 

(9) Total curvature (D) (= "curvatura integra" of D) = Γ Kdcf , 
where der is the surface element of the oriented surface M. 

(v) Articles 7, 8, 9, 10 (this volume, pp.20-32) contain formulas for formulas for 
calculating the Gaussian curvature Κ of a surface M in 1Ê  , together with the 
well-known "outer" (= extrinsic) interpretation of (the absolute value and 
the sign of) K. Precisely, if M is given by (5) (resp. (3), resp. (4)), then 
Gauss proves that 

(10) (l + z + z ) K - z z -z , 
x y xx yy xy 

resp. 

(11) F² + F² + F² (φ φ _ φ" )Φ + (Φ Ψ - Φ + (Ψ Ψ - Ψ )Φ J 
ΥΥ ΖΖ ΥΖ Χ XX ΖΖ ΧΖ 

-2 
φ φ 

φ φ 
φ φ + 

φ φ Ι 

φ φ 
φ φ + 

φ φ 

Φ Φ 
φ φ 

resp. 

f χ f Κ = <f χ f ,f > . <f χ f ,f > - <f χ f ,f > , 
11 U V11 U V UU U V VV U V uv 

(this volume, p.24, line 6, p. 28, line 4 from below, p. 32, line 4 from 
below). The following result is deduced from (10) (this volume, p.26) p.26): 

Theorem ._ For each point A of a surface M in E² 

(12) 
K(A) = ^ . κ2 , 

where κ and κ„ are the extremal values of the (oriented) curva
tures of those plane curves through A obtained as intersections of 
M with planes containing: the normal vector to M at A. 
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Moreover, Κ(Α) > O or Κ(Α) < 0 according to whether M is curved at 
A in a "convex-convex" (i.e. "hump-type") or "concave-convex" (i.e. "saddle-
type") manner. 

(V) Article 11 contains the formula which is the central result of result of the 
whole "Disquisitiones generales". If the surface M is given in the form (4), 
and i f 

(13) Ε = <f ,f > , F = 
u u 

<f ,f > , 
U V 

G = <f ,f > 
V V 

(this notation was used by Gauss), then we have (this volume, p.36) what is 
known today as the 
iGauss equation : 

(14) 

4(EG - F ) Κ = Ε(Ε G - 2F G + G ) + G(E G - 2E F + Ε ) 

+ F(E G - Ε G - 2E F + 4F F - 2F G ) 

- 2(EG - F )(E - 2F + G ] 

The geometric interpretation of (14) is given in Article 12, culminating 
in the following verbatim formulation (this volume, p. 38) : 

"Formula itaque articuli praecendentis sponte perducit ad egregium 

512° THEOREMA ._ Si superficies curva in quamcunque aliam superficiem 
explicatur, mensura curvaturae in singulis punctis invariata 
manet." 

This is thus the widely known 

(15) 

Theorema eqreqium (Invariance of the Gaussian curvature under 
isometries) If a curved surface in IE can be isometri cally 
mapped onto another such surface, then the values of the Gaussian 
curvature at points corresponding to each other under the isome-
try are the same. 

From this Gauss deduces the following : 

(16) An isometry between two curved surfaces in IE preserves the total 
curvature of corresponding: compact subsets (see (9)), 
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and also (this volume, p. 88 , line 12 from below) 
On a curved surface which can be developed upon a plane, the mea
sure of curvature is everywhere equal to zero. Wo obtain immediat-
ly from this the characteristic equation for surfaces developable 
upon a plane, namely, 

(17) 
ζ ζ - ζ = 0 

where ζ is regarded as a function of χ and y (see (5), (10)). 
This equation has been known for some time, but in the author's 
opinion has not up to now been proved with the necessary rig;our. 

[Note.- In contrast with the terminology often used later (particularly 
by W. Blaschke), Gauss himself calls statement (15) alone the "Theorema egre
gium", and not equation (14). He merely remarks (see (15)) that formula (14) 
"leads spontaneously to the Theorema egregium". 

The Theorema egregium (15) is also often quoted as a theorem about the 
"Biegungsinvariantz" of the Gaussian curvature, a term that was probably 
first introduced by J. Weingarten (see [26], p. 182, line 18) in 1883. Since 
there are surfaces in IE which are isometric but which cannot be "bent" (i.e. 
transformed by a continuous family of isometric immersions in IE ) one into 
the other, the contents of the Theorema egregium proves to be aptly described 
by the title "Invariance under isometries of the Gaussian curvature". This 
interpretation also corresponds more closely with the intentions of Gauss-
The following variant of (16), given by Gauss elsewhere (prior to the publica
tion of the Disquisitiones generales, in a collection of notes, see G.W. _8, 
p. 372), indicates almost surely that Gauss had the invariance under isome-
tries and not only under "bendings" in mind. According to this formula
tion, the total curvature of a "figure" of a curved surface is the same, 
regardless of the form the surface "assumes" in space. (Note here also the 
analogous formulation in (18)).] 

(vi) In Article 13, Gauss sketches his now famous programme for the 
"Inner (= intrinsic) Differential Geometry of Surfaces" (as it is called 
today). Here we quote Gauss himself, from his German resume ("Selbstanzeige ..." 

(•) Literally, bending invariance. 
(•*) I 3 

Literally "bending" means continuous deformation of the surface in E , 
which preserves the inner metric of the subspace, i.e. the length of 
curves on the surface. 
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this volume, p.88) of theMDisquisiti ones generales" in 1827. After an explana
tion of the results (14), (15), (16), (17), Gauss continues with : 

(18) 

These theorems lead to the consideration of the theory of curved surfaces from a 
new point of view, where a wide and still wholly uncultivated field is open to investi
gation. If we consider surfaces not as boundaries of bodies, but as bodies of which 
one dimension vanishes, and if at the same time we conceive them as flexible but not 
extensible, we see that two essentially different relations must be distinguished, namely, 
on the one hand, those that presuppose a definite form of the surface in space ; on the 
other hand, those that are independent of the various forms which the surface may 
assume. This discussion is concerned with the latter. In accordance with what has 
been said, the measure of curvature belongs to this case. But it is easily seen that 
the consideration of figures constructed upon the surface, their angles, their areas and 
their integral curvatures, the joining of the points by means of shortest lines, and the 
like, also belong to this case. All such investigations must start from this, that the 
very nature of the curved surface is given by means of the expression of.any linear 
element in the form v\EdplJr 2 F dp .dq + G dq1). 

This extract from Gauss' summary (this volume,p.88) essentially presents 
a shortened free translation of Article 13 of the hDisquisitiones generales1, 
which is moreover complete except for one sentence (this volume, p.40, lines 
8 ff · ) - We add this sentence, because it illustrates well the basic idea of 
the programme of (18) : 

(19) 
"From this point of view, a plane surface and a surface developa
ble upon a plane, for example a cylindrical surface, a conical 
surface, etc, are considered to be essentially the same." 

Article 13 closes with the announcement that, in order to further illus
trate the programme (18), the following articles will first derive the funda
mentals of the theory of shortest paths on curved spaces. 

(vil) In Articles 14, 15, 16, basic properties of certain families of 
normal geodesies of a curved surface M in Ε are deduced. These are known 
today as the fundamental properties of the exponential map on M (partly under 
the name "Gauss Lemma"). More precisely : 

In Article 14, the ordinary differential equations for normal geodesies 
of a given curved surface M in E^ are established, and in fact are expressed 
by means of the outer (= extrinsic) condition discovered already by Euler in 
1744 (see [7]) : the acceleration vector of a normal geodesic of the surface M, 
considered as a curve in Ε (i.e., at noncritical points of this space curve, 

• ) 
See German text p. 88 

"normal geodesic" = geodesic parametrized by arc length.length. 
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the principal normal vector of the curve), is always orthogonal to the surfa
ce M. In Articles 15 and 16, Gauss proves the following theorem, which has 
important geometrical consequences. 

Theorem ( cal led today the Gauss-Lemma) .-Let M be a surface in IE 
Let I, J be inte rv als of -R containi ng 0 , and let f : I χ J-»M 
be a differentiable mapping from the rectangle I χ J of the 
(u.v)-plane Ji into M, such that for all ν £ J, 

(22) f(.,v) : I-» M ( u -> ν ) ) is a normal geodesic in M, (*) 
and 

<f (0,v) ,f (0,v)> = O . (-*-) 
Then <f (u,v),f (u,v)> = 0 for all (u,v)£IxJ . (*****) 

In more geometric language, if the u-parameter curves of f are all nor
mal geodesies in M (see ("*)), which are orthogonal to at least one v-parameter 
curve of f (see O ' 5 " * ) ) , then the u-parameter and v-parameter curves of f form 
an orthogonal net of curves in M (see (*****))*)) 

In the two special cases where f(0,.) : J-* M is constant or is an infec
tive immersion, one obtains (respectively) from (22) the following results of 
inner differential geometry : 

(23) 

the end points of geodesic rays of constant length ε emanating 
from a fixed point A of the surface M (in IE ) lie on a curve 
which is orthogonal to these rays (and which for small values of 
ε>0 is just the so-called spherical shell of radius ε in M 
around A) 

and 

(24) 

the endpoints of the geodesic perpendiculars of constant length ε 
erected from the noints of a regular curve c of the surface M (in 
ΈΕ ) lie on a curve orthogonal to these perpendiculars (and which 
for small ε>0 is iust the so-called parallel curve to c at dis
tance ε in M). 

Remark a) In Article 15 (this volume, p-44) Gauss explicitly proves only 

7) In Gauss' Disquisitiones the interval I has always the special form !_°ιε] 
with ε>0, but this makes no difference whatever. 
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statement (23), but he expressly states in Article 16 (this volume, p-46, line 
11 from below) that his proof of (23) in Article 15 immediately yields the 
general results (22) and (24) without any analytical modification. 

b) In modern terminology, the hypothesis (22) ("*) on f is just : 

f(u,v) = exp f ( 0 v)(u.fu(0,v)) and ||fu(0,v)|| = 1 for all ( u , ν ) Ç I χ J , 

so that the conclusion (22) (-«-*-*-) i s a statement about the differential of the 
exponential map exp of M. In particular, (23) yields the well-known property 
of exp^ L_ which is quoted today (unfortunately alone) as the "Gauss-Lemma", 
and (24) gives the familiar property of the geodesic tubular neighborhood 

M 
map (induced by exp ) for the curve c in M. 

(Vlll) In Articles 17 and 18 Gauss again considers a surlace Μ ι η JE 
in the representation (4) : f : U Ε . The oriented angle between a unit tan
gent vector a on M at the point f(u,v) and the tangent vector f (u,ν ) of the 
u-parameter curve through f(u,v) is then given (this volume, p. 48, line 8 
from below) by the unique number Q(a_)£ ]-π,π] such that 

(25) cos(9(_a)) <f , a> 
u — E 

and sin ( θ (a_) ) = 
CEf - Ff ,a> 

V 11 — VE VEG - F 2 

Gauss then introduces (this volume, p.50, line 14) a differential 1-form, the 
so-called 

angular variation Θ of f , defined as (see (13)) 

(26) O = 1 
2VEG - F 

F 
Ε dE + Ε du - G dv - 2F du 

V u u 
and proves that if c: [θ,σ]-Μ is a normal geodesic with G(c(s))¿ π for all 
sÇ[0,a] 9 \ then (this volume, p. 50, line 14) 

< 2 7) (9(c))' = ©(c) , i.e. ¡ © = θ(έ(σ)) - θ(ό(0)) . 

8) Gauss denotes the form © by de, which is very suggestive in view of (27). 
However we avoid this notation, since in general <S> is not exact (see (32) 
below). It would be more correct to write f'%0 instead of <3> in (26). 

9) This hypothesis, in general necessary for the validity of equation (27) 
(which would otherwise only hold modulo 2π) does not appear explicitly 
in Gauss, but is fulfilled in all the applications of (27) he gives. 
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That is, the integral (27) measures the variation of the oriented angle bet

ween the velocity vector of the geodesic and the positive directions of the 

u-parameters curves of f, over the curve c 

Note . - The preceding statement can also be expressed as follows : the inte

gral (27) measures the variation over c of the angle between the positive tan

gent vector field f̂  of the u-parameter lines and the direction of the geode

sic c. Hence if we use the notion of Levi-Civita parallel transport (which 

of course Gauss did not possess), and observe that c is parallel along c in 

the sense of Levi-Civita, then the preceding formulation yields the following 

interesting interpretation of (27). 

(27) 

The integral (27) measures the angle by which the positive tangent 

vector field to the u-parameter curves f along c turns away from 

the Levi-Civita parallel direction along c 

(ÍX) Gauss introduces in Article 19 (this volume, p.52, line 4 ff.) a 

class of special charts of a surface M in 1Ê  , which are particularly well 

suited for trigonometricinvestigations on small geodesic triangles of M (to 

which the remaining articles of the "Disqui siti ones generales"are devoted). 

Such a chart we shall call it a 

1 ' gJt°_(J _k- *_9r_a jl? 9JrfL^ *L _2 £thr9 &9 a A , Ç h £ Γ V which is animmersion 
f: U -» M of an open rectangle U parallel tectangle U parallel tectangleectangle

(28) plane H , in which all u-parameter curves of f 
a) are normal geodesies in M,
b) meet all v-parameter curves of f orthogonally.

For such a chart (28) it follows therefore that (see (13)) : 

(29) Ε Ξ 1 , F = 0 , EG - F 2 = G , 

(however (29) does not conversely imply (28) a) ! ) . 

Author's note .- A significant example of (28) is a chart for a surface of 
revolution M in 1Ê  , in which the u-lines are meridians (parametrized by arc 
length !) and the v-lines are parallels-

Two special cases of such charts (28), which exist locally for every sur-

10 ) 
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face M in E , are explicitely mentioned by Gauss. We give them in modern no
tation (their geometrical significance is made clear respectively by (23) and 
(24)). Let A be a point of the surface M, and (jâ a_2̂  an orthonormal pair of 
tangent vectors of M at A. Then there is an e(E with the following proper-
ty : 

the mapping f : ]0,s[x^-*M (see (30)) deduced from the so-called "geode
sic po 1 a r co o rd in at e ŝ  a t A (w_̂ r̂ t. (̂ .̂ !̂ 2̂  ' is defined by 

(30) f(r,^) := exp M A (r . (coŝ P a_ + sin̂ P a. )) for (r,^) € ]0,s[ x , 

and provides a special example of a chart of type (28) according to corollary 
(23) of the Gauss-Lemma (22). Similarly, due to corollary (24), for sufficient
ly small E € B , the mapping f : ]-e,e[^M (see (31)) deduced from the so-
called "geodesic parâ lJLel coordianates (along c w^r^b.W. R. T ̂ O^'H^ ^ another 
important special case of a chart of type (28) : it is defined by 

(31) f(u,v) := exp M c , .(u.n(v)) for (u,v)6]-E,er^ , 

where c: ]-E,e[-*M is the normal ge ode sic of M with c(0) = A and c ( 0 ) = a^ and 
n: ]-E,e[-*TM denotes the continuous unit normal field of the geodesic c in M 
wi th ( 0 ) = a^ -

For a general geodesic-abscissa orthogonal chart f of the surface M (see 
(28)), Gauss immediately deduces from (14) and (22) respectively, using (29) 
(this volume, p. 52,line 13 from below), the following formulas for the Gaus
sian curvature K and the differential form <3) giving the angular variation of 
f (see (26), (27)) : 

(32) K = 1 
VG 

(VÔ) and G> = -(VG) dv . 
uu — u 

In the special case of geodesic polar coordinates (see (30), where u=r, v=^), 
Gauss completes (32) as follows (this volume, p.52, line 4 from below : 
the functions VG, (VG)^, (V^)^i in case (30), together with f, can be conti
nuously extended to [0,s[x!R (i.e. to r-0) in such a way that 
(12= 

The corresponding analogues of the charts (31) (with Levi-Civita parallel 
normal fields n_) along a normal geodesic c of a Riemannian manifold are 
today called "Fermi coordinates (along c)". 

Gauss does not explicitly mention the third equation in (33). However, it 
is a trivial consequence of the first two equations in (33) and of (32). 

12) 
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(33) νά(ο,φ) = o , (VG) (ο,φ) = ι , and (vG) r r(o^) = o 

for all Ψ ^ Ε . 

Note ·- Expressed in terms of E. Cartan's calculus of exterior differential 
forms, (32) reads, in view of da = VG du A dv (see (29)) : 

(32) Kda = -(VG) du Λ dv = © . 
1111 

This transcription of (32) brings to mind, in view of Stokes' formula, that 
(32) will be the essential analytic basis for Gauss' proof of the following 
theorem (34) (this volume, p.54, line 6 from below). This is the theorem known 
today as the 

Gauss-Bonnet theorem for ("small") geodesic triangles Δ of a sur
face M in IE with angles α, β, γ : 

(34) Kda = (a + β + γ ) - τι 

In his summary (this volume, p. 90 , line 9 from below), Gauss states 
this as : 

"The excess of the angles of a triangle formed by shortest paths 
over two right angles is equal to the total curvature of the 
tri angle". 

He further remarks (this volume,.p. 56, line 9 and also p. 92, line 2) 
that the following generalization is obtained by "dissection" (= discerptio) 
into triangles (he was quite familiar with the method of triangulation because 
of his practical experience in surveying, this volume, p. 92, lines 2 and 
f f. ) : 

(34) 
The excess of the angles of an η-sided polvgon. whose sides are 
shortest paths, over (η-2)π, is equal to the total curvature of 
the polygon. 

Remark .- (34) does not hold in general for arbitrary geodesic triangles. 
Gauss' proof of (34), however, assumes implicitly that the geodesic triangle 
Δ with vertices A, B, C is "small" in the following sense : if α 6 ]0,π[ is the 
angles at vertex A, then there exists an orthonormal 2-frame (a^i^^ * n TA M a n (^ 
a continuously differenti able function Ρ : [0,α]-»Ι? such that the "sector" 
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{r ( cos9 a_1 + 8ΐηψ a_2) |ψ Ç [Ο,α] and rÇ [Ο,ρ(Ψ)]] 

in Τ^Μ i s mapped diffeomorphica1ly by e x P ^ onto Δ, the paths 

c : r ι > exp.(ra^) , r G [0,p(0)J 

b : r ι ψ exp (τίοοβΦ a_ + βϊηΨ a_ ) ) r e [Ο,ρ(α)] 

a : Ψ ι » exp^ Ρ ( Ψ ) ( οοβΨ a1 + βΐηΨ _a 2 ) ) Ψ € [Ο,α] 

(*) 

being the geodesic sides of the triangle Δ- Note that the side a of the trian
gle Δ (see ("''")) never intersects the r-parameter lines of the mapping 

(Γ,Ψ) I > exp (r(cos^ a_ + sinM3 a_ ) ) 

in an angle equal to π, so that the result (27) can be applied to the integral 
*fa ® we also ODserve that if, for example, the triangle Δ lies completely 
in a "geodesic-convex" neighborhood of the vertex A, which is always the case 
for sufficiently small Δ, then we are finally certain to be in the situation 
assumed in Gauss'proof of (34) and described above-] 

Now, Gauss' proof for (34) consists of the following two-line argument 
(after the preparations (27), (32), (33), and in view of (*) and (30), accor
ding to which the sides b, c of the triangle are γ-parameter curves of the 
geodesic polar coordinates in A) (see also Figure l) : 

Figure 1 

Kda = - (VG) (Γ,ψ)άΓάΨ : (VG) (ρ(φ),φ) - (VG) (ο,φ))αΨ 

= α - VG) ( Ρ(φ) ,φ)αΨ α + (Η) = a+y((u -B)). 

(33) ν (32),(*) d (27),(26) 
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(χ) In the form (34) given by Gauss, the "Gauss-Bonnet theorem" can be 
interpreted as a "local comparison theorem", which compares the sum of the 
angles of a ("small") geodesic triangle on a curved surface with the sum π of 
the angles of a straight-sided triangle in the Euclidean plane, and measures 
the difference by means of the curvature of the surface. It is less well known 
that Gauss devotes the last nine articles (Articles 21 to 29, approximately 
one-third of the text !) of t he MDisquisitiones genera les''almost exclusively 
to proofs of theorems which compare individual angles (and not only the angle 
sums !) and the surface area of geodesic triangles in curved surfaces on the 
one hand with straight-sided triangles with the same side lengths in the 
Euclidean plane on the other hand 

In contrast to the local result (34), these last-mentioned comparison 
theorems are however only infinitesimal, i.e. under the hypothesis of real 
analyticity of the curved surface, the deviation of the curved situation from 
the Euclidean situation is expressed as a power series in the (common) side 
lengths a, b, c, and the coefficients of this power series are calculated up 
to and including terms of third order. The two most significant results of the 
Disquisitiones generales on this theme (see (35), (36) below) are contained in 
the 

Theorem Let Δ be a "small" geodesic triangle on a curved sur
face M in IE with vertices A, B, C, angles a, 3, γ, and (opposi
te) side lengths a. b. c. Denote bv a the surface area of Δ in M 
and bv K(A). K(B). K(C) the values of the Gaussian curvature at 
the vertices of Δ- It follows from the minimizing property of the 
sides of Δ that a<b+ c, so that there exists a straight-sided 
triangle Δ"χ" in the Euclidean plane with the same side lengths as 
Λ. Let or*, β*, γ * be the respective anerles of Λ"* . and let cr* be 
thp (Eur 1 idean) Riirfar.p area of Then the following series 
expansions in a, b, c are valid : 

Infinitesimal Anale Comparison Theorem (this volume, p. 78, line 8 
from below) : 

(35) α = α* + F ( 2K( A )+K ( Β ) + Κ ( C ))terms of 4- order and higher in a,b,c) 

13) The lack of renown of these comparison theorems is even more remarkable 
if one takes into account that Gauss (this volume, p. 74, line 10 from below) 
announces them with distinct emphasis : "Magnam utilitatem affert conside-
ratio trianguli plani rectilinei, cuius latera aequalia sunt ipsis a,b,c." 
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and 
Infinitesimal Surface Area Comparison Theorem (this volume, p. 80, 

line 9 from below) : 

(36) σ = σ* 1 +-Γ^κ (K( A) ( s - a ) + K(B) ( s - b ) + K(C) ( s - c ); + 

+ ( tjê jmŝ of 4- order and hdfdgiher inin a ̂b » cc ' 

(37) where s = 2( a + b + c ) 

Remarks a) Of course, formulas analogous to (35) for β and γ are valid. 
b) Gauss even calculates in (35) (this volume, P-76, formula 11) 

the terms of fourth order, though he does not give them in a completely expl 
cit manner, and therefore we have chosen not to describe them here. However, 
if M is of constant curvature Κ (for example, Κ =R , if M is a sphere of 
radius R i η IE ) , then these terms of fourth order can be easily calculated. 
This leads to the formula (this volume, p.78, line 10) : 

(38) α = α* + G Κ + G Κ (b + c - 2a²) + (terms of 5 - order and higher). 

Notice that in the case of a sphere of radius R (K = R ) 
1 η 

Legendre ([17], 
p. 426) already proved in 1787 that 

(39) α - α +G k0+ (terms of 4- order and higher in a, b, c) 

Gauss' generalization (35) of Legendre's result (39) for spherical geodesic 
triangles to geodesic triangles on arbitrary curved surfaces was developed 
with practical surveying strictly in mind. If one considers the earth's surface 
first as a sphere, and then as a spheroid (which is less curved towards the 
poles), then (neglecting terms of 4 ^ order) in the first case the angular 
correction of Legendre is the same for all three angles of the triangle, while 
in the second case, according to Gauss, the vertices nearer to the poles, 
where the Gaussian curvature is smaller, get a smaller angular correction. 
Gauss gives these different correction values according to (35) for one of the 
largest terrestial triangles measured by him, namely with "vertices" at 
Brocken, Hohehagen and Inselsberg (ordered with increasing distances to 

14) This less well-known mountain lies between Güttingen and (Hann.) Münden. 
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the north pole) , in Article 28 of the "Disqui sitiones generales"(this volu
me, p. 80) as the following (in seconds) respectively 

4.95104" , 4.95113" , 4.95131" . 

However the spherical Legendre correction, which is the same for all vertices, 
is 4.95116" in this case. The following interesting remark of Gauss concerning 
the theoretical and numerical comparison of his result (35) with Legendre's 
result (39), for the purpose of surveying, is contained in a letter dated 1 
March 1827 , to his friend Olbers (see G.W. 9, p. 378) : 

"In practice this (i.e. the difference of the correction values 
for the different angles of terrestial geodesic triangles, (the 
author)) is of course not at all important, because it is négli
geable for the largest triangles on earth that can be measured 
however, the dignity of science requires thpt we understand clear
ly the nature of this ineoualitv." 
c) We explain more precisely which meaning should be given to the 

word "small", in the hypotheses necessary for formulas (35) and (36) to hold. 
First Gauss chooses geodesic parallel coordinates f : ]-ε,ε[ -» M as in (31), 
so that the "line element" takes the form 

(40) du + G κ u , ν ) dv , 

and he assumes that ε is sufficiently small so that : 
l) f(]-e,e[ ) -in modern terminology- is contained in the image 

exp^ Q 0^(B), where Β is a ball centred at the origin of T f^ 0 Q^M on which 
the exponential map is a diffeomorphism (Gauss formulates this by means of 
the geodesic polar coordinates at f(0,0), see (30)). 

2) The function VG(U,V) (see (41) and note the analyticity hypothesis 

15) The sides of this triangle are approximately 69, 85, 107 kilometers long. 
16) Heinrich Wilhelm Olbers was a general practitioner in Brennen, who opera

ted privately a small observatory. 
17) To compare this formula and the following ones with the corresponding 

formulae in the nDisquisitiones generales'*, note that the parameters of the 
geodesic parallel coordinates (31), which we have denoted here (and 
throughout this lecture, for coherence) by u and v, are called q and ρ 
respectively by Gauss. 
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concerning M made above ) can be developped in a power series in u and v, 
which converges for all u,vÇ ]-ε,ε[ and whose values lie in ]θ,2[ (this last 
guarantees that VG(u,ν) ^ can also be expressed as a power series which conver
ges on ]-ε,ε[2). 

Gauss now considers, for u,u',vG ]-ε,ε[ with u'<u and v>0, the geode
sic triangle with vertices 

(41) A = f(0,0) , Β = f(u,v) , C = f(u»,v) 

and with the following normal geodesies a, b, c as sides : 

(42) 
a( t ) := f ( t , v ) for Lu' t u] (f as in (31)) 
b(t) := exp^(ta') for t Ç [0, r( u1, ν ) ] -I 
c(t) := expA(ta) for t£[_0,r(u,v)] , 

where a_ and _a' are suitable unit vectors in T^M. Then the lengths a, b, c of 
the sides of the triangle are given by 

(43) a = u - u ' , b = r(u,v) , c = r ( u' , ν ) 

It is precisely for these "small" triangles that Gauss proves (35) and (36). 
In order to sketch the calculations in the ' Disqui siti ones generales" lead

ing to the comparison theorems (35) and (36), we mention also Gauss' nota-
tion for the following oriented angles with values in the interval ]-π,π] 
(see (31), (42)) : 

(44) φ(η,ν) := 2Ç. (a ,a) <P(u' , ν) : = Λ. (a, ,a' ) 
ψ(u,ν ) : = 4Á$ ( r ( u , ν ) ) , f u ( u , ν )) ψ( u' , ν ) : = 4Cb(r(u' , ν) ) ,f (u' , ν)) 

This yields moreover for the angles α, β, γ of the triangle : 

(44') α = Ψ(ιι, ν) - 9(u! , ν) , β = \J/(u,v) , γ = π-\|/(υ',ν) 

The geometrical meaning of these quantities is elucidated by Figure 2. 
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Figure 2 
A = f (0,0) 

b = r (u', v) 

C = f (u', v) Ψ (u',v) 

D=f (0,v) 

B=f (u,v) 

"Ψ (u,v) 
c = r (u, v) 

φ (u,v) 
Φ("',ν) 

α ν 

Y 
u' 

u 

β 

The starting point of Gauss' proof of the series formulae (35) and (36) 
is the following. Since by (31) the particular v-parameter curve w: v-»f(0,v) 
is a normal geodesic which cuts trie u-parameter curves at right angles (hence 
at a constant angle !) it follows from (27) that (H)(W(V)) = 0 for all ν £ ] - ε , ε[ 
i.e. by (32) (this volume, p.64, line 5 from below) 

(VG) (0,v) = O , 
(45) and furthermore 

G(0,v) = 1 for all ν ^ Ί - ε . ε Γ 

since vG(0,v) = <w(v),w(v)> and w is a normal geodesic. Because of (45), the 
series expansion of VG(u,ν) for u,ν £ ]-ε,ε[ has the following form (this vo
lume, p. 64, line 2 from below) 

G(u,v) = l+f(v)u +g(v)u +h(v)u +... , 

(46) where f(v), e:(v), h(v) .... are power series in ν whose coeffi
cients are denoted bv f .f'f" e ,ff',g" h ,h' h" res
pectively · 

Thus the coefficients of these power series f,g,h,... determine completely the 
inner metric (40) of M. Using (46) and the equation VG . Κ= "(VG)^, valid for 
geodesic parallel coordinates (see (32)), Gauss obtains the following series 
expansion for the Gaussian curvature (expressed now as a function of u and v) 
(this volume, p-72, line 6 from below) : 
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(47) K(u,v) = -2f(ν) - 6g(v)u - (I2h(v) - 2f (v))u -

which thus yields an expression for K(u,v) in terms of the coefficients of the 
coefficients of the metric (see (40), (46)). Conversely, the coefficients f°, 
f1 ,f",g°,g1 ,h° of the metric (see (46)) can be expressed by virtue of (47) 
and Taylor's theorem in terms of the derivatives of the Gaussian curvature 
at 0= (0,0) : 

(48) 
f° = -K(0) , f = -¿KK (0) ι f" = - 4 K (0) , 
g° = - Ι κ ( ο ) , g =-J K (0) - - κ ( ο ) , h° ,H (K(0)^ + Κ (0)) 

(The formulae (48) are given by Gauss explicitly only for the special case 
Κ= constant, this volume, p. 78, line 2). 

Using the transformation equations connecting two different parametriza-
tion of M developed in Article 21 (applied here in particular to the transi
tion from geodesic parallel coordinates (31) to geodesic polar coordinates 
(30)), Gauss obtains the following partial differential equations for the 
functions (see (42), (44) above) r, Ψ and \J/ in the variables u and ν (this vo-
lume, p. 66, lines 10-11) : 

(49) 
4r2G = G f(r2) <r*> 

2V G r sin \J/ = ( r ) , 2r cos ψ = ( r ) 

(50) G(r ) Ψ + (r~) Ψ = 0 

Then Gauss obtains a power series expansion for r, r sin ψ, and r cos ψ in the 
variables u and ν from (49) and (46) (this volume, p. 66, formulas [l], [2] 
and p. 68, formula[3] , and from this and (50) he gets an expansion for r cos Ψ 
and r sin Ψ (this volume, p. 68, formulas £4], [5]). For the oriented surface 
area S(u,v) of the geodesic triangle A,B,D with D= f(0,v) (see Figure 2), for 
whieh 

(51) S(u,v) > O if u > 0 and S(u,v) < 0 if u < 0 , 

Gauss states, appealing to simple "geometric observations", the following par
tial differential equation (this volume, p. 70) . : 

(52) ((r sin \|/)Sv+VG(r cos \|/)Su>(u,v) = (r sin \J/)(u,v)(j' VG(T,v)dx) 
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Then he obtains a power series expansion for S(u,v) in the variables u and ν 
from (46), from the power series expansion for r cos ψ and r sin \|/ and from 
(52) (this volume, p.70, formula [7]). Therefore he also gets a power Sseries 
expansion for the surface area a of the geodesic triangle A,B,C (see (41), 
(51) and Figure 2) in the (geodesic parallel) coordinates u, u' and ν of the 
vertices Β and C, because 

a(u,u' , v) = S(u,v)-S(u',v) 

Comparison of the power series in u, u', ν thus obtained with (43), (44) and 
(47) gives (after ingenious manipulations of power series) first the result 
(36), and then also (35). 

This finishes our report on the contents of the Disqui siti ones generales-
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ON THE PRESENTATION OF THE "DISQUISITIONES GENERALES" 

(i) The preceding report should indicate the high density and the deep
ly and carefully thought out composition of the definitions and theorems of 
this essay. Indeed, as we know from letters and unpublished notes, this pre
sentation of the "Disquisitiones generales" is the ripe fruit of 15 years of 
repeated consideration and intellectual efforts concerning this subject and 
the result of two years hard work immediately preceding publication (in parti
cular, the search for the "optimal analytic argument", i.e. the Gauss equa
tion (14), for the proof of the "theorema egregium", i.e. the invariance under 
isometries of the Gaussian curvature). Interestingly, the most well-known sta
tements of Gauss concerning his own style of work and presentation also come 
from this period of differential geometric activity. Concerning the latter 
phase of concrete preparation for the "Disquisitiones generales", we quote 
from a letter of Gauss to his friend Olbers on 30 October, 1825 (see G.W. 
j8, p. 399, line 6 from below) : 

"Although the mathematical aspect of an investigation is usually 
the most interesting for me, I cannot deny on the other hand that 
in order to be pleased with a long-lasting investigation like this 
one, I finally have to see the emergence of a beautifully organi
zed entirety, immaned by an unorderly appearance", 

and further from a letter to his friend Schumacher on 21 November, 1825 
(see G.W. 8, p. 400, line 12 from below) : 

"Mv investigations are certainly made extremely difficult for me 
bv the desire, which Τ have alwavs nossessert. of envine* them 

18) Heinrich Christian Schumacher (1780-1850), Doctor of Laws and from 1810 
on Professor of Astronomy in Copenhagen (who lived in Altona close to Ham
bourg, which belonged at that time to Denmark), was a friend of Gauss from 
1808 until his death. 
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such a degree of perfection, ut nihil amplius desiderari 
possi t 

Moreover, these and similar statements have been misinterpreted even by 
close friends of Gauss. Schumacher and Bessel thus urged him repeatedly 
(particularly later, in view of his increasing age) to preserve his numerous 
ideas for future generations by a more rapid publication, and to leave the 
"polishing" of these ideas to others. The following sentence, from a letter 
of Gauss written on 5 February, 1850 (at the age of 73, almost exactly five 
years before his death ; see G.W. 1_0, 2, P. Stäckel : "Gauss als Geometer", 
p. 10, line 3), reveals most clearly how deeply Gauss felt that he was mis
understood by such demands and once again he pointed out precisely that compo
nent of his endeavour toward "perfection in presentation" which costed him 
so much time : 

"You are completely wrong if you think that I mean by this only 
the last layer of polish concerning the language and the elegance 
of presentation. Comparatively, these cause only an insignificant 
loss of time. What I really mean is the inner perfection. Points 
which have cost me years of thought exist in many of my texts and 
afterwards no one notices the difficultv which has ( had) to be 
overcome, because of their concentrated and short Dresentati on." 

To this one can only add that this attitude was seen by Gauss exclusively 
as a personal demand on himself, and that he did not claim it as the only and 
compulsory standard for working in mathematics, as is shown by the tolerance 
of the following excerpt from a letter to Encke of 18 August, 1832 (see G-W. 
11, 1, p. 84) : 

"This wav of working can sometimes have as a conseauence. and 
this has happened to me several times, that things that I have 
known for years are later discovered and published first bv others : 
it can also perhaps have as a consequence that some things dis
appear with me completely, and I know that some of my friends 
would like for me to work less in this spirit. However, this will 
never happen : I can find no pleasure in fragmentary results, and 
a work in which I find no pleasure is a torment to me- Let each 
person work in that spirit which best suits him." 

19) i.e."that nothing more comprehensive could be desired"* 
According to P. Stockei (see "Gauss als Geometer", p. 7, G.W. 10, 2), this 
phrase is already found in Euler's work. 
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(ii) With respect to thé type of presentation, Gauss clearly gives pre
ference in the "Disquisitiones generales" to the analyti cal method. If they 
occur at all, geometric arguments are very brief, for example in the compari
son theorems (35) and (36) (see above), where Gauss indicates that the partial 
equations necessary for the power series calculations "follow from elementary 
geometric considerations " without further comments. 

Unfortunately illustrative figures which would be most helpful in increa
sing the legibility of several passages of the "Disquisiti ones generales" 
(above all this concerns the last articles, which contain more than their 
share of mathematical symbols for various angles, distances, etc.), are 
completely missing. 

Gauss saw clearly the ambivalence of the use of analytical calculations 
in geometrical problems (i.e. their effectiveness on the one hand, and on the 
other hand their inherent tendency to weaken the force of geometric intuition), 
as is shown by the fo 1lowing excerpts from his review of the "Géométrie des
criptive" by G. Monge (see G.W. 4_, p. 359 ff.) : 

"It is not to be denied that the advantages of an analytical treat
ment over a geometrical treatment, its conciseness, simplicity, 
uniformity, and especially its generality, usually become more 
and more decisive as the investigations become more difficult and 
more complicated. However, it is always very important to conti
nue to cultivate the geometric method. ... In particular we must 
praise the work under consideration (i.e. the "Géométrie descrip
tive", the author) for its great clarity and therefore re
commend its study as nourishing intellectual substance, by which 
undoutedly much can be contributed to the revival and conservation 
of the genuine geometric spirit, sometimes missing in the mathe
matics of these times." 

The latter recommendation is supplemented and rounded off in the review 
by the remark (which is also interesting didactically) that the geometric 
method wi11 

"remain indispensable in the early study of young people, to pre
vent one-sidedness ... and to give to the understanding a line-
liness and directness, which are much less developped and -occa
sionally- rather .jeopardized by the analytical method." 
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Finally we quote in this context two passages from letters of Gauss, which 
shed in a clear light his opinion of new mathematical calculi (to whose deve
lopments he himself also contributed) (see G.W. 8̂  p. 298) : 

"After all the situation concerning new calculi is such that one 
cannot accomplish anything with them which could not be accompli
shed without them ; the advantage, however, is that when such a 
calculus corresponds to the innermost nature of frequent and re
peated needs, then anyone has mastered them (even without the 
almost unconscious inspiration of a genius, which nobody can gain 
by force, to solve problems belonging to this calculus), can solve 
them (even in such complicated cases that the genius would be 
powerless without such help). This has been the case concerning 
the invention of the differential calculus : it is also the case 
(though only in more special cases) of Lagrange's calculus of varia
tions.of my calculus of congruences and of Möbius calculus. Count
less problems which otherwise would stand isolated and would 
demand in each special case new efforts (large or small) of inge
nuity, are comprised bv such concepts to become an organic realm." 

However, Gauss criticized a purely mechanical use of calculi, without 
keeping in mind their origin in conceptual or geometric intuition, as a con
tribution to the detriment of the "solidity" of mathematical working (see G. 
W. 10, 1, p. 434) : 

"It is in the nature of mathematics of modern times (in contrast 
to that of antinuitv). that we nossess a lever in the form of our 
symbolic language and nomenclature, whereby most complicated rea
soning are reduced to a certain mechanism. In this way Science 
has e-ained infini tel ν in richness, but has lost enuivalentlv . 
in beauty and character. How often is this lever applied purely 
mprhaniral lv ... . Τ demand that one should whenever usiner the 
calculus. ... remain aware of the original stipulations ..." 

(ill) Finally it remains to be mentioned that Gauss does not indicate, 
in the "Disauisiti ones generales", the geometrical intuition which has led 
him to the discovery of the Theorema egregium. Its presentation as a corolla
ry to the Gauss equation (14), proved by (five pages of) pure calculation, 
conveys the reader in the smoothest possible manner to be sure, but neverthe
less -due to its lack of geometric motivation- it hits the reader like an 
analytical "deus ex machina". 
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This effect is still experienced and confirmed by students in differen
tial geometry today, when they are taught the invariance of the Gaussian (or 
Riemannian) curvature under isometries as a consequence of the Gauss equation, 
although the derivation of the latter equation nowadays (by means of Levi-
Civita1 s covariant differentiation) has merely the character of a simple ana
lytical exercise. 

Having regard to this deficiency of any information about the leading, 
basic motivation, one is reminded of a statement of Gauss reported by Sarto-
rius von Waltershausen in his article "Gauss zum Gedächtnis" (see [24], p. 6, 
line 5 from below) which appeared in 1856 : "After a building ... has been 
completed, one should no longer see the scaffold". In view of the above men
tioned quote of Gauss concerning his endeavour towards the perfections of the 
contents of this results, this quotation is not only to be taken aesthetically. 
Indeed,the following interpretation seems to be much more probable (in parti
cular if one takes into account the behaviour of Gauss during the completion 
of the final version of the "Di soui siti ones generales", to be reported below) : 
according to Gauss' rich experience with that topic, the analytical "Gauss 
equation" (14) was expressing for him the content (and not merely the beauty Î) 
of his key result (namely that the Gaussian curvature is determined solely by 
the inner metric of the surface) so perfectly, that the geometric ideas, which 
had led him first to the discovery of the invariance of the Gaussian curvature 
under isometries, were considered by him to be pushed into the background or 
even to be a rather disturbing framework. Moreover, the history of different
ial geometry has provided a belated justification of this analytical accentua
tion through Riemannian geometry, in so far as the importance and the central 
position of the Gauss equation are yet more evident here (than in the differ
ential geometry of surfaces in ]E^). Still the question of geometric origin of 
the Theorema egregium remains challenging 1 

Fortunately, the history of the origin of the "Disquisiti ones generales" 
(as it can be reconstructed from Gauss' papers which were made public only 
much later) sheds some light on this open question. This is what we shall now 
descri be. 
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ON THE HISTORY OF THE ORIGIN OF THE "DISQUISITIONES GENERALES" 
AND ON THE HISTORY OF THE IDEA OF THE THEOREMA EGREGIUM 

(i) The starting point for Gauss' work on differential geometry is 
found on the one hand in his lasting interest since his early years (at least 
since 1794 i) in the foundations of geometry (his interest there being focused 
almost exclusively in "finding the truth" about the independence of Euclid's 
axiom of parallels), and on the other hand in his occupation with surveying 
(which was required professionally of him as Director of the Güttingen Astro
nomical Observatory). One common ground of both of these main streams of his 
geometric interest was undoubtedly trigonometry (Euclidean, spherical, hyper
bolic, and that of curved surfaces), and here in particular the theorem on the 
sum of angles of a triangle or a polygon in these geometries. Gauss dates his 
first fundamental insights about this as occuring already at the age of 17, 
as we learn from his letter of 10 October, 1846, to Gerling (see G.W. 8, ρ. 26 
p. 266) : 

"The theorem which Mr. Schweikart mentioned to vou , that in any 
eeometrv the sum of all outer angles of a Dolvgon differs from 
360 by a quantity, which is proportional to the surface 
area, is the first theorem lying almost on the threshold of that 
theory, a theorem whose necessity I already recognized in 1794." 

In the case of spherical trigonometry, this theorem of angular excess 
(see (34) above, the "Gauss-Bonnet" theorem) was certainly already widely 
known at that time- Here Gauss is talking about the hyperbolic case, as is 
shown by the reference of Schweikart (who had investigated a "hyperbolic" 
geometry)-

His work on surveying led him (between 1812 and 1816) to the study of 
geodesies on ellipsoids of revolution and to the question of determining "all" 
conformai charts for general curved spaces. He estimated these charts to be 
the most important ones in matters of surveying (see [24], p. 91, line 7) : 
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"You are quite right, Gauss writes to Hansen on 11 December, 1825, that the 
essential condition in every map-projection is the infinitesimal similaritv, 
a condition which should be neglected only in very special cases of need." 

In a letter to Schumacher of 5 July, 1816, Gauss states (see G.W. j3, 
p. 370) : I have also conferred with Lindenau about a competition question 
which was to be posed in the new journal. I had thought of an interesting* pro
blem, namely : 

(53) 
in the general case, to project (map) a given surface onto another 
(given) one in such a way, that the image and the original become 
infi nitesimally similar. 

A special casearises when the first surface is a sphere and the second a 
plane. Here the stereographic and Mercator's projections are particular solu
tions. However, one wants the general solution for all types of surfaces, con
taining all these particular ones." 

This competition question, suggested by Gauss to a new journal for astro-
nomy, was however not chosen by the editors *"* · His former student and friend 
Schumacher , whom he had told about this problem, hence used the first op
portunity he had and induced the Copenhagen Scientific Society to pose the 
competition question (53) (see above) in 1821. Since no solution had been sub
mitted in 1821, the problem (53) was set once again in 1822. When Schumacher 
reported this to Gauss on 4 June, 1822, Gauss answered on 10 June, 1822 : 
"I am sorry that I have only now learned of the renewal of your competition 
question ..." On 25 November, 1822, he asked Schumacher when the deadline for 
submission of solutions was set, and after Schumacher replied that it was the 
end of the year, Gauss submitted his treatment on 11 December, 1822 (see [24], 
p. 90). Thus the first important contribution of Gauss to the theory of surfa
ces was an answer (found under the pressure of a deadline) to a challenge 
which he himself had posed. 

This competition essay was published only in 1825 in the "Astronomischen 
Abhandlungen" under the following title : 

"A general solution to the problem of mapping the parts of a given 
surface onto another surface such that the image and the mapped 
part are similar in the smallest parts" 

(•) "Prei sfage". 
21) Presumably Gauss already possessed around this time (1816 ?) the main idea 

how to solve this problem (53) (see G.W. 8̂, p. 371, p. 372, line 2 from 
be low). 
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and Gauss added the following latin sentence to the title, like a motto : 
"Ab his via sternitur ad maiora", 

a self-confident announcement of a successful breakthrough, in this work 
of his- The "way paved herewith to greater tilings" is certainly the way to
wards "Inner Differential Geometry". Precisely two days after he sent off his 
solution to the competition ouestion, Gauss wrote up some private notes on 
12 December, 1822, with the title "The state of my investigations on the trans
formation of sur faces" ( see G.W. 8, p. p. 374-384), in which he emphasizes one 
single result (see G.W. 8̂, p. 381, Formula 25). Namely, if the line element 
of a curved surface with respect to some conformai chart is given as 
V2 du + dv ) , then its Gaussian curvature Κ can be calculated to be 

(54) κ = - 4 ô log m 
2 

ó 1 oc; m 
2 m 1 du ov 

This is the Gauss equation of the "Disquisi ti ones generales" for the special 
case of a conformai chart (see (14) above), a useful formula which has been 
often used in differential geometry later but which unfortunately was not re
tained by Gauss for the "Disquiti ones generales". Gauss concludes from this : 
"... the curvature keeps the same value under all transformations of the sur-
face which leave the line element vm'fdu" + dv4-) unchanged." I Since the fact of 
the invariance of Κ under isometries contained herein was known to Gauss alrea
dy in 1816 by way of geometric arguments (see (56) below), the "breakthrough" 
experienced here by Gauss is no doubt to be attributed to obtaining the expli
cit analytical "binding" of Κ to the first fundamental form by the formula 
(54).] 

We learn from Gauss' accompanying letter of submission of his competition 
essay that he was urged on to further investigations by this work (see G.W. _4, 
n. 191) : "The author of this treatise ... regrets that the latter situation 
(meant here is his late notification by Schmacher of the information concern
ing; the renewal of the unsolved compétition questior, the author) has obliged 
him to restrict himself ... to the bare essentials. If it were not for the 
deadline, the author would have liked ... to pursue the development of several 
secondary topics, which he must now reserve for another time and place." 

22) I. Newton ([20], p. 244) added the words "Et his principiis via ad maiora 
sternitur" to his treatise "De quadratura curvarum", in which he published 
earlier investigations which had led him to the calculus of fluxions (i.e. 
to his version of the differential calculus). 
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(il) From 1821 until August 1825, a considerable part of Gauss'time is 
taken up in laborious and time-consuming geodesic field measurements. 

He writes to Olbers about this (see [23], p. 29) : "I cannot look back 
on my five years of measuring without discontent", and in another passage, 
concerning field measurements to be made in the summer of 1825 (see [23], 
η. 29) : "I would like very much to complete all works of that sort which 
yet remain at one swoop, in order to use the years of my life, which Heaven 
will still grant to me, working in my study,undisturbed." 

Only afterwards is Gauss able to attack a new theory of the surfaces. He 
reports on this to Olbers on 9 October, 1825 (see G.W. 8., p. 397), and writes 
on 21 November, 1825, to Schumacher (see G.W. 8̂, p. 400) : 

"Recently I have taken un again a nart of the general investiga
tions on curved surfaces which are to form the basis of my pro
jected essay on advanced geodesy- It is a subject which is as 
rich as it is difficult, and it takes me from accomplishing any
thing else. Unfortunately, I find that I have to go far back in 
the exposition becau se even what is known must be developed in 
another, di ffgrent, form suitable to the new investigations. All 
roots of the tree must be followed to their ends, and some of the
se efforts cost me weeks of strenuous thought. Much of this be
longs to the Geometría situs, a field almost completely unculti
vated up to now." 

The rough draft (which was already quite extensive) for this chapter on 
differential geometry of his planned work on advanced geodesy was also found 
in Gauss' manuscripts and carried the title 
(55) "New general investigations on curved surfaces". 
He had composed it during the last three months of 1825. From this draft and 
from further notes (collected painstakingly by P. Stäckel from the manuscripts 
of Gauss), we have the following : 

23) (Note for p. 130) 
The name "Kriimmungsmaß" (measure of curvature) for the number defined b; 
(8) occurs for the first time only in private notes of Gauss of 12 Decer 
ber, 1822 (see G.W. _8, p. 381), whereas Gauss used the corresponding im
portant geometric concept (introduced by definition (8)) already much 
earlier. 
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(i ii) Pating of the discoveries of some of the new concepts and theorems 
in the (later) "Disqui siti ones generales". 

1) Concept of the Gauss map (see (7)) 
23 ) 

2) Concept ^ of the Gaussian curvature (see (8)) 
3) The result Κ = . H 2 (see (13)) 

Between 1799 and 1813 
(see G.W. 8, p. 367, 
p. 369)· 

4) Invariance under isometries of the total 
curvature (see (16)) 

Around 1816 
(see G.W. 8, p. 372)-

This relatively early di scovery becomes the pacemaker and leitmotiv for 
the subsequent investigations of Gauss on the differential geometry of curved 
surfaces, and he himself designates it as the "beautiful theorem". We formula
te it here once again explicitely, closely following Gauss, who did not yet 
use the words "total curvature" in 1816 (see G.W. 8_, p. 372) : 

(56) 
The "beautiful theorem" (Gauss, around 1816) .- If a curved 
surface on which a figure is fixed takes on different shapes in 
IE , then the surface area of the spherical image of the figure 
is always the same, for all possible shapes (of the surface). 

Coro I lary The Theorema egregium (see (15)), i.e. the invarian
ce under isometries of the pointwise defined Gaussian curvature, 
follows trivially from (56) by the limit procedure described in 
(8). 

5) Derivation of the "Gauss equation" 
(i.e. calculation of the Curvature curvature Κ 
from the first fundamental form alone, the 
latter being given) 

a) in conformai coordinates (see (54)) : 1822 (see G.W. 8, p. 381), 
b) in geodesic polar coordinates (see (32)) : 1825 (see G.W. 8 p. 442)· 

&\ Comparison theorems for the angles of geodesic 
triangles (see (35) and Legendre's result (39)) : 1825 (see G.W. 8, p. 399). 

7) The sum of angles in small geodesic triangles 
(see (34) = "Gauss-Bonnet theorem") : 1825 (see G.W. 8_, p. 435). 

23) See ρ- 129. 
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Note Gauss gave no proof or indication of proof for the "beautiful theo
rem" in his notes of 1816 (see (56) above). In the fragment (55) of 1825, a 
proof of (56) (see (iv) below) can be found which makes use of the theorem 
(34) on the angular excess in small geodesic triangles. It is thus quite pro
bable that Gauss already possessed in 1816 the theorem (34) on the angular 
excess, i.e. the "Gauss-Bonnet theorem", as a "forerunner" to (56). This 
presumption is supported by the state of knowledge of Gauss concerning pro
perties of angles of triangles in hyperbolic geometry. In 1816, he already 
knew the theorem that triangles with equal angles are always congruent in hy
perbolic geometry (and he added an interesting speculation on a possible uni
versal unit for measuring distances, in case the universe is hyperbolic, see 
G-W. J3, p. 168), and in 1819 he stated for hyperbolic geometry (see G.W. 8, 
p. 182, line 18) : "The defect of the sum of the angles in a triangle from 
180 is not only increasing as its surface area increases, but is exactly pro-180 is not only increasing as its surface area increases, but is exactly pro
portional to it." 24) In later years (1846), Gauss even back-dated his per
sonal knowledge of this latter theorem, " almost lving on the threshold" (of 
hyperbolic differential geometry, the author) back to 1794 (see G.W. 8, 
p. 266) . 

8) General "Gauss lemma" (see (22), (23), (24)) : 1825 (see G.W. 8, p.439. 

9) Derivation of the "Gauss equation" (see (14)) 
(i.e. the calculation of the Gaussian curva
ture Κ from the first fundamental form only 
if the latter is given in arbitrary coordi
nates ) 

1825 
(see [24], p. 97, line 5). 

A glance at this chronological table shows that the ordering of the de
ductive presentation of the concepts and theorems in the "Disquisiti ones ge
nerales" is at essential points i nverse to the chronological order of their 
discoveries . This is not surprising, since Gauss certainly did not know the 
"Gauss equation" (14) in general coordinates, which is the cornerstone of his 

24) The letter of 3 March, 1819 to Gerling, from which this quotation stems, 
is an important document about the state of knowledge of Gauss and about 
hyperbolic geometry around 1819. Passages from this letter (see in parti
cular G.W. 8, p. 10 ff.) may have been the reason for the conjecture 
(which cannot be proved with certainty) that terrestial or astronomical 
angle measurements were made by Gauss as a "test" for the validity or in
validity of Euclidean geometry in the space which surrounds us. 
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presentation in the "Disquisitiones generales", before the end of 1825. For 
this reason, Gauss gives in the fragment (55) (found only in his manuscripts) 
a completely different proof. 

(iv) Proof for the "Theorema egregium" (= invariance under isometriesof 
the Gaussian curvature), which does not use the Gauss equation (14), but which 
for his part clears up the geometrical origin of this discovery. We now sketch 
this proof (see G.W. 8_, pp. 455-436) : 

The point of departure is essentially theorem (34) on the "angular 
excess of small geodesic triangles over two right angles", in which however 
the total curvature measuring the excess is not defined (as in (34)) by the 
integral over the Gaussian curvature, but directly as the "oriented" surface 
area of the spherical image (see (7)) of the triangle. We give here, in free 
translation, the formulation of this theorem by Gauss in the fragment (55) 
(see G.W. _8, p. 435) : 

(57) 

The sum of the angles of a (small) geodesic triangle Δ in a curved 
surface in IE is equal to the sum of π and the oriented surface 
area of the spherical image of Δ, where the oriented area is 
taken to be positive or negative according to whether the bounda
ry of the spherical image of Δ winds around the image in the same 
direction or in the opposite direction as the boundary of Δ winds 
around Δ -

The result (57) was already widely known in the special case of a deve
lopable or a spherical surface. Gauss possessed the result analogous to (57) 
for hyperbolic geometry (and therefore essentially for surfaces of constant 
negative curvature, the author) already in 1794 (see G.W. _8, p. 266), and 
announced it to Gerling in a letter in 1819 (see G-W. _8, p. 182). It is there
fore easy to imagine that Gauss was led to a geometrically intuitive "insight" 
concerning the validity of (57) for the general case of a surface of non-
constant Gaussian curvature from the knowledge of this fundamental case and 
on the basis of his rich differential-geometric experience in geodesy (with 
geodesies and trigonometry spheroids , but also with questions of mapping and 
bending) obtained in the years 1812 to 1822. 

In the fragment (55) Gauss sketches a proof of (57) (where he had to dis
tinguish between different possible geometric cases). However, he did not seem 
to be too happy with it, as the following remark of his shows (see G.W. _8, 
o. 435) : "This proof will need explanation and some change in its form, 
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if ..." (one of the different geometric cases occurs). 

Although Gauss had studied intensively the concept of "oriented surface de surface 
area" as used by him in (57) (see G.W. j3, p. 398, line 2 from below), he did 
not think that his corresponding studies had "matured" sufficiently. In any 
case, the simple analytic description which is common today is absent in 
Gauss : 
(58) oriented surface area of the spherical image of Δ = ι c * „ 
where ζ is the Gauss map (7) of the curved surface under consideration and 
σ 0 is the surface area form of the sphere S i η IE . 

The geometric (and historically the original l) proof of Gauss for the 
Theorema egregium (15) is found as follows in the fragment (55). From the pre
viously proved theorem (57) on the excess of the sum of angles for geodesic 
triangles, Gauss next deduces the analogous theorem on the excess of the sum 
of angles for arbitrary geodesic polygons with n>3 sides : 

(59) 

The sum of all angles of a small geodesic polygon il with η sides, 
lying in a curved surface M in IE , is equal to (η-2)π plus the 
oriented surface area Γκ(ΤΪ) ~ of the spherical image of ^ 
under the spherical man of M, 

and then he argues (not verbally but essentially I) as follows (see G.W. _8, 
p. 435, line 3 from below, and p. 436) 

under an isometry ("development") f : Μ-» Μ' of one curved surface M in 
DE² onto another one M ?, the lengths of curves on the surfaces remain inva
riant. Thus f maps geodesies of M onto geodesies of Μ'. For the same reason, 
every (closed) geodesic ε-neighbourhood D £ of a point A in M is mapped onto 
the (closed) geodesic ε-neighbourhood of of the point A' = f(A), i.e. 
D'E = f(D^), and hence the following equality of their surface areas follows 
from the property of f. being isometric : 

(60) area D ) = area I)' J 
ε ε 

25) Here we use "J K" as a suggestive symbol (not to be divided into "J" and 
"K", although suggestive of this) for the real valued set function which 
to each compact subset I) of the surface M bounded by a curve, assigns the 
"oriented surface area J K(D)" of the spherical image of 1) under the Gauss 
map ζ of M, where the sign is determined by comparing the winding direc
tions of the boundaries 3D and £(dD) respectively, analogous to the ex
planation of Gauss in (57). 
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On the other hand, angles between intersecting curvos are also preserved by 
the i some try f. F'rom this and (59), it follows i mined i a ( o I y (hat : 

(61) 
The oriented surface area , K(TÍ) of the spherical image ο Γ a geo
desic polygon if on M is equal to the orionied surface area | Κ ( Π ' ) 
of the spherical image of the geodesic polygon lí ' f ( I'D on M' 
corresponding to TT (under the isometry f) 

By approximating the closed ε-neighbourhood of A by (inscribed) geode
sic polygons of the surface M, it follows by virtue of (61) that : 

(62) 
The oriented surface area Í K(D ) of the spherical image of D 
under the Gauss map of M is equal to the oriented surface area 
K'(D') of the spherical image of D' under the Gauss map of M? 

Taking the limit as ε^Ο, it follows from (60) and (62) that : 

K(A) = lim 
K (D) 
area(D ) = lim 

K1(D' j 
area(D') = K'(A') 

(8) (60),(62) (8) 
That is, the Gaussian curvatures at points A and A' corresponding to each 
other under an isometry f of two isometric curved surfaces M and Μ' in 
onto each other, are equal. This is the Theorema egregium ! 

(V) The proof (with its so impressive geometric arguments, which we have, which we have 
just retraced from the fragment (55)) was never published by Gauss ! The 
reason for this lies on the one hand certainly in his self-criticism 
of his own above mentioned sketch of a proof for (57), and particularly of 
his concept of the "oriented surface area of the spherical image on a curved 
surface" (involved in that proof) which he has not defined with that analytic 
rigour usually applied by him . Over and above this, there surely is an
other eason. In the fragment (55), the proof of Gauss referred to above (see 
(iv)) for the Theorema egregium is followed by the "Gauss lemma" (see (23), 
(24)) and the "Gauss equation" specialized to geodesic polar coordinates (see 
(32)) \ then the fragment under the title (55) "new general investigations on 

26) Gauss judged non rigorous proofs very harskly. In his letter of July 1828 
to Olbers, he says, concerning the question of the existence of straight 
line generators for developable surfaces in 1Ê  (see G.W. jî, p. 44, line 2 
from below) : "In all the so-called proofs that I know except mine, this 
existence of such straight lines is obtained quite surreptitiously . 
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curved spaces" breaks off abruptly [This can be dated as approximatively 
occuring at the end (December ?) of 1815.] Gauss must have recognized here 
that the Theorema egregium follows immediately from that last analytic result 
(32) obtained, if one knows in addition that (under an isometry of curved 
surfaces) geodesic polar coordinates of one surface always go over into 
geodesic polar coordinates of the other surface. This can indeed be immedia
tely seen from the length- and angle-preserving properties of an isometry 
(and, moreover, much more easily than some of the geometric arguments in his 
proofs of (57) and (62) ! ) . Thus it seems that Gauss considered his first 
proof, described in (iv) above, to be conclusively "dethroned" and outdated. 

In view of Article 2Λ (this vol. p. 60, lines 7-5 from below) of the 
later "Disquisitiones generales" (for which there is no precursor in the frag
ment (35)1), we might even be led to conclude that at that time Gauss had per
ceived the possibility, in principle, of expressing the coefficients E, F, G, 
of the first fundamental form with respect to one local chart of the surface 
(see (13)) in terms of the analogous coefficients E', F', G', of another such 
chart. Hence it should be in principle possible to express the Gauss equation 
(32), obtained first by him in the special chart of geodesic polar coordinates, 
as an equation of the type (14). In this way Gauss could have found the expli
cit form (14) of the Gauss equation for general coordinates on the surface. 
It is almost certain that Gauss did not found this latter calculation till 
1826, as well as the final proof of (14) appearing in the "Disqui sitiones ge
nerales", which is "pushed through" by sheer computation in the given general 
coordinates. Thus Gauss, realizing the central position and the great effecti
veness of this tool, put aside such already well-presented article as the 
fragment (55) and began developing a new presentation of these results, based 
entirely on the Gauss equation (14). One learns then from this letter of 20 
Novembre, 1826, to Bessel (see G.W. 9_, p. 392, line 19) that he has given up 
his original intention to include his investigation concerning the different
ial geometry of curved surfaces in a book on advanced geodesy, and instead 
will devote a separate essay to it. By this time, the part of the investiga
tions concerning the Gaussian curvature seems to him to be so matured 
27) Among Gauss' manuscript one can find (rather sketchy) notes, originating 

also from the time between 1822 and 1825, on the "Seitenkrümmung") (= geo
desic curvature) of curves on a curved surface in IE3 (see G.W. 8, p. 386-
395). These notes had not yet reached a comparable state of working out. 
Consequently Gauss excluded completely the concept of "geodesic curvature" 
from the contents of the "Disquisitiones generales". Here F. Minding was 
prior to him with a publication (see [18], 1830) ! 
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that ho prepares it for publicist i on without delay. Thus the "Di squi si ti ones 

generales circa superficies curvas" arises as a kind of concentrated research 

report on his investigations of the theory of surfaces, in which he not only 

bases the new presentation fully on the Gauss equation (14), which now comes 

at the beginning, but also omits all the elementary parts of the first draft 

with the title (55) (concerning curvature of curves, of surfaces, etc). 

In this manner, the "Di saui siti ones generales" exemplify most convincingly 

the motto which was engraved in the seal used by Gauss (see [24], p. 6, line 

3 from below). This seal pictures a tree with a few fruits, and carries the 

words : 

!'P^lÇJLi, £re-fl-..-.?At:u.1í]e-'' ' 

It is the culmination of more than fifteen years of thought and work on the 

geometry of surfaces, and at the same time an opening of new perspectives, 

almost unparallel in mathematical literature for its density and beauty of 

presentation, as well as for the originality of its contents and the stimula-

tive force of its ideas 

^ It is above all this "evolutive" component of the "Disqui siti ones genera

les" which makes the ("static"-or "fi nished"-sounding) title of "edifice", 

which P. Stockei gave to this work of Gauss, seem so inadequate in our 

opinion. (See note p. 99). 
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SOME IMPORTANT THEMES, RESULTS AND DEVELOPMENTS IN DIFFERENTIAL GEOMETRY 
DURING THE LAST 150 YEARS 

Even a cursary sketch of these is not possible without first recalling 
the following important basic concepts of differential geometry (which were 
introduced from 1854 on, essentially after Gauss"death in 1 8 5 5 ) : 1855): 

1} η-dimensional Riemannian manifold M (which we always assume here to be 
connected) with its inner metric (defined by the infimum of lengths over 
all continuously differenti ab le paths joining two points) and its sectio-
nal curvature (function) η , introduced by B. Riemann in 1854 using the 
(intrisic I) Gaussian curvature ' (see [21], p. 272-287), as well as 
isometric immersions and isometries of Riemannian manifoldsfolds. 

2) Lie groups and differenti ab 1e actions of these on manifolds [S. Lie and 
F. Klein (from 1869 on), E. Cartan]. 

3) Levi-Ci vita parallel transport L , for vectors along a differentiable 
path c: [a,b] -» M in a Riemannian manifold M (T. Levi-Civita, 1917), 
which is a 

(65) linear isometry L : Τ , ,M => Τ ,, XM 
between the tangent spaces at the initial and end points of c. 

4) Topological concepts, such as for example, connectedness, compactness, 

29) If a f_ G0(TpM), that is, a is a two-dimensional vector subspace of the 
tangent space Τ M of M at the point ρ € M, then Riemann defines the "cur
vature K (a) of a (in M ) M as the value of the Gaussian curvature at the 
point ρ of the two-dimensional surface in M which is spanned by the geo
desies of M which pass through ρ and are tangent to o*. The Riemann mani
fold M is said to be "of constant sectional curvature C (£ IR)", if 
πΜ(σ) = C for all pÇ M and σ £ G 2(T pM). 
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orientabiIity, simple connectedness, fundamental groups and coverings, 
homology and cohomology of manifolds (developed Crom around I890 on, e.g. 
by H. Poincaré, H. Hopf, H. Whitney, S. Eilenberg, and many others). 

5) Metrical completeness (M. Fréchet, F. Hausdorff, 19 14) and geodesic com
pleteness (H. Hopf and W.Rinow, 1931) of Riemannian manifolds. 

Recommendations for literature : [l], [4], [9], [15], [22], [27]. Whenever 
no reference is given, consult the bibliographies in [15], [22], [27]. 

Using these basic concepts we now mention ("pars pro toto") the following 
themes of inner differential geometry. 

(i) The converse to the "Theorema egregium", i.e. to the invariance under 
isometries of the Gaussian, or more generally of the Riemannian, curvature. 

Because of its definition and Gauss' Theorema egregium, the curvature 
of a Riemannian manifold is invariant under isometries. More precisely, if 
f : M-»M' is a differenti ab le immersion of Riemannian manifolds of the same 
dimension (dim M> 2), then in order for f to be an isometry we must have 

(f,(a)) = κ (σ) for all ρ ζ M and all er 6 G ( Τ (M) 29) 

This result suggests at once the following "converse" : 

Problem .- In which sense do "equality assumptions" on the curvature functions 
of equal-dimensional Riemannian manifolds imply that they are isometric ? 

We mention three prominent results concerning this problem. 
a) Any two n-dimensional (n> 2)Riemannian manifolds of equal constant 

sectional curvature are locally isometric (B. Riemann 1854, see [27] p. 59, 
corollary 2.3.8 and p. 69, 2.4.11). 

b) An arbitrary simply connected complete n-dimensional (n>2) Rieman
nian manifold of constant sectional curvature C (e 1R) is (globally ! ) isome
tric to : 

1) the n-dimensional Euclidean space lEn (if C=0), 
2) the n-dimensional sphere of radius F= in the (n+1)-dimensiona1 Eucli-

dean space (if C <0). 

3)the η-dimensional hyperbolic space in which the sum of angles of 
each geodesic triangle Δ is eaual to π+ C area(A) (if C<0). 
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C) The theorem of E. Cartan (1928) and W. Ambrose (1956) (see [27], 
p. 61 ; [4], p. 238 ; [l]). 

Preliminary remark : Each r-sided (not necessarily closed I) geodesic poly-poly-
gone c : LO,s] -» M in a Riemannian manifold M, parametrized by arc length and 
with "vertices" 0 = a < â  < . . . < = S, is uniquely determined by its side 
lengths ŝ  = a^-a^ ^ € I? , i=l,...,r, and by the initial velocity vectors 
of each of its r sides, transported by the Levi-Civita parallel translation 
along c back to the starting point ρ = c(0) Ç M to give vectors v^,...,v^£ Τ M. 
That is, 

c ( a ) = L ι Γ Λ -.(v.) for i = 1 ... - , r see(see (63)) 

Hence c can be identified with the (2r+l)-tuple (ρ; ν^,. . . ,v^; s^,. .. ,s^). Con
versely, each such (2r+l)-tuple with pG M, v^,---,v unit tangent vectors to 
M at p, and s^,.. ,positive real numbers, yields a unique r-sided geodesic 
polygon starting at p, which we call 

(64) c = (ρ;ν ,. . . ,ν ; s ,. . . ,s ) 

Moreover, we obtain from each 2-dimensiona1 subspace a of the tangent space to 
M at the starting point ρ of the geodesic polygon c (see (64)) a 2-dimensional 
subspace L^(a) of the tangent space to M at the end point of c by means of the 
Levi-Civita parallel translation along c (see (63)), and we denote its section
al curvature by 

(65) λ J ' p (v.,...,v ;s.,...,s :σ) = H (L (σ)), where c is as in (64). 

Now the theorem of Cartan and Ambrose says that equality of the curvature 
functions λ^ Μ , Ρ^ (i.e. with r= 2) defined above, is not only necessary but 
also sufficient for global isometry of Riemann manifolds in the simply connec
ted complete case. Thus one obtains in this case a fully satisfactory answer 
to the problem formulated above. More precisely, the theorem says : 

Let M and M' be two n-dimensiona1 (n>2) simnlv-connected comnlete 
Riemannian manifolds. ο £ M and n'fM'and Ψ : Τ M^T .Μ' a linear 
isometry of the tangent spaces of M at ρ and of Μ' at p'. If for 
all pairs (v,w) of unit tangent vectors to M at p, for all ε> 0 
and δ> 0, and for all 2-dimensional subspaces a of the tangent 
space to M at ρ (see (65)) we have 
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l M' p )(v,w;e,6;a) = λ i M ' ' P' }(Ψ(ν),Ψ(w); ε,δ,Ψ(σ)) , 

then there exists a (unique) isometry f : M-.M' from M into Μ' 
:with f ( η ) - η ' and f. I Τ Μ=Ψ). 

In short, equality of the sectional curvature under parallel translation 
along two-sided geodesic polygons is a necessary and sufficient condition for 
isometry of simply connected complete n-dimensional Riemannian manifolds. 

( i i) The Clifford-Klein space-form problem. 
This problem treats the following question : to which extent are the 

global homeomorphism type or (affine) diffeomorphism type or isometry type of 
complete η-dimensiona1 Riemannian manifolds of fixed constant sectional curva
ture C {G_ 1R) [which are of course all locally isometric to each other (see (i), 
a)) and are called "space-forms with curvature C"] restricted by the hypothe
sis on their curvature, as well as the larger problem of a complete classifi
cation of this class of Riemannian manifolds ? 

Clifford found in 1873 a two-dimensional Riemannian manifold with cons
tant zero curvature which was diffeomorphic to the two-dimensional torus, the 
so-called "flat Clifford torus" in S 3 (cz IE4). F. Klein then formulated the 
programme outlined above in 1890. 

a) For C= 0, i.e. for the space-forms M locally isometric to the Eucli
dean space !En , the following results are known (see [22], p. 359 ff.) : 

η= 2 : (W. Killing, 1891). If M is compact, then M is homeomorphic to 
the torus or the Klein bottle. If M is not compact, then M is 
homeomorphic to Ή or to a cylinder or to the Möbius strip. 

n = 3 : (W. Hantzsche and H- Wendt. 1935). Amone: the compact three-dimen
sional Euclidean space forms, there are six orientable and four 
non-orientable homeomorphism types (see [27], 3.5.5 and 3.5.10). 
(W. Nowacki. 1935). Amone: the non-compact three-dimensional Eucli
dean space-forms there are four orientable and four non-orienta-
ble homeomorphism types (see [27], 3.5.5 and 3.5.10). 

n=4 : The classification problem is unsolved, but we have the following 
result of L. Bieberbach. There are only finitely many compact 
(1911) and non-compact (1929) homeomorphism types of n-dimensional 
Euclidean space forms. 
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b) For C = 1 (this is the general case C > 0 up to homothetic transforma
tion), i.e. for the space-forms locally isometric to the unit sphere S° in 
E n + ^ , the following is known : 

η even : (H. Hopf, 1926). M is isometric to S n or to P n ( l O (obtained 
from S by identifying antipodal points). 

η = 3 : Η. Seifert and W. Threlfall, 1930-32). There are only finitely 
many homeomorphism types of three-dimensional spherical space-
f orms· 

n>4 : After G. Vincent (1947) cleared off the case n = 1 mod 4, J. Wolf 
(1967) solved the isometry classification problem for spherical 
space-forms of arbitrary dimension n>4 (see [27], p. vii, line 6 
from below and 7.4). 

( i i i) Riemannian manifolds with "rich" isometry groups. groups 
Abundance of isometries of a Riemannian manifold onto itself (i.e. a 

high degree of "inner movability") must imply a certain regularity of the sec
tional curvature, because of its invariance under isometries and thus corres
ponding restrictions on the isometry types are to be expected. Results here 
are best approached from the following two theorems a) and b) (not given in 
the chronological order of their discovery) : 

a) The isometry group of an η-dimensiona1 Riemannian manifold is a Lie -
group which acts differenti ably on M and has a dimension < (n+l)n/2 (see [15], 
vol. I, p. 239). [If equality holds in the dimension estimate, then M is of 
constant sectional curvature (see [15], vol. I, p. 238).] 

b) If an n-dimensional Riemannian manifold M is homogeneous, i.e. if the 
isometry group G of M acts transitively on M, then the isotropy group H of a 
point ρ € M (i.e. the group of all isometries leaving ρ fixed) is a compact 
subgroup of the Lie group G (see a)), and M is diffeomorphic to the manifold 
G/H of the left cosets of H in G. 

In particular it follows from this that the diffeomorphism types of all 
homogeneous Riemannian manifolds whose isometry groups are isomorphic to a 
fixed Lie group G can be enumerated by the manifolds G/H, where H runs through 
a system of representatives of the con.jugacy classes of all compact sub
groups of G. 

A type of converse is given by ven by: 
C) Let G be a connected Lie group acting differenti ably and transitive-
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ly on a differenti ably manifold M, such that the isotropy group H of a point 
p Ç M is compact- Then there always exists a Riemannian metric for M such that 
G acts on M by isometries of the Riemannian manifold (M,g) (see f 15Ί, vol. I, 
p. 154). 

Coro 1lary ·- If G possesses in addition a bi-invariant Riemannian metric g, 
i.e. one with respect to which the inner products of left and right invariant 
vector fields on G are constant (this is always the case if G is compact I), 
then the metric g on M in c) may be canonically obtained from this bi-inva
riant metric g on G and the Riemannian sectional curvature of M is always non-
negative (and can be explicitly calculated from g using algebraic operations 
of the Lie algebra of G alone, see [15], vol. II, p. 203). The best-known 
Riemannian manifolds fall into this category, e.g. projective spaces and 
Grassmann manifolds over ü and (C. 

d) A special class of homogeneous Riemannian manifolds which are parti
cularly well understood (and fully classified up to isometry I) are the gJ-Oj-
bally symmetric spaces of E. Cartan (see f 28]). These are Riemannian manifolds 
M for which at each point p$ M there exists an involutive isometry of M onto 
itself having ρ as an isolated fixed point. 

Among these globally symmetric spaces, the following examples have been 
important in the historical development : 

e) Helmholtz-Lie space forms are n-dimensiona1 Riemannian manifolds M manifolds M 
on which the isometry group acts transitively on the set of all orthonormal 
η-frames (of M). 

Since the "position" of a rigid body in space can be uniquely described described 
by giving one of its points and the position of an orthonormal η-frame fixed 
to the body at this point, the ÏIelmholtz-Li e space forms are, in a more physi
cal language, those Riemannian manifolds in which a rigid body can be moved 

from one position to any other position by a global isometry (of the manifold 

onto itself). Then (S. Lie, Κ. Weyl) 
An n-dimensional RelmhoItz-Lie space form M (n>2) is obviously of constant 
sectional curvature CG Ρ (because its isometry group also acts transitively 
on the bundle G^(TM) of all two-dimensional vector subspaces of tangent spaces 
to Μ) , and is -more precisely- either isometric to one of the simply connected, 
complete Riemannian manifolds of constant curvature (see (i), b) above), or 
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if C>0, possibly isometric to the η-dimensional real proiective space obtain
ed from the n-dimensional sphere of radius VC in Ε by identification of 
antipodal points. 

( i V) Effects of the values of the sectional curvature of a complete 
Riemannian manifold on its global topology or its differenti able 
structure. 

From around 1900 on, significant results were obtained concerning the 
question as to how far the global topology or differenti able structure of a 
complete Riemannian manifold is determined by the sign (or by the existence 
of bounds on the values) of its sectional curvature function. The following 
are a representative selection of such results. 

a) J. Hadamard (1898) for η=2, E. Cartan (1928) for n>3 : If M is an 
η-dimensional (n> 2) simply connected complete Riemannian manifold of non-
positive sectional curvature, then M is diffeomorphic to TR 

More precisely : for each point p G M the exponential map of M is a diffeomor-
phism from the tangent space of M at ρ onto M. In particular, each pair of 
points of M can be connected by exactly one geodesic, and this is the shortest 
path between them. 

b) S.B. Myers (1935) : If M is an η-dimensional (n>2) complete Rieman
nian manifold whose sectional curvature is at least as large as a fixed posi
tive number ε > 0. then the diameter of M is at most π V ε 

In particular, M is compact and the fundamental group of M is finite, as the 
covering group of the (analogously) compact universal covering space of M. 

C) J.L. Synere (1936) : If M is an even-dimensional compact Riemannian 
manifold with strictly positive sectional curvature and orientable (resp. non-
orientable), then M is simply connected (resp. possesses a two-sheeted univer
sal coverine: space). 

Since the diffeomorphism types of two-dimensional compact differenti able mani
folds are completely known, it follows that : 
Each compact two-dimensional Riemannian manifold of strictly positive section
al curvature is diffeomorphic either to the two-dimensional sphere S or to 
the two-dimensional real proiective plane Ρ ( Ή ) . 
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d) Topological and differenti able sphere theorems 
Let M be a compact simply connected Riemannian manifold with strictly positive 
sectional curvature. Consider the pinching number of M : 

(66) Ô(M) = 
min H (G0(TM)) 
max κ (G (TM)) 

e ] ο , ι ] 

i.e. the quotient of the minimal and maximal values of the sectional curvature 
function on M. 

Thenô(M) = 1 if and only if (see (i), b)) M is isometric to an n-dimensiona1 
Euclidean sphere in (n+1)-dimensiona1 Euclidean space- In the following "sphe
re theorems" , the question under investigation is that of how much ö(M) can 
deviate from 1 with M still remaining homeomorphic or diffeomorphic to such 
a sphere ? 

M. Berger (i960, [2'], for η even), W. Klingenberg (1961, for η odd) 
[after important first results of Η. E. Rauch (1951) and preliminary results 
of M. Berger (1958) and W. Klingenberg (1958-1959)] : If, under the hypothe
ses of d) one has δ(Μ) > — (see (66)), then M is homeomorphic to the unit sphe
re S in IE 

Supplement : For the complex proiective space Ρ (Œ) with its Fubini-Study 
metric, we have δ ( Ρ ( Œ ) = — , but Ρ ((Γ) is not homeomorphic to S for k>l. 
Thus the above lower bound is sharp at least for η even (for more refined re
sults, see M. Berger [2']). 

Ε. Ruh (1973) [after important preliminary results of D. Gromoll (1965), 
E. Calabi (1966), Shiohama, Tsugimoto and Η. Karcher (1971)] : If, under the 
hypotheses of (66), δ(Μ)> — , then M is diffeomorphic to the unitísphere S 
in IE 

[The bound — in the preceding results is presumably not sharp.] 

e) The diffeomorphism types of complete, non-compact Riemannian manifolds 
of non-negative sectional curvature. 
St. Cohn-Vossen (1935/36) : If M is a two-dimensional complete non-compact 
Riemannian manifold of non-negative sectional curvature, then either Η ΞΟ 
(and hence M is isometric to 1Ê . to a cylinder, or to a Möbius band) or M is 
diffeomorphic to ~R (if H /¿O). 
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The following generalization is valid for dim M> 2 : 
D. Gromoll and W. Mever (1969) : If M is an n-dimensional (n>2) complete. 
non-compact Riemannian manifold with strictly positive sectional curvature, 
then M is diffeomorphic to ]Rn (see Γ 10]). 

The zero value is allowed for the curvature,then M need no longer to be 
diffeomorphic to ]Rn . However, one has : 
J. Cheeger and D. Gromoll (1972) : If M is an η-dimensiona1 (n > 2) complete, 
non-compact Riemannian manifold with non-nee;ative sectional curvature, then M 
is diffeomorphic to the total space of the normal bundle of a compact (totally 
geodesic, totally convex) submanifold S with boundary of M (see 5 theorem 
2.2). 

(v) The Gauss-Bonnet theorem and characteristic differential forms on 
Riemannian and KHhler manifolds, according to S.S. Chern. 

Shortly after its appearance, the "Gauss-Bonnet theorem" of the "Disqui-
sitiones generales" (see (34) above) for small geodesic triangles of a surfa
ce underwent a curious, "extrinsinc" generalization : 

a) C.G. Jacobi ( 1837, see ! 13]) : Consider a "small" triangle in Eucli
dean space E^ formed by three curves without points of inflection, such that 
the principal normal vector fields of each pair of sides agree in their common 
vertex. Then the image of the principal normal fields of the three sides 
bounds a compact subset of S" whose oriented surface area " is equal to the 
sum of the angles of the triangle minus τι. 

b) 0. Bonnet discovered the following integral theorem in 1848 (see 
Γ 3]) : Let Ν be a two-dimensional, compact, simply connected submanifold 
with boundary of a two-dimensional surface M in Ε . (M may actually be any 
two-dimensional Riemannian manifold.) Then the sum of the integral of the 
Gauss curvature Κ over Ν and of the integral of the geodesic curvature κ over 
the boundary ON of Ν is eoual to 2π : 

(67) Kda + Γ * ds = 2π 

This theorem yields (by "rounding off corners") the following more general 
result : 

^ The sign of the surface area is determined by a convention analogous to 
the one used in (57). 
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C) Let Ν be a simply connected open subset of a two-dimensional Rieman-
nian manifold M, bounded by a "polygon" made of r smooth curves Ci (indices 
i6 TL mod r), such that the end point of Ci is equal to the initial point of 
C^+^ and such that the inner angle at this vertex is α_£[0,π;]. Then, with 
notations analogous to (67), we have 

(68) Kda + Σ f H ds = Σ α. + (2-τ)κ 

Gauss' formula (34) follows from (68) with r= 3, if C^, C 0, C^ are geodesic 
curves on M. On the other hand, by suitable dissection into simply connected 
subregions using regular curves and by balancing sums of angles, it follows 
that : 

d) If M is a compact oriented two-dimensional surface (without boundary) 
in IE , with tí-enus ρ, then 

(69) 1 
2π Kda = 2(l-p) = χ(Μ) Euler-Poincaré 

characteristic of M 

Hence the total curvature of M introduced by Gauss is not only an isometry in
var i ant,fact th at Gauss knew from 1816 on and proved in the "Disquisitiones 
generales", but even a topological invariant of the compact orientable surfa
ce M, and in particular independent of the special differenti able imbedding 
of M in IE3 i 

In 1925, H. Hopf (see [ll]) interpreted the integral in (69) as : 
1 
4ττ Kda = Brouwer degree of the spherical Gauss map of M 

(see (7)) and calculated this degree for arbitrary compact oriented hypersur-
faces M without boundary in En+ 1 using only topological methods (and Poinca-
ré's theorem, according to which the sum of indices of a tangential vector 
field on M with only finitely many zeroes is equal to χ(Μ)), and obtained the 
value — χ(Μ). Thus (69) was proved, in a way which was to become a model for 
further development. 

e) In 1940, C.B. Allendoerfer and W. Fenchel independently discovered discovered 
an analog of (69) for an arbitrary n-dimensional (n>2) compact, oriented Rie
mannian manifold M which permits an isometric embedding in an Euclidean space 
]En+k (with arbitrary codimension k). The latter condition is, as we know 
today, according to the embedding theorem of J. Nash (1956, see [19]) not a 
restriction on M, but the proofs given for this theorem, which can be formu-
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lated in terms of the inner differential geometry of M alone, used extrinsic 
components, i.e. the explicit embedding of M in E n + ^ . The first proof comple 
tely within the domain of "inner differential geometry" was given by : 
S.S. Chern (1944, [6]) : If M is an n-dimensiona1 compact oriented Rieman
nian manifold without boundary, then there is a universal differential form Ω 
of η - degree on M, the so-called Euler form, which can be calculated from the 
Riemannian curvature tensor of M alone, and for which the general "Gauss-
Bonnet theorem" holds : 

(70) J Ω = χ(Μ) . 

Remark .- S.S. Chern uses a differenti able unit vector field Ε on M\ {p} in 
his proof. That is, the vector field Ε has only one singularity pt M, and it 
defines in a canonical way a continuous map f from the (n-1)-dimensiona1 sphe
re of all unit vectors on M at ρ onto itself, whose degree on the one hand 
according to Poinearé-Hopf is equal to the Euler characteristic χ(Μ). Chern 
cannot show (because the "extrinsic" Gauss map is not available I ) that this 
degree is equal on the other hand to the integral on the left hand side in 
(70) as Hopf did, but instead he proves this by a completely new geometric in
tegration (using Kronecker's integral formula). 

In this connection it must be emphasized that the "intrisic" proof of 
(70) given by S.S. Chern in [6] opened a new horizon for "inner differential 
geometry". Up until then, "inner differential geometry" was understood to be 
the geometry of the Riemannian manifold M which only operated "in M". Here 
this is no longer the case in a strict sense. The proof of S.S. Chern involves 
in addition to M other manifolds and differential forms on them, as well as 
differentiable maps from M (or embeddings of M\ {p} with ρ G M) into them. How
ever, these manifolds "grow naturally" from Μ·, for example, the unit tangent 
bundle of M or the bundle of orthonormal η-frames and the corresponding dif
ferential forms arise in a natural way from the Riemannian manifold M alone 
(as H. Weyl paraphrased this "like a snail builds its own house by itself"). 
These higher dimensional intrinsically constructed bundle manifolds "over M" 
play the role of a "substitute" for the missing Euclidean space in S.S. Chern's 
proof (as can be seen by comparing it with H. Hopfs proof for (69) quoted 
above), an idea which has contributed considerably to the development of the 
methods and reasoning of recent "inner differential geometry". 

f) Because of (70) and (69), a Riemannian metric on a compact oriented 
differenti able manifold cannot have a completely "arbitrary" sectional curva-
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ture function. For example, according to (69), each Riemannian metric on the 
two-dimensional sphere S² must have a Gaussian curvature function that takes 
on some positive values (so that the integral in (69) can attain the value 
\(S ) = 2> 0). The question as to whether or when a given function Κ on a two-
dimensional differenti able manifold M can be realized as the Gaussian curva
ture of a Riemannian metric for M (and analogously for higher dimensions), has 
been recently treated with success, in particular by J- Kazdan and F. Warner 
(1973/1974), and H - Gluck ( 1971/1974). For this, see the survey article [8] 
with its extensive bibliography. 

g) For a compact, oriented surface M in JÊ  , the intrinsic Euler form Ω 
(whose integral over M gave us a topological invariant for M, see (70)), as 
comparison with (69) and (58) shows, was just (up to a universal constant fac-
tor) the pull back under the Gauss map ζ : M— S (see (7)) of the surface area 
form σ 0 of S which is a closed differential form of degree two. 

An analogous extrinsic construction leads, in the case of higher dimensio
nal Riemannian manifolds, also to new intrinsic forms, i.e. to the so-called 
' ' £ Ĵ̂ Jl̂ ctertic differential formss jof M " . 

Let M be an n-dimensional compact oriented Riemannian manifold which has 
an isometric embedding f : M -» ]En + ̂  (because of the well-known embedding theo
rem of J. Nash (1956, see [.19]), such an embedding always exists for 
k>-l(n+1) n(3n+11 ) ). According to H. Whitney, we have the following generali
zation of the Gauss map, called the Whitney map W by parallel tangents, which 
assigns to each p£ M the η-dimensional vector subspace W(p) of Ε obtained 
by parallel translation of the image (under the embedding f) of the tangent 
space to M at ρ to the origin of 1Εη + ̂  . Hence W is a differenti ab1e map from 
M into the Grassmann manifold of all η-dimensiona1 vector subspaces of Ε Π + ^ , 
which is canonically a homogeneous Riemannian manifold (= 0(n + k)/0(n)x Q(k)) 
on which there exist certain standard closed differential 4^-forms- If one pulls 
these forms back to M through W, then one obtains the so-called "characteristic 
differential forms of M" or Pontrjagin forms of M. Similarly these do not 
depend on the special isometric embedding f of M is a Euclidean, and can be 
calculated from the (intrinsic) Riemannian curvature tensor alone. Their de 
Rham cohomology classes (i.e. the so-called Pontrjagin classes of M) are even 
independent of the Riemannian metric of M and turn out to be invariants of 
the underlying differenti able manifold of M. For n-dimensional (complex) 
Kahler manifolds M, the analogous so-called "Chern forms", which are closed 
differential forms of degrees 2,4,...,2n, can be again intrinsically construct
ed using only the Riemannian curvature tensor of M. Their de Rham cohomology 
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classes are integral valued (like the Pontryagin classes) and are i nvari ants 

for the underlying holomorphic structure of M. These characteristic cohomology 

classes of Riemannian and KMhler manifolds, calculated by differential geome

tric methods, have become an important instrument linking topology (resp. dif

ferential topology) with differential geometry. 

(vi) Angle comparison theorem. 

Already in the "Disqui sitiones generales", Gauss gave (see (35) above) 

an infinitesimal angle comparison theorem for small geodesic triangles on a 

surface in ("compared" with a planar Euclidean triangle the corresponding 

sides of which are of the same length). 

Global angle comparison theorems between geodesic triangles on Riemannian 

manifolds, whose sectional curvature values are bounded from above or below 

by fixed values, have proved to be fundamental and very powerful tools in glo

bal differential geometry. We quote here only a simple, but particularly im

pressive theorem from the many theorems of this type, developed principally 

by A.D. Alexandroff and W.A. Toponogoff (for more subtle versions, see e.g. 

[5], theorem 1.1 or [14]). 

W.A. Toponogoff (1958) : Let M be an n-dimensional (n>2) complete Rie

mannian manifold whose sectional curvature function H takes on only values 

> C (Ç IR). Denote by MÍ1 "the" two-dimensional simply connected complete Rie

mannian manifold of constant sectional curvature C (see (i), b)). which will 

bĵjjj3ejl_ji_as the mevem pf cpùâarosp,.Let Δ be a triangle whose sides are shor
test paths in M, with side lenerths a. b. c and (oDoosite) ane-les α . β. v. Thon 
there exists a geodesic triangle Δ^ in M„, with the same side lenerths as Δ, and 
alióse angles α , β , γ EitliíllJtAllSLJ^the following comparaison with those of Δ 

a c s a ac s a Y C s γ . 

There is no doubt that this survey is a very incomplete selection (and 
at times possibly appearing quite arbitrary) from the entire collection of 
results in differential geometry during the last 150 years (and in particular, 
it was not meant to contain any judgment concerning the relative importance of 
the results). Highly interesting questions on geodesies (their shortest path 
properties both locally and globally, conjugate points, cut points, • · - , exis-
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tence of closed geodesies), questions on minimal surfaces (the Plateau problem 
and regularity questions around it, Berstein's theorem and higher-dimensional 
analogues,...), more generally questions concerning the so-called "harmonic 
maps" of Riemannian manifolds, and finally all questions about the shape, rigi
dity or flexibility of submanifolds in Riemannian manifolds of constant curva
ture, all of these questions had to be left aside (in the lecture) because of 
lack of time, although the results in these areas are not only numerous but 
they are even, in their contents, extremely impressive i 

However, the goal of the selection was to present fundamental "classical", 
and at the same time, "live" themes of differential geometry, in order to 
show (even to a non-specialist in the field , if possible) on the one hand 
how deeply differential geometry still depends on the concepts and results, 
respectively is still involved with themes,first presented by Gauss in his 
"Disquisiti ones generales", and on the other hand how far the growth and the 
development of these ideas (which partly were only intimated by Gauss) has 
been carried. When the full breadth and the lasting influence of the "Disqui-
sitiones generales" on the growth of differential geometry became clear to me 
(for the first time on the occasion of the preparation of this lecture ! ) , 
I was reminded of the short address delivered by Heinz Hopf, at the Internatio
nal Congress of Mathematicians of 1958 in Edinburgh, as President of the Fields 
Medal Committee at that time. Among other things, he said (see [12], p. liii, 
line 2 from below) : 

"The great variety within mathematics is due not only to the multiplicity 
of the branches of mathematics, but also to the diversity of the general tasks 
that face a mathematician in any branch. A task which is particularly funda
mental is : to solve old problems ; and another, no less fundamental, is : 

to open the way to new developments." 
Few mathematical papers have fulfilled this latter task to the extent 

that the "Disquiti ones generales circa superficies curvas" by Carl Friedrich 
Gauss have, and it is above all for this reason, in my opinion, that this 
work shall continue to be a "showpiece" of mathematical literature Í 
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