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ALMOST CONSTANT SEQUENCES 

by 

Viktor LOSERT and Harald RINDLER 

Rauzy has characterized ail real séquences (c n) such that for any 

uniformly distributed séquence (x n) the séquence ^
c

n

 + x

n )
 i s again 

u.d. modulo 1, [6]. A new proof of this resuit was given in [ 10] , 

together with a generalization to uniform distribution in compact 

metric groups and to R n. The aim of this paper is to consider the 

corresponding questions for locally compact Abelian groups with re

spect to several concepts of uniform distribution. Our methods admit 

also generalizations to the non-Abelian case. For gênerai références 

we refer to [1]. For other generalizations see [7] Ch. IV and [2]. 

1 . Définition 1 : If G is a locally compact group let M(G) be the 

set of (Hartman)uniformly distributed séquences (x ) in G, i.e.; 

lim N~ 1 S U(x ) = 0 
N-» oo n<N n 

hold for ail non-trivial irreducible finite-dimensional continuous 

unitary représentations U of G. 

Définition 2: a) C(G) = U c ) :x € M(G) (c nx n) € M(G)} 

b) C 0(G) = {(cn):3a> 1 such that c n = c m if a k £ n,m< a k + 1 ,k= 0,1 ,2,...} 

If G is metrizable let d(x,y)'be a bounded left-invariant metric 

on G and define for arbitrary séquences 

Cx n),(y n):gCx n,y n)=TÏ5 N"
1 ^ d C x ^ ) 

If A is a family of séquences, A" will dénote the "closure" with 

respect to the pseudo-metric g. îf G is non-metrizable consider the 

family of ail lef t-invariant pseudo-metrics d^, i € I , the according 

pseudo-metrics g^, i€I induce a topology on the space of ail sé

quences on G. 
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Theorem .1 : If G is a locally compact separable abelian group then 

c ( a ) = c o ( G ) ~ 

Remarks: If G is not separable, i.e. there exists no countable 

dense subset it can easily be seen that M(G) is void. For metric 

groups Th. 1 has been announced in [11], but our methods admit ge

neralizations to non-Abelian groups. 

Proof: 

Lemma 1 ; Let h: G -» H be a continuous group homomorphism. G 1.c.  

separable. H compact metric. such that h(G)~" = H. If (y n) € M (H) then  

there exists (x n)€M(G) such that lim d n(h(x n) ,y ) = 0 (d^ = metric 

on H ) . 

Remarks: If h is surjective it is possible to achieve ktx n)'=y n if 

G is metric and abelian or compact, [ 8 ] , in the compact case it is 

sufficient that G is separable, [ 3 ] ; if H is only separable even for. 

G-= H x • = {-1 ,1} this is no longer true in gênerai, [ 4 ] , and open 

even in the case G = R x Z 2 , H=R. For G = Z , H=R/Z, hCz) = za, a irra-

tional the lemma above cannot be strengthened (e.g. : Ch""̂  (2az) ) = (2z) 

is not u.d. in Z). 

Proof: Let (z n) be an arbitrary u.d. séquence in G Cwhich exists, 

[9], Th. 1). For k=1,2,... let (V ± k) Ci=1,2,...,m k) be a partition 

of H into sets of diameter less than 1/k such that the boundary of 

each V i k has measure 0 and each V i k has positive measure. Put \ for 

the normalized Haarmeasure on H and Cy for the characteristic function 

of a set V. We can construct a séquence of indices (N k) such that 

N k + 1 £ 2N k and for ail N> N k and i< m k: 

| N ~ 1 S C y (y)-X(V i k ) l < V 2 k m k 

n<N Vik n l l c K 

and 
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| N _ 1 i / v . v ( h C * n ) ) - x c v l k ) | < i . / 2 \ 
n<N îk 

By induction we define a map p: N -> N in the following way: If 

n< N-j put p(n) = n. If n< , y n€ V i k , let ptn) be the smallest 

number m such that b(z m) 6 V i k and m=j=p(s) for s< n. We put x n =
 z p ( n ) * 

Since dH^ h^ zp( n) >yn)
 < 1 A f o r n - N k w e h a v e l i m d H ^ x n ^ , y n ^ = 0 # 

Let|A|be the number of éléments of a finite set A, put D p(N)= 

= I p([ 1 ,N] ) \ [ 1 ,N] | . If N> N f c, it is easily seen that 

D (N)SD(N k)+ E | E C v ( y ) - C (h(z ) )| < D (N ) + 
p p * i<m k N k + 1Sn<N

 Vik n Vik n p K 

+ 4Nm k/2
km k = D p(N k) +N/2

k~ 1 . 

In particular we get by induction: 

D (N v) £ E N J2*~3* N, . k/2 k" 3  

p k 2<j<k J K 

and consequently D (N) < N(k+2)2k""5 = otN) . 

Since p is by définition injective, we have | [ 1 ,N]\p([ 1 fN] )| =D (NX 
sr 

i.e. the symmetric différence between the two sets is 2D (N) = otN) # 

It follows immediately that the séquence (x n) = ̂
zp( n) )

 i s u«&« like 

the séquence (z n). q.e.d. 

As any représentation U (in Def• 1) is a homomorphism into a 

compact group and because the homomorphic image of a u.d. séquence is 

u.d. in the closure of the image (this follows easily from the Défi

nition of u.d.) we obtain 

Proposition 1 : (c n) € C(G) iff Utc ) € UtG)" for any représentation 

U. 

Remarks: If G is Abelian, the U's are just the éléments of G the 

character group of G; we have U(G) £ T the 1-dimensional torus. 
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In order to prove that te n) € CtG) it is sufficient to know that 

(UCcn)) €CtT) for ail U from a subset of G which séparâtes the points 

of G and is either non meagre or has positive measure, This follows 

from the observation that CtT) is a group and consequently the set of 

ail U for which tUtcn))€ CtT) a subgroup of G. As a conséquence of 

Proposition 1 we obtain also for non-compact H: 

Corollary; If h: G -> H is a continuous epimorphism, te )€ CtG) 

then (h(cn))€ C(H). 

In order to prove Theorem 1 it suffices to consider metric groups, 

(G is the projective limit of metric (even Lie-)groups: G/N^, i € I , 

andby the corollary we have for (c n)€C(G) and h^: G -* G/iftL : 

(h i(c n) ) € CC G / ^ ) , and the metrics d i from G/N^ détermine the topology 

on G ) . 

In order to prove Theorem 1 it is sufficient to prove the following 

Lemma ( s e e [ 1 0 ] , e s p . Lemma 4). 

Lemma 2: If te) € CtG) then lim lT 1 • £ dtc ,c ) = 0 
n n<N n n 

Proof: For any U € G we have by Prop. 1 that Utc ) € C(U(G)"). As 

Th. 1 is known for U(G)~ (already proved by Rauzy, see also [10]) it 

follows that 

lim N" 1 S | Utc ) - te .* )| = 0 for ail U€ G. 
n<N n n + l 

Take e > 0 and put. W = { x € G : dtx,e)<e} W is an open neighbourhood of 

the unit élément of G. If V is an open symmetric neighbourhood of e 

with V + V s W then f = tVX(V)) Cy# C^ is a positive definite conti

nuous function, satisfies fte) = 1 and vanishes outside W. By Bochner's 
A 

theorem there exists a probability measure u on G such that 

ftx) =J Utx)d|itU) for ail x€ G. 
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By Lebesgueîs dominated convergence theorem we conclude that 

lim N" 1 T, |fC-c„+1+c )-1| <lim J N" 1 S | U(-c + 1 + c ) - 11 d|i (U) = 0. 
n<N n + l n n<N n n 

It follwos that the set {n: -c + 1 +c n $ ¥} = {n: d(c n, c n + 1 ) > e} has 

density 0 in N. Since d is bounded we get lim 1/N • £ d(c ,c„ , * ) < e 
n<N n n 

for ail e> 0. q.e.d. 

Remarks : Theorem 1 holds also for non-abelian group s with the 

property that ail irreducible unitary représentations are finite di-

mensional (same proof). If the finite dimensional unitary représenta

tions U do not separate points of G, i.e. if there exists e such 

that U(x) =U(e) for ail U, then the séquence e,x,e,x,e,x,... belongs 

to C(G) but not to C (G)~. 

Dénote by the symmetric group and by A^ the alternating group 

of 3 éléments and consider the discrète group G of ail séquences 

g=g^\ i= 1 ,2,... € S 5, + e for at most finitely many i. 

If U is a fine-dimensional représentation of G, dénote by U trie 

restriction to the i-th component. From the fact the U^'^ commutes 

with ± 4 J i"t can be derived that U^"^ restricted to A^ is the 

trivial représentation for ail but at most finitely many i (S dim U/2). 

It follows that the séquence (c n) : cj*^ = © if i 4 n » c n^
n^ = (123 ) £ A^ 

belongs to C(G) but not to C (G)""# Nevertheless G has a separating 

family of 2-dimensional représentations. 

2. Now we want to consider concepts of uniform distribution con-

nected with infinité dimensional représentation. For 1< p< oo put 

L p(G) = {f: (,f|f(x)|p d x ) 1 / / p = ||f||p< oo} , "dx" dénotes a left Haar 

measure. Consider the left regular représentation 

f -> L yf, L yf(x) = f(y~
1x), x,y€G 
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Définition 3: A séquence (x n) in G is called L
p-uniformly distri

buted if !| N" 1 - S L f|L -> 0 for ail f € L 1 0 L p with J f = 0 . M(L P(G)) 
n<N n p ~ 

shall dénote the set of ail Lp-u.d. séquences. 

Définition 4: C(L P(G))={(c n) : (x n)€ M(L
P(G)) =» (c nx n)€ M(L

P(G)) 

Remark: It is known that for compact groups M(G)=M(L P(G)) for ail 

p and M(L 1(G)c M(G) in gênerai, [9]. M(L 1(G)£ 0 if and only if G is 

amenable and separable (see [9] and [5]). 

Theorem 2: If G is a locally compact separable abelian group then 

C(L1(G))=C(G). 

Proof: The same proof as in Lemma 1 shows the following resuit: if 

h: G -* H is a continuous group homomorphism onto a dense subgroup of 

H, and if (y n)€ M(H) then there exists (x ) €M(L
1(G)) such that 

d H ^ x n ^ , y n ^ "* 0 ( u s e t h e r e l a t i o n M(L 1(G))c M(G)). It follows that 

(c n) € C(L
1 (G)) implies (UCc ) ) € C(U(G)") for ail U€ G and by Propo

sition 1 that (c ) € C(G). On the other hand it follows easily from 

the characterization of C(G) in Theorem 1 that C(G)ç C(L 1(G)). q.e.d. 

Remarks: Again the resuit can be extended to groups having only 

finite dimensional représentations which are known to be amenable. 

C(L^(G)eC(G) for any separable amenable group (same proof as above). 

In the gênerai non-abelian case several pathologies may appear: 

If G=P<j the projective group then M(L^(P^))=0. P̂  is not amenable, 

M(P>| ) = P ^ the set of ail séquences as P̂  is minimal almost periodic 

i.e. has no non-trivial finite dimensional unitary représentation. We 

have C(L1 (P1 )) = C(P1 ) ̂ P ^ ! 

Let G be the group of ail permutations p of an uncountable set such 

that E p={x:p(x)4x} is finite then it is known that G is amenable and 
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minimal almost periodic. We have again M(L 1(G))4 0 is not separa

ble), M(G) = G N, C(L1 (G)) = C(G) = G N. Replacing G by Gx.Z 2 we obtain 

C(L1 (Gx Z 2)) 4CCGX Z 2 ) . 

If G is the group of affine transformations of the line it can be 

1 1 
shown that C(L (G)) contains a séquence (c n) such that Cx nc n) i M(l (G)) 

for some (x n) É M(L
1 (G) ), [9], Satz 9-

It can be shown that for a connected separable l.c. group G the set 

G(L1(G)) coïncides with C(G) if and only if either Gs*R nxK, K compact 

or G is non amenable and minimal almost periodic. The essential part 

of the proof is the classical theorem of Freudenthal which implies 

that the only connected groups such that the finite dim. unitary 

représentations separate points of G are isomorphic to R n x K. 

G = R, G = Z are typical for the abelian non-compact case. It should 

be noted that in both cases M(LUG)) is a proper subset of M(G). It 

is already a conséquence of results of Weyl that the séquence C/2n +n) 

is u.d. in R and the according séquence of integers (z ) 

(z n<y2 n
2 + n< z n + 1 ) 

is u.d. in Z. Therefore Theorem 2 does not follow from Theorem 1 . 

2 

3. In this section we study the case of L -uniform distribution 

which is quite différent from the preceding two cases. TJie results 

hold for arbitrary locally compact groups (M(L P(G)=M(G) if G is 
D 1 

compact as mentioned above). For non-compact groups L pn L (G) is 

dense in L P(G) and we can choose any f€ L P(G) in Définition 3 Cp> 1). 

Theorem 3: Let (x n) be a séquence in G (non-compact), K a compact  

subset of G with nonempty interior. The following statements are  

équivalent : 
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a) (x n) JLS L^-uniformly distributed 

b) (x n) is L
p-u.d. for some p with 1 < p< oo 

°) ( x

n) Lp-u.d. for ail p with 1 < p< oo 

d) For any e> 0 there exists N Q(e) such that 

1/N.|{n: l £ n < N , x n^xK}|<e for ail x6 G t N>N Q(e) 

Proof: Assume a) , b) or c) holds and that 1/N|(n: 1 £ n< N,x n€ xK}|̂ e 

for arbitrary large N. Put f = C 0 € L
p(G)(1<p< oo). If x € xK then 

ET" 
x ~ 1y€ K""2 for ail y € xK"1 . It follows that 1/N E L f > e on xlT1 . 

n n<N n 
Since f is non-negative we conclude that 

|| 1/N E L f|l * e (X(K- 1)) 1 / p 

n<N x n p 

which contradicts the assumption that (x n) is L
p-u.d. (note the re-

mark before Th. 3). 

Now we assume that d) holds and we will prove c). It is easily seen 

that d) can be extended to arbitrary compact sets with non-empty in-

-1 -1 
terior. Put f = C 1 . If x * y € K then x € yK. It follows that 

K n n 

1/N E I> f (y) = 1/N| {n:1 < n< N, x € yK| < c for N > N (e), 
n^N x n n 

Consequently: || 1/N 2 1 f|| S e C p _ 1 ) / p II 1/N S L f|| / p = 
n<N x n p n<N x n 

= E

( P " 1 ) / P X C K ~ 1 ) 1 / P . 

This shows that lim ||1/N E L f|| = 0 for ail f = C 1 # Since thèse 
n<N x n p K~ 

functions generate a dense subspace of Lp((x) it follows that (x ) is 

Lp-u.d. 

The first two theorems have shown that (for abelian groups) C(G-) 

and C(L (G)) consists of ail séquences which are "almost constant" in 

a certain sensé (closure of C Q(G)). Here the situation is quite 

différent : 
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Définition 5: C f ( G ) = { ( c n ) c G-, 3b€ N : | { c n : 2 i< n< 21} | <r b for 

i = 1,2,.. îfcL i, i € I is the family of ail bounded left invariant  

metrics on G we can define the closure of C^(G) as before. 

o _ 

Theorem 4 Î For any non-compact l.c. group C(L (G)) = Cf(G)"" 

Proof: It follows easily from Theorem 3 d) that C f(G)s C(L
2(G)) and 

consequently C f (G)"" c C(L 2(G) ). 

Conversely assume that (d n) does not belong to the closure of C f(G), 

i.e. there exists ô > 0 and a pseudo-metric g such that g ( ( c ) , ( d ) ) ^ ô 

for ail (c ) '€ C^(G). Dénote by d the corresponding pseudo-metric of G, 

let U be a compact neighbourhood of e which is contained in 

{x:d(x,e)< 6/2} 

and choose a compact symmetric neighbourhood V such that V^çU, There 

2 
exists a séquence (x n) such that x nU covers G and X^ÉJ XA

T for i< n. 

Take b, i € N. Let x ^ (b) be that élément x^ such that 

|{n: 2 i < n < 2 i + 1 , d ~ 1 € x .U} | 1 9 n j 1 

is maximal. Similar choose x i 2(b) in such a way that 

|{n: 2 i < n S 2 i + 1 , d n "
1 € x^ClOU, dn~

1'4 x ± 1 Cb)U} | 

is maximal, and so on. In this way we get éléments x ^ (b),... fX ^ C b ) 

for i= 1,2,... Now define c n = x i 1(b) for those n such that 

2 l < n < 2 l + 1 , d n"
1 € x ± 2(b)U. Similarly define c n = x i 2 C b ) for those n 

such that 2 l < n < 2 l + 1 , d n~
1 € x ± 2(b)U, dn""

1 $ x. 1 (b)U and so on. Let I 1 

be the set of indices for which c n is defined as above. For n€ I 2 = 

= N\ 1̂  put c n = e . Since we may assume that d is bounded by one we 

find that 6 «S Tîm 1/N £ d(c , d j < 6/2+ï ïm 1/N | l o 0 [ 1 , N ] | =6/2 + 3(10) 
N->oo n<N n n 1 * 

(3 dénotes the outer density). It follows that 3(I 2)>6/2. We make 

this construction for each b and find sets I 2(b). Now choose an in-

creasing séquence of indices N^ = 0 < N 2 < ... such that 

1 - N k ) |l2(k)n t N k , N k + 1 ] ' | >ô/2 and each N f e is of the form 2*. 
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For n€ I 2(b) with N ^ 2 i < n< 2 i + 1 ̂  N^ + 1 choose the smallest number 

j f N such that d € x .U and put y = x.. If x€G, x.,xn € xV, then n j n j 3 K 

j = k by the définition of the séquence (x ') • It follows that 

{n: 2 i < n < 2 i + 1 , n € I 2 ( b ) , y n€xV}c{n: 2
1 < n< 2 i + 1 ,n€ I 2(b) ,d n"

1 €x .U, 

d ~^ j! x vU Vk< j} . By construction of the x . this set has at most 2"j/(b+1 ) 
n K oo J 

éléments. Put I 2 = U ^ k,N k +,j]n I 2(k). The preceding argument shows 
k~1 

that for any y> 0 and N£ N( Y) we have 1/Nf {n i U : n € T 2

: y

n

€ x V H < Y 

for ail x€ Now choose a séquence ijn' n € N \ T 2 } such that the ?>ets 

{y nU: n€ N \ T 2) are pairwise disjoint. Then it is easily seen that 

2 —1 
the séquence (y ) is L -u.d. in G. On the other hand d n y n € if for 

n € l 2 # Since T 2 has positive outer density it follows that C^ny ) is 

2 2 
not L -u.d. in G, consequently (d n)^C(L (G)), q.e.d. 

2 

Remarks: Theorem 3 implies that M(L (G)) 4=0 for any non compact 

group. M(L (G))cM(G) just for compact groups (then equality holds, 

also in the non-separable case (both sets are empty)). Dénote by N(G) 

the intersection of ail kernels of finite dimensional unitary repré

sentations then we can show: If M(G)40 then M(G) is not a subset of 

M(L (G)) if and only if G is not compact and G/N(G) is compact: If 

G/N(G) is compact then replacing (x ) € M(G) by (y n) such that 

x ny n"
1 € N(G) and that ( y ^ e K compact we have (y ) € M(L 2(G) ) \ M(G) if 

G is not compact (Th. 3). If G/N is not compact any compact set K in G 

has measure 0 considered as a subset of the Bohr compactification of 

G. Then it is easy to see that for ( x ) € M(G) 1/N £ 0 ^(x ) -> 0 uni-

P

 N ÏÏ£N X K N 

formly in x € G i.e. (x Q)€ M(IT(G)) by Th. 3. 

If (c n)€C f(G) then we are able to prove that (x nc n) € M(L
2(G) for 

2 
any (x n)€ M(L (G) iff there exists a compact neighbourhood of e such 

that U c Vc has compact closure in G. The closure of this subset of 
n n n 

C f(G) consists exactly of thèse (c n) such that (x n)€ M(L (G)) implies 
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that (x nc n)fM(L
2(&)) (see also [ 2 ] ). It follows that (x nc n) € M(L

2(G) 

for any ( c n ) € C(L 2(G), (x )€ M(L 2(G)) if and only if G has a compact 

invariant neighbourhood U (x" 1Ux=U for ail x £ G). For M(G) this is 

true in gênerai, [9] Satz 11. For C(L (G)) the resuit above is not 

true even for groups having a compact invariant neighbourhood (see 

[9] p. 222) but holds if G has a basis at e of invariant neighbour-

hoods, [9], Satz 12. 
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