
Astérisque

H. W. JUN. LENSTRA
Euclidean ideal classes

Astérisque, tome 61 (1979), p. 121-131
<http://www.numdam.org/item?id=AST_1979__61__121_0>

© Société mathématique de France, 1979, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1979__61__121_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Société Mathématique de France 
Astérisque 61 (1979) p. 121-131 

EUCLIDEAN IDEAL CLASSES 

par 

H.W. Lenstra, jr 

Introduction 

A classical method, due to Euclid, Stevin and Gauss, to establish that a given com-

mutative ring R is a principal idéal ring consists in showing that R is 

Euclidean, i.e. that there exists a map (p from R - {0} to a well-ordered set, 

usually IN = {0, 1,2, ...} , such that for ail a, b e R, b ï 0, a i Rb, there 

exist q, r e R such that a = qb + r and cp(r) < tp(b). Such a map cp is said 

to be a Euclidean algorithm on R, and R is called Euclidean with respect  

to cp. 

A case of spécial interest in number theory is the following. Let K be a 

global field, i.e. a finite extension of Q or a function field in one variable 

over a finite field W . Dénote by P the set of ail non-trivial prime divisors 
q 

of K, and let S <= P be a finite non-empty subset containing the set S^ of 

archimedean prime divisors of K. For R we take the ring of S-integers in K: 

R = {x £ K: |x|p < 1 for ail p e P - S}, 

where | for £ £ P, dénotes an absolute value of K corresponding to £. 

For x £ R - {0}, the norm N(x) is the cardinality of the finite ring R/Rx. 

One is interested in conditions under which the norm N is a Euclidean algorithm 

on R. Most of the literature on the subject (see [8] for références) restricts 

to the case that K is a number field, and S = S^. Then R is the ring of 

algebraic integers in K, and N is the absolute value of the field norm K Q 

(restricted to R - {0}). 
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Let the norm N be extended to K by multiplicativity and N(0) = 0. Then 

it is easily seen that N is a Euclidean algorithm on R if and only if 

(0.1) for ail x e K there exists y e R such that N(x-y) < 1. 

In this paper we investigate a similar property in which the rôle of the ring R 

is played by a fractional idéal £ of R. If a. <= R is a non-zero idéal, we 

define N(a) to be the cardinality of R/a, and we extend the définition of 

N(a) to fractional ideals by multiplicativity. We are interested in the following 

property of a fractional idéal £: 

(0.2) for ail x e K there exists y e £ such that N(x-y) < N(£). 

For £ = R this clearly reduces to (0.1). If £ is principal, £ = Rc, then 

N(£) = N(c) and dividing by c we see that (0.2) and (0.1) are équivalent. 

Generally, this argument shows that whether or not (0.2) is satisfied only dépends 

on the idéal class [£] of £. If it is satisfied, we say that the idéal class 

[c] is Euclidean for the norm or norm-Euclidean. So the principal idéal class is 

Euclidean for the norm if and only if N is a Euclidean algorithm on R. 

Here is an example of a non-principal Euclidean idéal c lass. Let K = Q(/-5), 

R = ZC/-5] (so S = Sj and £ = (2, 1 + /-5). Then N(c_) = 2, and N(x) = |x|2 

for x £ K if K is considered as a subfield of (C. Drawing a picture (cf. [2]) 

one finds that 

for ail x £ Œ there exists y £ £ such that |x-y| < /2, 

so (0.2) holds. But (0.1) doesnft, because R is no principal idéal ring. 

The main resuit about Euclidean idéal classes is the following theorem. 

(0.3) Theorem The ring R has at most one idéal class which is Euclidean for the 

norm. If there is one, then it générâtes the idéal class group of R. 

In particular, if the principal idéal class is Euclidean, then the class 

group is trivial and R is a principal idéal ring, as we knew already. 

A generalization of theorem (0.3), in an algebraic setting, is proved in 

section 1. By means of examples we show that the class number can be arbitrarily 
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large. 

Section 2 is devoted to the arithmetic rings discussed above. We shall see in 

this section that the ring of integers of a quadratic number field K has a 

non-principal norm-Euclidean idéal class if and only if the discriminant of K 

over Q is one of 

-20, -15, 40, 60, 85, 

see (2.1) and (2.5). In ail five cases, the class number is two (cf. (1.8)). 

1. Elementary properties 

In this section R is a domain, i.e. a commutative ring, without zero-divisors, 

with a unit élément différent from zéro. The group of units of R is denoted by 

R , and K dénotes its field of fractions. An idéal class of R is a set of 

the form {d.a: a e K*} where d. c R is a non-zero idéal and d_a = {xa: x e d_}. 

An élément of an idéal class is called a fractional idéal of R. The unique idéal 

class containing a given fractional idéal a. is denoted by [a.]. Fractional 

ideals are multiplied in the usual way, and idéal classes are multiplied by 

[_a].[b] = [a..b]. If the set Cl (R) of idéal classes of R is a group with 

respect to this multiplication, then R is called a Dedekind domain, C1(R) its 

class group, and the order of C1(R) its class number. We put 

E = {b_: b is a fractional idéal of R, and b̂  => R}. 

(1.1) Définition Let W be a well-ordered set, ^: E -> W a map, C an idéal 

class of R, and £ e C. We say that \\> is a Euclidean algorithm for C, or 

that C is Euclidean with respect to ty, if 

(1.2) for ail b_ e E and ail x e bi.£ - £ there exists z e x + c 

such that ip(bcz ^) < $(b). 

We call C Euclidean if there exists a Euclidean algorithm for C. 

It is readily verified that the définition does not dépend on the choice of 
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c_ in C, and that, in the given circumstances, we have z ^ 0 and bcz ^ e E. 

In the arithmetic case discussed in the introduction we take ty(b) = N(b) .̂ 

The inequality in (1.2) then simplifies to N(z) < N(c). Using that ^ g bc = K, 

and writing z = x - y, we then find that (1.2) is équivalent to (0.2). So C is 

Euclidean with respect to if and only if it is Euclidean for the norm. 

(1.3) Exercise Show that a domain R is Euclidean if and only if the principal 

idéal class [R] is Euclidean. 

In the sequel we suppose that C = [c] satisfies the condition 

(1.4) {x e K: xc c c} = R. 

This condition is satisfied if £ is invertible, e.g. if R is Dedekind. If 

(1.4) does not hold, then in our conclusions R should be replaced by the ring 

{x e K : xc_ c £ } . 

In the following lemma we assume that W contains U as a beginning segment. 

(1.5) Lemma Let C satisfy (1.4) and be Euclidean with respect to ty. Then for 

every l> e E, b_ ̂  R, there exists n e such that 

[b.c11] « [R], 0 < n < i K b ) . 

Proof by induction on ij>(b). From 1D ̂  R and (1.4) we find that there exists an 

élément x e b£~£, and (1.2) then gives us a. = bcz 1 e E with (̂a.) < ij>(b). 

If a_ = R, then [bc] = [R] and we can take n = 1. If a. £ R, then by the 

induction hypothesis [acm] = [R] for some m < ip(a), and we can take n = m+ 1. 

This proves (1.5). 

(1.6) Theorem Let R be a domain, and C a Euclidean idéal class of R satis-

fying (1.4). Then R is a Dedekind domain with a finite cyclic class group, 

generated by C. 

Proof We may clearly assume that R + K. Then C1(R) = {[b]: b e E, b î R}, 

so (1.5) shows that every idéal class has an inverse [£ n]. Therefore R is 

Dedekind, and C1(R) = {[£]" n: n = 1, 2, 3, .. .}. In particular [R] = [£]" n 
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for some n > 0, so .[c] has finite order. This proves (1.6). 

(1.7) Exercise Let a e R - R*, a t 0. Prove that #C1(R) < ip(Ra _ 1). 

Suppose _b e E, b_ ̂  R is such that i/>(b) i-s smallest possible. Then the 

idéal a. in the proof of (1.5) must be equal to R, so n = 1 and C = [b] \ 

Hence there is at most one idéal class, satisfying (1.4), which is Euclidean with 

respect to a given . This remark, and theorem (1.6), prove theorem (0.3). 

(1.8) Exercise Let K be a Galois extension of degree n of Q, and suppose 

that its ring of integers has a norm-Euclidean idéal class. Prove that the class 

number of K divides n. 

Many results known about Euclidean rings (cf. [13]) have immédiate generali-

zations for rings possessing a Euclidean idéal class. We list some of them as 

exercises. Assume, for (1.9) - (1.14), that C satisfies (1.4) and is Euclidean 

with respect to 1(1. 

(1.9) Exercise Let a_, b_ e E. Prove that i|;(ab) > ^(b), with equality if and 

only if a. = R. 

(1.10) Exercise Let R 1 c K be a subring containing R. Prove that Rf has a 

Euclidean idéal class. Prove that R' is Euclidean if and only if R' is a 

principal idéal domain. Deduce that 2[/-5, 1/3] is Euclidean (cf. [15]). 

In the following exercises we put 

(1.11) 6(b) = min{i|;(b): ^: E -> W is a Euclidean algorithm for C} 

where W is the set of ordinals of cardinality < #E. This map is called the 

smallest Euclidean algorithm for C; the terminology is easily justified. 

(1.12) Exercise Prove that 6 (ab) > 6(a) + 0(b) for a, b e E. 

(1.13) Exercise Let b e E be such that 6(b) is finite. Prove that b e C~ 9^-\ 

(1.14) Exercise Prove that 6(b) = 1 if and only if b" 1 = £ is a maximal idéal 

of R such that £ e C and the natural map R -> (RAp) is surjective. 
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(1.15) Example Let k be a field, K = k(t) a simple transcendental extension 

of k, and f e k[t] an irreducible polynomial. Dénote by h the degree of f. 

Put 

R = {a/b e K: a, b e k[t], b is a power of f, deg a < deg b}, 

£ = {a/b e R: deg a < deg b}. 

Then R is a ring, and £ is an invertible R-ideal, satisfying (1.4). For a 

non-zero idéal a. c R, put d(a.) = dirn̂  R/a, and extend the définition to ail 

fractional ideals by d(£a ') = d ( a ) - d(Ra). Then d(£) = 1, and more generally 

d(ac) = d(a) + 1 for ail a.; this follows from the invertibility of £. An 

easy calculation gives 

d(Rx) = -ord^(x).h for x e K , 

where ord^ is the normalized exponential valuation of K corresponding to f. 

We claim that C = De] is Euclidean with respect to the map ty: E -> IN 

defined by iKb) = -d(b_). This assertion is équivalent to 

for ail x e K there exists y e £ such that d(R(x-y)) < d(£) 

(cf. (0.2)). To prove it, use the partial fraction expansion of x to write 

x = (c/fn) + z, with n € IN, c e k[t], deg c < deg f n, z e K, ord^(z) > 0, and 

choose y = c/fn. Then d(R(x-y)) = d(Rz) = -ordf(z).h < 0 < 1 = d(c), as 

required. 

We conclude that R is Dedekind, and that C1(R) is generated by C. We 

calculate the class number. If £ n = Rx, then n = d(c) n = d(Rx) = -ord^(x).h so 

n is divisible by h. Also £^ = Rf *, so the class number equals h. 

Thus we see that every positive integer occurs as the class number of a ring 

having a Euclidean idéal class. 

If we take k = TF^> then R is of the arithmetic type described in the in­

troduction, and N(x) = q^ X^. Hence, in our example, C is also Euclidean for 

the norm. 
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2. Arithmetic rings 

In this section we let the notations be as in the introduction. In particular, K 

is a global field, and R is its ring of S-integers. 

In the case #S = 1 ail examples of Euclidean idéal classes are easily 

determined. 

(2.1) Proposition Let #S = 1, and let C be an idéal class of R. Then C 

is Euclidean if and only if C is Euclidean for the norm, and if and only if 

(a) R is the ring of integers in one of the fields 

Q, Q(/-d), d = 3, 4, 7, 8, 11, 15, or 20 

and C is the unique generator of C1(R); 

or (b) R is one of the rings described in (1.15), with k finite and C = [c]. 

The proof is similar to the proof in the classical case (cf. [7, sec. 10]). There 

is an analogous resuit for function fields over infinité fields of constants. 

The class numbers of the rings in (a) are 1, 1, 1, 1, 1, 1, 2, 2, res-

pectively. 

(2.2) Proposition Suppose that #S > 2, and if K is a number field, assume 

that for every squarefree integer n the ç-function of the field K(ç , R * ^ n ) , 
n 

with Ç n denoting a primitive n-th root of unity, satis.fies the generalized 

Riemann hypothesis. Then every idéal class C which générâtes the idéal class 

group of R is Euclidean. 

This proposition generalizes the theorem of Weinberger and Queen in the 

classical case [16, 12]. The proof of (2.2) uses the methods of [9], It also yields 

an explicit description of the map 0 defined by (1.11); in most, but not ail, 

cases it is the smallest function having the properties indicated in exercises 

(1.12), (1.13) and (1.14). 

In the rest of this section we are exclusively interested in idéal classes 

which are Euclidean for the norm. 
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Let Kg dénote the locally compact topological ring 

K_ = n K , 

S £€ S £* 

where K^ is the £-adic completion of K. We regard K as being embedded in 

Kg along the diagonal. Then K is dense in Kg, and every fractional idéal a. 

of R is discrète in Kg, with Kg/£ compact. The norm is extended to a map 

N: K s +]R & 0 by 

N ( x ) = \ e S l x

£ l £ '
 f o r x = (V^S 6 K S ' 

where the | | are normalized in the usual way which makes the formula valid 

for x £ K. For t e P u t 

V t = (z 6 K g: N(z) < t}. 

This is an open neighborhood of 0 in Kg. Clearly, the idéal class C = [c_] 

is Euclidean for the norm if and only if 

K C ^ + V N ( C ) = { x + y= X € ^ > y e \ ( c ) } -

It seems that in ail cases in which this condition is known to be satisfied we 

actually have 

K S = ^ + V a ) * 

It is unknown whether both properties are in fact équivalent. The only known 

resuit in this direction is: 

(2.3) Proposition Suppose that #S < 2, and t e 3R>Q. Then K c £ + Vfc implies 

that Kg = £ + V T + £ for every e e E^QÎ if #S = 1 or K is a function field 

this is also true for e = 0. 

For the proof, cf. [1, theorem M]. 

In the case #S = 2, S = S œ, Davenport [4, nrs 70, 76, 82] proved that 

only finitely many R, up to isomorphism, are Euclidean with respect to the norm. 

This resuit can be generalized as follows. 

(2.4) Proposition Suppose that #S = 2. Then R has an idéal class which is 
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Euclidean for the norm if and only if 

(a) K is one of Q, Q(/-d) , d = 3, 4, 7, 8, 11, 15, 20; 

or (b) R belongs, up to isomorphism, to a certain finite list of number rings; 

or (c) K is a function field of genus zéro. 

The proof makes use of (2.3) and of ideas of Cassels [3]. 

The finite list mentioned under (b) is not completely known. It contains at 

least 107 rings, as we shall see below. We distinguish four cases. 

(2.5) S = S^, K is real quadratic, and R its ring of integers. This case is 

completely settled. The principal idéal class is norm-Euclidean if and only if the 

discriminant of K over Q has one of the following sixteen values: 

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76, 

cf. [4, nr 74]. By similar methods one can show that there is a non-principal 

norm-Euclidean idéal class if and only if the discriminant is one of 

40, 60, 85. 

In thèse three cases, the class number is two. 

(2.6) S = S^, K is complex cubic, and R its ring of integers. If R has a 

norm-Euclidean idéal class then -A < 170523 and h < 4, where A dénotes the 

discriminant of K over Q and h the class number. The fifty-two known 

examples ail have class number one [14]. It would be of interest to find examples 

with larger class numbers in this category. 

(2.7) S = S^, K is totally complex quartic, and R its ring of integers. Here 

we may restrict attention to fields with A < 20,435,007 and h < 6. There are 

thirty-two known K's with [R] norm-Euclidean, see [8] for références. The 

only other known example in this category is K = Q(/-3, /l3): it has class 

number two, and the non-principal idéal class is Euclidean for the norm. 

(2.8) S = SJJ{p}, K is a complex quadratic field not mentioned in (2.4)(a), and 

£ is a non-archimedean prime of K. The three rings 
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R«2Z[/-19, 1/2], Z[/-6, 1/2], Z[/-6, l/(l+4/-6)] 

are Euclidean with respect to the norm; the last two are due to G. Cooke (un-

published). Other examples of norm-Euclidean idéal classes are not known in this 

category, but should not be hard to find. It seems an attractive problem to 

détermine them ail. It can be shown that they ail have h < 2. 

For higher values of #S no resuit comparable to (2.4) is known. 

We finish with three unsolved problems. 

(2.9) Problem A theorem of O'Meara [11] states that for any global field K 

there exists a finite subset S c p, S ^ 0, S S^, such that the ring R of 

S-integers is Euclidean with respect to the norm. Can one take S to satisfy 

S n T = 0, where T is a given finite subset of P with S œ n T = 0? 

(2.10) Problem Do there, in the case S = S^, exist infinitely many non-

isomorphic rings R with a norm-Euclidean idéal class? See [8, 10] for 312 

examples with class number one, and (2.1), (2.5), (2.7) for six examples with 

class number two. 

(2.11) Problem Heilbronn [5, 6] has shown that in certain classes of cyclic 

number fields there are only finitely many whose ring of integers is Euclidean 

with respect to the norm. Do his results carry over to rings with a norm-Euclidean 

idéal class? 
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