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DOWNCROSSINGS AND THE MARKOV PROPERTY

OF LOCAL TIME

by

J.B. WALSH

Paul Lévy suggested that the Brownian local time at zero could be gotten as
a limit of the number of downcrossings of the interval (0,e) mutiplied by e,
as ¢ » 0. This was proved in [3), and a shorter proof has been given in [1).

The method is interesting for several reasons, not the least of which is that
it works equally for any continuous local martingale. We refer the reader to (2)
for a treatment of local time for semi-martingales from this viewpoint.

Our aim in this article is to use the local-time-as—a-limit-of-upcrossings
to approach the Markov properties of the local time discovered by F. Knight and
D. Ray.

This approach is quite computational, but in fact the computations are con~
ceptually simple and usually come down to summing an appropriate geometric series.
It has the advantage of providing the exact distributions of the quantities invol-
ved. In addition, the downcrossings themselves have some rather curious properties,
so while the path to the final results may the tedious in some stretches, it
affords unexpected views in others.

In sections one to three we study the Brownian local time in the simplest

case, in which the process starts at 1 and is stopped when it first hits 0. We
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then treat the general case in section four, in which we treat the local time for
a general regular diffusion. This is perhaps not the most efficient way to do it,
because all the ideas needed in the general case are already needed in the special
case, making the second half of the article somewhat of a repetition of the first.
However, we have let the first part stand, feeling that the theorems are most
easily understood in an uncluttered special case, and leaving us free to concen-
trate on finding the infinitesimal generator in the most general case.

A historical note : the fundamental theorems on the local time which we
prove = Theorems 3.3 and 4.1 - are due to Knight and Ray, and to Ray respectively.
The only things with any claim to novelty in the article are the approach and the

theorems on the downcrossing processes.

1. THE UPCROSSING AND DOWNCROSSING PROCESSES

Let X be a diffusion on the line with a possibly finite lifetime z . We
suppose that X 1is canonically defined on the space (Q,F,P) of right-conti-
nuous functions on [b,m) to RU{8} - where 8§ 1is the cemetary — which are
continuous until the lifetime ¢ and equal § from then on. Let et be the
translation operator, Pt the semi group, and P* the distribution of X given

that Xo=x. The first-hitting time of a point a is

T = inf{t >0 : X_ = a}
a t

Let x <y and define stopping times SO,S],... by

=S +Toe,

S =T, S, = SO + Txoeso, 82 1 y S,

o y 1

and by induction

S, =S, .+ T ob , S =S, + T of, -
2n 2n-1 y SZn—] 2n+1 2n X S2n
Then XS equals x for odd n, and y for even n. It makes an
n
upcrossing of (x,y) between SZn-l and SZn’ and a downcrossing between S2n
and SZn+1’ so the total number of downcrossings, ny, of (x,y) 1is
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DOWNCROSSINGS AND MARKOV PROPERTY

ny = sup {n : SZn—l < w},
Let Yt = Xt AT and Et = Xt AT ® and define Yn = Yoes , and
y b4 2n-1
2 = %.0 , n=1,2,... We call Y and 2 the nth upcrossing and downcrossing
n SZn-Z n n

processes respectively.

If Xo € (x,y), it is not clear whether we should call the process from
t=0 until t=S° an upcrossing or a downcrossing. We avoid this inessential
ambiguity by assuming that Xo‘z' a for some real a, and we will only consider
intervals which do not contain a.

This agreed, we set Yo(t) =X in case a < x, whereas if a > vy,

t A Ty
we set Zo(t) = Xt /\Tx' We then define the upcrossing field %xy by
uxy = ofY_, n=1,2,...}

Remarks

1°). If (x,y) and (x',y') are intervals not containing z, with

x <x' and y <y', then %xy C %x'y" This is because it is impossible for

an upcrossing of (x,y) to occur during a downcrossing of (x',y') : each
upcrossing of (x,y) occurs either during an upcrossing of (x',y') or, if

a < x', before time Ty" Thus all upcrossings of (x,y) are made by the
upcrossing processes Yo’ Y],... of the upper interval. (By the same token, all
downcrossings of (x',y') are made by the downcrossing processes of the lower
interval (x,y)).

2°). ny is %xy—measurable. Indeed

{D._ >n} ={s

y > a1 < ®} = {Y_(0) €R} € ’ley

3°). Warning : in case a >y, the process Zl is a sub-process of Zo,

for both end at time Tx.

< »}

The processesi‘n and Yn are defined only on the sets {SZn—Z

and {SZn— < o} respectively. If ny S o, it follows from the strong Markov
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property that all of the processes Zn and Yn will be independent. If ny

is finite, we have the following conditional statement.

PROPOSITION 1.1

Let N > 1 and suppose a ?(x,y). Then,conditioned on the event

{D_ = N}, we have that
Xy —_—
i). ZI,. ..,ZN are iid and independent of u’xy H
ii). Zo is independent of Z‘!,""’zN and of ‘l,ny 3

iii). each #. has the distribution of X , conditioned on {T < «}.
1 t I\TX —_— b4

Proof : let A],...,AN and I'l,...,I‘N be events in path space, that is,

elements of F. We will write {Yi € I'i} instead of {w : Yi(.,w) € Fi}' Let

N
r= N {Y]._ € I‘i}. We must show that
i=1
a .
(1.1) P {zi €A, isl, N r]ny = N}
a N y
=P {I‘|ny=N} 121 P {X'ATXGAi]TX < w},

< o

Now D =N iff S < = o, Remembering that
xy o

’ S2N+I

Z. = Zo6 and Y. = Yob ,we can write the left-hand side of (1.1) as
S25-2 J 2j-1

@y eeesSon

a -1 a
P {ny=N} P {SO < o, Zo0 € Al’ S] < @y Yoes (S Tl""

So 1

ve. ZoB e AN’ SzN—l < o, Yoes (=3 FN, SZN"—] = 00}.

Son-2 2N-1

Apply the strong Markov property successively to SZN-—I’ SZN—Z""’SI ’

noting that X, =y and X

S2J

S25-1

_ oa -l pa wl pY wl pX -~ -
—P{ny—N} P{So< } PU{z GAl,s]< }P{YCI‘],SO< ...

y Lo X = o
...P{zeAN, S, < }P{YerN, §,= =}
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Collect all terms containing 2 :

N Pa{s0 <e} N-l N
= 1 Pz eAh,, S,<o} |—2—— (1 PY ET., S < «})P*{Yer ,S, ==}
. i 1 a . i o N1
i=1 P7{D =N} i=I
Xy
Taking Al='°'=AN= Q above, we identify the term in brackets as
a = y -N =
P {I‘[ny-N} P7{S, <=} ". But Z, XtATX, s0
y = pY y -1
P/{X, A Tx.:.1\i| T <=} =P {z e Ay Sp < @}P{S < =} 7,
and we conclude that the above equals the right—hand side of (l1.1), which is
therefore proved. The statement for ZO follows upon replacing Z] by ZO
above and making the obvious modifications to account for the fact that Zo
starts from a rather than y. qed

2. THE BASIC CALCULATIONS

We will be encountering geometric distributions fairly often in what follows

so it is convenient to record the following.

LEMMA 2.1

Let X be an integer-valued random variable with

1 n=0

crn_] n=1,2,... c<l, r<l.

Then E{X}= T%—-, Var{X}= c(ltr—c)
r 2
(1-r)
and  B(eSK) lzet(emm)e®

1-r &°
Most of the calculations we will make below involve nothing deeper than

the following lemma.
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LEMMA 2.2

Let b < x' <y' and let {Mt, t > 0} be a continuous martingale with

initial value 2z > b, such that Tb < o a.s. Let Dx'y' be the number of

downcrossings of (x',y') before Tb. Then
. y'az-bx'- n-l
i). P{Dx'y' > n}= v b (;T:E) s n > 1

' -
ii). E{(D, ,}=LAZz_DP
X'y
Yy X
. "AZ -b
iii). Var{D_, ,} S AAT My

1 1

y X

D \J - Al
e XV'jo g -GlAaz D)D) s y'h

L
y'—b—(x’—b)es x'-b

iv).

Proof : once (i) is proved, (ii), (iii), and (iv) follow from Lemma 2.1.

To prove (i), note that for M to make one downcrossing of (x',y'), it
must first reach y' before hitting b, an event which is certain if 2z > y'
and which has probability z-b/y'-b if =z <y'. Once at y', it is sure to make
at least one downcrossing.

Next, in order to make n+l downcrossings, it must first make n, with pro-
bability P> say. It will then be at x, and must first return to y without
hitting x, and event of probability x'-b/y'-b. It is then sure to make at least

one more downcrossing, since it eventually reaches b. Thus

-p X°b
Ppe1 T P yp°

Since p, = y'Az -b/y'-b, (i) follows by induction. qed

We now specialize our diffusion X. Let X be a Brownian motion with
Xo =1, stopped when it first hits the origin. (In fact, it is not necessary
that X be a Brownian motion ; everything we do below is valid if X 1is any
diffusion on natural scale).

If x <y and if ny(t) is the number of downcrossings of (x,y) in the

interval [O,t] , then 2(y-x) ny(t) converges a.s. as y ¥ x to the standard

94
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Brownian local time at x. ((1), (2), and (3)).

Rather than looking at this for a fixed t, we want to look at this at the
time T, the first hit of zero. Accordingly, we will write ny instead ofDXy(To)
for the total number of upcrossings of (x,y) by X, and we will define

Mxy = (y—x) Dx

y
(We are normalizing by y-x instead of 2(y-x), so Mxy will converge to half
the standard Brownian local time as y ¥ x).
Before doing this let us note that we can derive many of the properties
. = i d
of ny(t) from those of ny(To) Indeed, ny(t) ny(TO) if t > To’ and,

on {t < TO}’

ny(t) = ny(To) - ny(To)oet )

where Y = 0 or 1 is there to account for the possibility that t falls during
a downcrossing, which would not be counted in either D__ (t) or D_ (T )o6,.
Xy xy o't

. . -) D . s, .
But now if 1lim (y—x) xy(To) exists a.s., so does lim (y—x) ny(To)°et by the
y¥x yI¥x
Markov property, hence so does lim(y-x) ny(t). Similarly, if this limit is
VAR
continuous in x at time To’ it must be continuous at time t, too.

PROPOSITION 2.3

Let (x,y) and (x',y') be intervals not containing 1, such that x<x'

and y < y'. Then

(i) Mxy is Lp—bounded for y in compacts, all p > O ;

(ii) Mx'y' is conditionally independent of %X}' given Mxy H

{id)  EOL, | W) =Mt AL -y Al
(iv) Var{Mx,y,| u’xy} = (x'-x + y'-y) Mxy + (' AI-yA D) (x"-y +y"=y'Al)
Proof : once (iii) has been proved, (i) follows, since by Lemma 2.2 (iv),

all moments of Mxy exist, and so for p > 1, if x <y < k, Proposition 2.3

(iii) implies :
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2.1) B - v ATIPY < BlMy e Py < e

To prove (ii), consider the cases y ¢ 1 and y > 1 separately. Suppose
first that y 3 1 and let 2],22,... be the successive downcrossing processes,
as defined in §1. Each downcrossing ©f (x'sY') takes place during a downcrossing
of (x,y) ; it is not possible for one to happen during an upcrossing. Thus,
if V], V2,... are the downcrossings of (x',y') by Z], 22,... respectively,

then

(2.2) Dx,y, = V1+V2+...

But the Zi are iid (Proposition 1.1) and independent of uky, and the Vi are
functions of the Zi, so that Dx'y' must be conditionally independent of %&y

given ny, which proves (ii) in this case. Moreover, the exact distribution of

the Vi are given by Lemma 2.2, with 2z=y and b=x.

(2.3) E{V }= X—:— s Var{V }= (y—x) (x' —x+y '-y)
G'-x )

Since D is u, -measurable
Xy Xy

B o] Uy

E{V,|D__=N}
1' Xy

"~z

NLIE = —;——-D

y'=x'" "y xy

Since Mxy = (y-x) ny,

(2'4) E{Mxquluxy} = Mxy if y > 1.

The V:.L are independent, so their variances add, and

var{D_, .| U D =N} = N(Y’X)(X 'XAYAAY) ,
xy
y'-x )
so that
(2.5) Var{Mx,y,l Qny} = (x"-x+y'-y) Mxy if y>1

In case y < |, the same analysis holds except that there can now be some

downcrossings of (x',y') before it reaches . This means that the process
y
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Zo must be taken into account, and Zl ignored (see remark 3, §1) since all
downcrossings of 21 are also downcrossings of Zo. Thus

ny =Vo + V2 + V3 +oeen

As before, Dx'y' will be conditionally independent of uxy’ so that

E{Dx.y'l U,y » Dy = N = BV} + (N-1) ELV,).

Taking 2z=! in Lemma 2.2.

gy } = YAl = x , Var{v }= G'al —x) (x'-x+y'-y'al)
o o

T
yE (y'-X')2
Since the expectation and variance of V2,...,VN are given by (2.5)
1
YAl -y yox
E{vayv | u xy} y'-x' + yV_XI ny
Var{D_, .ll } = (v = y'al) (x'=y+y'=y'al) + (rmx) (e’ =xty ' oy) D
Xy Xy (y'—x')2 (yv_xv)z Xy
In terms of M_, if y > 1 this is
Xy

- \J -
(2.6) E{Mx,y,l U xy} =yal-y M

2.7) Var{Mx,y,l lxy} = (y - y'Al) (x'-y + 3" - yal) + (x'-x + yv_y)ny

Equations (2.4)-(2.7) prove (ii) and (iii). qed
Remark : {Mxy’ O<x<y, lf(x,y)} is a two—parameter process. If we par-
tially order its parameter set by " 4", where (x,y) £ (x'y') if x < x',

y < y', then Proposition 2.3 tells us that it is a Markov process in the sense that

Mx'y' is conditionally independent of %xy - and hence of the "past" before

(x,y) - given Mxy' It is natural to ask whether this process satisfies Levy's
Markov property : that is, given a nice subset A of the parameter set, is it
true that the process Mxy for (x,y) €A is independent of Mxy for (x,y)

outside of A, given {Mxy’ (x,y) € 9A}? The answer is no. While it is not hard

to show that this is true for sets A of the form {(x,y) : Oix<yiyo}, it

doesn't hold for those of the form {(x,y) : x < X s 0-<-X<yiyo}'
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3. THE RESULTS

With the basic calculations out of the way, we can draw some conclusions.

The following, for example, is an immediate consequence of Proposition 2.3.
THEOREM 3.1

{Mxy-y Al, uxy’ O<x<y, 1 ¢(x,y)} is a_two-parameter martingale. In

particular, it is a martingale in either parameter when the other is fixed.

Since Mxy—yAl is an LP-bounded martingale in y for each fixed x, the

martingale convergence theorem allows us to define the local time Lx at x by
Lx = lim Mx .
y¥x y

Define ux = ﬂ '[ny. Note that the fields ux are increasing and that Lx is

y>x
u,x—measurable. Then we have :

COROLLARY 3.2

{Lx—x;\], ux’ x>0} is a martingale, locally bounded in 1P for all

p >0, whose associated increasing process is

X
A = ZJ L_dy.
x o Y

Proof : set Nx = LX-XA] 5 it is an Lp—bounded martingale for all p > 1
(just let yJy x in Theorem 3.1). We can then go to the limit in Proposition 2.3
(iv) to see that

2 2
(3.1) BN, - N | Uy = vartL | U )

= 2(x'—x)Mxy + (X"AIXA)E"—x+x"-xAl).

To identify Ax as the associated increasing process, note that

X
E{2 Jx Ly dylux} 2 JX(E{Nyl‘ux} + yAal)dy

\l

x
2(x'—x)Nx+2J yal dy
X

X'

2(x'—x)(LX-x1\]) + 2 J yaAl dy,
X
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which equals the right-hand side of (3.1), verifying that Ni—Ax is a

martingale. ged

We are now in a position to prove the Markov property of the local time
ans a function of x. The following is the simplest case of theorems by Ray and

Knight.

THEOREM 3.3 (D. Ray, F. Knight)

The process {LX, x > 0} is a continuous strong Markov process on [O,w),
(2)
’

absorbed at zero, and having infinitesimal generator € : if fe€D(€) NC

t £"(t) + £'(t) if O<t<]
(3.2) €£(t) =

t £"(t) if t> 1.

Proof : it is nearly clear from Proposition 2.3 that L is a Markov process,
but to pass from nearly clear to clear will take some work. We will do this by
brute force, and calculate the characteristic function of Lx' We claim that if
O0<x<x' and Re s<0

sL

(3.3) E{ SLx'lu } = 1+(x'-x'A 1)s X
. € x° I - (x'-xAl)s e 1-(x"=x)s

The Markov property follows immediately since, as the right—hand side of
(3.3) depends only on Lx, Lx, must be conditionally independent of u’x’ and
hence of Lx" for x"<x, given Lx'

To see (3.3), let ¢>0, and consider the intervals (x,x+e) and
(x',x"+e), where x+e < x'. Let ZO,EI,... be the downcrossing processes of the
lower interval (x,x+e). Suppose x > 1. Then

D = +V,_ +...
x',x"+e V1 V2

and, given Dx

=N, V,,...,V are iid and independent of f[x . Apply

xX+e sy X+E

Lemma 2.2 (iii) with b=x, z=x+e and y'=x'+e :
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sM €s D
(3.4) gle X X"*ey =E{e XPEE|

X,X+e Xy x+e
On {Dx x+e}= N this is
1
es V, N (1-e5%) € Mx’x"'e
= E{ } =1 -e___ji______j;_
e+(x"—x) (1-e%% )
As € >0, M -+ L_ while the quotient is
XyXte X
-s€
1I-(x"-x)s *+ o(e),
so the right-hand side of (3.3) tends to
sLx
3.3) ® T=Gws
In case x' < 1, we reason as before that D_, _, =V +V_+... so that
X' 43X +e o 2
( esVo}
sM , , Ele esV D
X' X' +e } = 1 Xy X+e
ef lux =V, E{e } .
E{e }

The expression involving V1 is just as above, with its limit given by

(3.5). Let 2z=1 1in Lemma 2.2 (iii) to see that the guotient is

es V
Efe %}  1-(x' -x'al)s

es V. 1-(x'-x)s *+ 0(e)

which, together with (3.5), gives (3.3).

To see L is continuous, note that, if
X ' 2
(x'-x)s” L

s(L_,- —T
_ pYs 1+(x"-x'A1)s I-(x"'-x)s
¢(s) = Efe Iu, } = T=('-xaDs °© ,

4 _ (4) . . .
then E{(Lx'_Lx) I!Lx} = ¢ (0). We can compute the fourth derivative, which
is most easily done by considering the cases x < x' <1 and x > 1 separately
rather than by differentiating the formula as is, and we find that in both cases,

Q(A)(O) = 4(x' —x)2 L2 + higher powers of (x'-x).
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Since Lx is LP-bounded for x in compacts for all p, we conclude that for

0<x<x'<k, there is a constant c¢ such that E{(Lx,-LX)z} ic(x'—x)z .

This implies by a well-known theorem of Kolmogorov that there is a version of L
which is continuous in x.

Now we can calculate the transition function Pz(u,v) from (3.2). Indeed,
(3.2) says that if f(v) = esv’ s £ 0, that if z=x'-x and if x' < 1, for

instance,

]esu
1-zs l1-zs

sz (u) =

which is continuous in u. It follows that u —)sz(u) is continuous if f 1is
a linear combination of exponentials, and, since these are dense in Co, for all
f e Co' In short, Pz is a Feller semi-group, and the process is strongly
Markov on O < x < l. Similarly, it is also a Feller process.with a different
semi-group — on x 3 1.

Finally, the generator is easily determined by a stochastic integral argu-

ment. If f is bounded and twice continuously-differentiable, then

x+h 1 x+h
- - ' 1 "
E(L ) - £@) JX ey a s} Jx £'@)dh

where Ay is the increasing process of Corollary 3.2.This is

x+h

x+h x+h
= £'(L ) d(L - 1) + £f'(L )dy Al +J £f'(L )L d
Jx (y) (le\) J (y)y . (y)yy

x
Take the expectation given ux' As Ly—y/\l is a martingale the first

integral has zero expectation, so

xth xeh

.1 . ' "
61, = Lim (L) ~£A)IU} = linm {If L )dy Al + lf @) dy U}

=L £ YT Iy g

proving (3.2).
qed
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4. THE EXTENSION TO GENERAL DIFFUSIONS

Let X be a regular diffusion on the line with lifetime ¢ < «, and scale

function s(x). We assume that there is an a such that

(4.1) Xo=a a.s., and XC'=O a.s.

and also that s(0)=0. Define
- pY
£ (y,2) =P {Tz < Tx}

and
p(y,z) = Py{Tz < w}

By the definition of the scale function, if O ¢ Ex,z],

_s(y) - s(x)
(4.2) £ (y;2) = E?%j_:_ETET .

If x <y <z p(z,x) = p(z,y) p(y,x) ; if y > 0, p(z,y) =1, for by (4.1),
the process must pass y in order to die at the origin. We have treated the
case where ¢ = inf{t : Xt‘ = 0} in the first part of this article, so we will

now suppose that g > To' Thus, set

1 x>0
p(x) = {
p(0,x) x < O.

Then for vy > x,
(4.3) p(ysx) = p(x)/p(y)

(There is a similar function, p,» such that if x <y, p(x,y) = p+(y)/p+60,
but we will not need to use it).

In order to relate s and p, notice that if =x-h & x < 0, the process
can pass from x to x-h either by going there directly, or by first going
to zero, then passing to x-~h. Thus

p(x,x-h) = fo(x,x—h) + fx+h(x’0) p(0,x-h).

Use (4.2), (4.3) and a little algebra to see that
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p(x)-p(x~h) _ _ p(x) (1-p(x-h))
s(x)-s(x-h) s (x~h)

Let h + O to see that

(4.4) %E:P;(P;_I) x<0

which has the solution

1 if x>0
(4.5) pG) =
Toes ) if x < 0.

Since p(x) decreases as x decreases, c > 0. The parameter c determi-
nes the amount of time X spends at O before ¢. If z 1is the first hitting
time of 0, c== ; if c=o0, the process is never killed, and if O<c < », the
process spends some time at the origin before z.

Let a' and a be the positive and negative parts of a, and define

0 if x 3_a+

§(x) =4 1 if a <x<a’

2 if x<a

As before, let ny be the total number of downcrossings of (x,y) by X.

Define the local time Lx at x by

Lx = lim (y—x)DX
y¥x

if it exists. We are going to follow the methods of the first three sections to
determine the properties of the local time process. Although we will not be ready
to prove it for some time, the final result will be the following, which is a
minor modification of a theorem of D. Ray (6).

THEOREM 4.1

Suppose s G.C(z)

, and let m=inf{Xt} . Then the process {Lx,x >m} is an
t

. . . +
inhomogeneous diffusion on R . absorbed at 0s; with infinitesimal generator
Gx : if f € C(z) is bounded,
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4.6) € f£(w) = uf"(w) + (8(x) - ‘P2§X)S'f")"“ )E' (w), u> 0.
P (x)s' (x)

We will be following the same path in this section that we did in sections
1-3, so we will be able to treat some of the calculations in less detail. However,
the total length of the treatment is increased since at each stage we have to
handle the three special cases x < a', a <x < a+, and x 3_a+ separately.

The reason these three cases require special handling is apparent if we
look at the paths of Xt' Ifzx = sup{t : Xt=X}’ we can divide the path into three
sections : from O to Tx’ from Tx to zx, and from kx to ¢. The process
behaves differently in each of these intervals. If, now, x < x', and x,x'
X,x' € (-»,0) all three of these time-intervals can contribute to Lx' 3 if

0 < x,x' < a, there is no contribution from (TX,;), i.e. LC =Ly, and if
X

x,x' € (a,»), there is no contribution from either (O’Tx) or from (Tx,g). Thus,
it is not so much that we need to treat the space-intervals (-«,0) , (0,a) and

(a,») separately as it is that we need to handle L L —LT , and LC—LZ
X

T > "2
X X X
separately.

The following two results generalize Lemma 2.2 and Proposition 2.3.

P2D_ >n}=p(ay)pF,x) (Bx)pEyN™ .

Proof : to have one downcrossing, the process must first reach y, then x,which

has probability p(a,y)p(y,x). If the process has already finished n down-
crossings and is at x, then to make another, it must first go from x to vy,
and then return to x, which it does with probability p(x,y)p(y,x). The lemma

follows by induction.
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LEMMA 4.3

Let (x,y) and (x',y') be intervals with x < x' and y < y'. Suppose

neither a nor zero is in the interval [x,y'] , and let ny be the number of

downcrossings of the interval (x',y') before time Tx. Then for n > 1,

(a) Py{Vx.y'z;anx < )= fx(y,y')p(y',y)fifx(x',y')la(y',X')]n"l
(b) _I_f a>y',
Pa{vxvy' ianX < C}=[fx(x',y')P(Y',X')ln—]

(¢) If 0>y', Py{Vx.yJ_1n|TX 3_c}=[ix(x',y')p(y}x')]n.

Proof : in order to have at least one downcrossing the process must first
reach y' without hitting x, then reach x' before ¢, which has probability

px(y,y')p(y',x'). If the process has just completed n-1 downcrossings, it is at

x'. To make another, it must firet hit y' without hitting x, then reach x',

which has probability r=fx(x',y')p(y',x'). Thus by induction

4.7) Py{VX.y.> n} = fx(y,y')p(y',X')rn—l-

Having finished n downcrossings, the process is again at x'. To have

Tx < g, it must go from x' to x, which has probability p(x',x).

Since Py{Tx < C} = P(y,X),

fx(y,y')p(y',x')p(X',X)

y n—-1
4.8) P {Vx,y,ganX <z}l = TR

r

After simplifying, (e.g. p(y',x")p(x',x) = p(¥3x)) this gives (a).

If a > y', the same derivation holds except that y 1is replaced by a,
and the probability of reaching y' initially is p(a,y') instead of
£ (v,5') in (4.7) and (4.8).

To prove (c), note that if the process has just finished n downcrossings,
it is at x' ; then TX > ¢ if the process never reaches x, an event of probabi-

lity 1-p(x',x), while Py{Tx > ¢} = 1-p(y,x). Combining this with (4.7), we get
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y - lp(x'sx) ' v vy 0ol
P {inanX> c} 1-p (¥, %) fx(y,y ) p(y'sx")r
But notice that
1-p(y,x) = £ (y,x") (1-p(x',x))
since, if the process is at vy, in order to have Tx > ¢ , it must first hit x'

- since it is at O at time z- then not hit x. This makes the above expression

£ (Y,Y ) .
f (y X ) p(y ' X ) fx(x',y')p(y"xl)r -

qed

NOTATION : we will often write X instead of s(x).

COROLLARY 4.3

Under the same conditions

A

y - _PpM)py) G-K) .
(a) E {va vlTX <z} p(X')P(y')(§'"§') 5

P(x) (§'-%)

a —
® E oy I < 2= seme=m
y _px) (E'-x)
(c) E {Vx.y.ITx >z} Y CRRRCIE 3]
(d) Vary{v . JT < )= p()p(y) (5-%) x...

&P G'-E')2
< pE)p(HE-R) -px")p(¥") (F'-R")-p(x)p(y) (F-))]

(e) Vary{V 1! |T >zl= Vara{V 1 IT <r}= P(x) &'-%) @ _x)
Y X'y’ PPy (F'-=")2

Proof : in a sense, there is nothing to prove, since (a)-(e) follow from
Lemma 4.2 and Lemma 1.1. However, there are some identities which we use to
simplify the expressions which we should point out. Let r=fX(x',y')p(y',x') and
notice that

p(x'sx) = fy.(X',X) + £ &yDpGrx") p(x'x)
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which just expresses the fact that the process can go from x' to x either di-
rectly,without hitting y', or by first hitting y', then returning to x', then
to x. Thus
£, (x',x%)
(4.9) I-r = I
I1f we apply the formulae of Lemma 9.1 with r as above, and with c¢ equal
to fx(y,y') p(y'sy), 1, and r respectively,the expectations in (a), (b) and

(c) become respectively

fx(y,Y')P(Y' »y)p(x',x)

(4.102) fy.(X',X)
p(x',x)
(4.10b) NCEE))
y
£.&yD)pG'x)px",x)
(4.10c)

fy(x »X)

Turning to the variances, in (d) we write I+r-c = 2-(l-r)-c to get

(4 ]Od) ( (X',X) )2 f ( ') ( ' )[2 .,f '(x',X) - f ( l) ( ' )]
. _Ify.(x',x) % YsY )Py »y p(x' ES) % Yy )p(y »Yy

If either c¢=1, or c=r, c(l+r-c) = r, so the final two variances equal
-2 .
r(l-r) =, i.e.

' 2
(4.10e) (%i%z§¥%;70 fx(X',y') p(y'>x").

If we write (4.10a) - (4.10e) in terms of p(x) and s(x) = X, we get

(a)-(e). qed

For x < y, define
Mxy =p(x) p(y) (s(y) - S(X))ny-
We assume that a > O, a being the initial value of the process, and leave

it to the reader to make the necessary modifications in case a < 0. The follo-

wing generalizes Theorem 3.1.
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THEOREM 4.4

Let X < 0. The following are two-parameter martingales which are locally

bounded in LP for 1 £ p< o,

(a) {Mxy s uxy’ a <x < y} H
(b) {Mxy -9, uxy’ 0<x<y<al};
X y
2 ~ 2 -
(c) {Mxy - JX p (wdd - [x p" (u)du, 2(Xy, X <x <y <0}
[¢) o

on the set {inf X_ < x }.
_— t o
t
Proof : the MXy are geometric random variables, hence are in P for
fixed x and y. Once it is established that (a)-(c) are martingales, local
boundedness in LP? is immediate since in case (a), for example, IMxylp will be

. . p P
a sub-martingale, so if x <y < k, E{|Mxy| } :_E{|Mk,k+]! } <o,

Let (x,y) and (x',y') be intervals such that a < x <x' and y <y'.

Let ZI’ZZ”" be the successive downcrossing processes of (x,y) and let Vi

be the number of downcrossings of (x',y') by 2. Both the initial and final va-
lues of X 1lie below x, so all downcrossings of (x',y') occur during down-—
crossings of (x,y). Thus

Dorgr = V#Vpte..

Given that ny =N, V N

l,...,V are 1iid and independent of Zéxy’ with a

distribution given by Lemma 4.3a).Since p(y',y) = p(y',x"') =1

§1_§1
. - IR
so E{Dx.y.l uxy} s Dy
and
E{M } = (5-% =
oyt | Uy = G-®p =
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In case (b), a > y' so there is at least one downcrossing of (x',y')
before Tx’ and we must consider the initial dowcrossing process Zo instead

of 21 (see remark 3, §1). Then

Dx'y' = V0 + V2 +oonn

The distribution of V0 is given by Lemma 4.3 (b), and that of V2,...,VN is the

same as above. Thus

ar_a 6_“
E{(D_, ,|D._ =N} = &%, + (N-1) zi—=v
x'y'Wxy y'-% y'-®

leading to

B0, oY) =99 +

Finally, in case (c), XC_ =0 >y', so the last "downcrossing'of (x,y)

is incomplete. If ny = N, then 2 starts from y, and is killed before

N+1
hitting x, so that

ny = V0+V2+ .o .+VN+VN+] N

and the distribution of VN+1 is given by Lemma 4.2 c. The distributions of Vo

and V2 are as before, except that p(x) 1is no longer necessarily one, so

=N} = —Px)F'-%) 1y _PGp(y) G-%)
N e G T D Se PG GTED

+ p(x) (X'-%)
p(Gy")F'-X")

E{Dx,y. |ny

Thus
B0, o[ Wy} =M+ pGIPG) -8
+ p(x")p(x) (X'-%) - p(x)p(y) (F-%).

We can simplify this. Since p(x) = 1/l+c X,

y
(4.11) J pz(u)dﬁ = p(y) p(x) (§-%)
X

|l 1 1 1

yoox oyoox oy,
so the above equals J + J - J = J + J p (u)dd, giving finally
X X X X
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1 A}

X y
2 -
E{Mx'y'ltcxy} = Mxy + jx + JY p (u)dd. qed

For fixed x, the processes of Theorem 4.4 are martingales in y, so that
def
M = 1limM ,
X —

exists a.s. and in LP for all p > 1. As the processes are also martingales in

X, so are their limits. We can unify them as follows. Set 1Lx = {1 2ny’ and
y > x

define

0 if x> a

8(x) = 1 O<x<a

2 x<0
Then for any X s

X
(4.12) M- J §(u) p>(u)dd, 'u,x, x> x}

X
[¢]

is a martingale on the set {inf Xt < xo} = {Mx > 0}. Now Mx is closely related
o

to the local time LX :

L = 1lim (y-x)D
b4 yix Xy
= lim X

six POPOI G 'xy

It follows that Lx exists if s(x) is differentiable, and
(4.13) L= (2@ s' () M.
X X

Now an elementary calculation with stochastic integrals gives us

2
(pzs')_] dM - M 12_5121 dx
2 4,2
(p7s")

dL

- 2 | 1
02s"y ' (aM-8pZs'dx) + (- ifu L )dx
ps'
or
x (2s")’ X9 - 2
L-L - [ (8 (u)= 55—, )du = J (p"s") ~ (aM-6p”s' dx).
o 1

X S X
P (o]
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The last term is a martingale, which brings us to

THEOREM 4.5
(2)
Suppose s € C . Then for any e

X 2'1
{LX - J (S (u) - iEEE—l— Lu)du, th’ X > xo}
X ps'

is a martingale on the set {LX > 0}. Its increasing process is

b4
<L> = 2 J L du.
u

we have just shown that the process is a martingale. To identify its

Proof :
<M>
X

increasing process, we will identify the process <M>X first. Notice that

can be characterized as a continuous increasing process with the property that if

]
x < x,

(4.14)  var(M,| le} =E{<a , - @ | ?LX}.

As in the proof of Theorem 4.4, let x <y < x' < y' and suppose all four
lie in one of the intervals [é,m), [b,aJ, or [;w,O]. We have to treat all three

cases separately. We will refer to them as cases (a), (b) and (c) respectively,

and we will use the notation of the proof of Theorem 4.4.
are small. Then Corollary

Suppose ny =N and that y-x and y'-x'

4.3e gives
2 AT_Ay rar_a
Var(v ) = J'(x) . (X "X) (y _X)
o p(x")p(y") ()7'—}?')2

in cases (b) and (¢) , and in case (c), Var (Vy, ) = Var(Vo). If 1 <j<N

Var(v,) = 2ORW G [o69551)3'-8) + 0 (1)].
&P GE'-1"]

The Vi are conditionally independent given 2ny’ so that the variances

add, hence in cases (a), (b) and (c) respectively, Var{Dx,y,|2ny} is equal to
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ny Var{V]} , Var{Vo} + (ny-l) Var{V]}

and

Var{Vo} + (ny-l)(Var{Vl} + Var{VN+1}

This gives us Var{ Dx'y'lu‘xy} in all three cases. Now multiply by
ﬁ)(x')p(y')(?'-i')]z, and let y + x and y' ¢+ x' to see that in cases (a), (b),

and (c) respectively, that VariMx,lﬂ,x} equals
(4.15a) 2p(x") p(x)(ﬁ'—i)Mx
(4.15)  2p(x)p) @M+ [pGIPG" R'-D)]

(4.15¢)  2p(x")p(x) R'-BIM_+ 2[pop(x") G'-8)] 2.

X

X
We claim <M>X =2 I pz(u) Mu ds(u) for all x > X,
()

Indeed,

1 1

) ¥ 2
E{ZJ O ds(u)lu,x} 2 J E{Muml,x} p (u) ds(u)
X

X

x u 2 2
2 J (MX + J §(v)p (v)ds(v))p (u)ds(u).
X

X

Now 6 is constant on (x',x), so

\J 1

x' 5 X
2 M J p (u)ds(u) + 8(x) (J
X

p>(w)ds (u))?
X
by (4.11) this is
=24 paPM R D) + 60 [pNp) &' -7
Compare this with (4.15a-c) to verify (4.12).

But now that we know <M> , we get <L> immediately since, by (4.13)

_ 2 4\"2
d<L>x = (p“s'") d<M>x

2(p%s") 7% ps! M dx

ZLxdx qed
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We can now prove Theorem 4.1. We proved the Markov property in a simpler
setting in §3, and a similar argument can be used here, or we can just refer to

[7, Theorem 2.3]. We are interested primarily in the infinitesimal generator. To

(2)

find this, let £ €C be bounded. Then for any x, on the set {Lx > 0}

x+h 1 x+h
- 1 - "
f(Lx+h) f(Lx) J £ (Ly)dLy + 3 J f (Ly)d<L>y

X X
x+h ( 2s')'
) £ (L - (50 - B2 1 yay)
y y p’s' y
X

x+h , ( Zs')' .
+ [x (£ (Ly)(é(y) - —P-——PZS' Ly) + £ (Ly)Ly]d}’p

The first integral is with respect to a martingale, so it has expectation
zero, and
2 Tyt

(p's")
6 f(L) = 11;1: 5 E{f(Xx+h)—f(Lx)| ux} =L f'(L) + (8(x) - -p—z-s'— LOE"(L),

which verifies (4.6), and we are done.

1

Example : it is clear from (4.6) that {Lx’ x > m} 1is not time-homogeneous,
for 6(x) is not conmstant. It will, however, be homogeneous on each of the inter-
vals (-»,0), (0,a), and (a,») if (pzs'f pzs' is constant there. This was the
case in Theorem 3.3 since p#! and s(x)=zx there. It is true of any diffusion
on natural scale for x > 0 for the same reason. Another celebrated case, due
to D. Ray, is the following. Let Bt be a Brownian motion and S an exponential
random variable with parameter o , independent of Bt' Let Et be Bt killed at

S. Finally, let Xt be the diffusion ﬁ;, conditioned on BS=0. (This conditio-

ning can be made rigorous via Doob's h-path processes. The semi-group of B, is

t
Ft = e_at Pt’ where Pt is the Brownian semi-group, and the semi-group of X is
- -V 2
the h-path transform of Pt for h(x) = eﬂaxhe ax . This is a

P-excessive function which has a pole at the origin, and which is invariant away

from the origin). The infinitesimal generator G of X is the h~transform of the

generator of B.
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6 (x) = 53%;7 (hf)" - of

% £f'"(x) - 2\/;a sgn x £'(x)

The scale function s satisfies 6s=0 ; such a function which vanishes

at O 1s ezm}{—

s(x) =

1 if x>0

_e—2 \lz_a X

1 if x<0

and it follows that for some ¢ > O,

p(x) =
1 x<0
1-cs(x)

To identify c, it is easily seen from Lemma 4.2 that

. x _ 1
ST 20 B0 T oy

E°{L }
(o]

1

2c\/2—a

Next calculate EO{LO} from another standpoint , Let E be the expectation
operator for B, and E the expectation operator for X. Now X 1is identical

to the process B, killed at its last exit from O (5 ), so
E(L_(5)} = E{L (D)} = E{L )}

1= . :
But as EIBtI - Lo(t) is a martingale,

1 —

E{L_(5)} = 5 E{|Bg|}
2
00 00 - _X__
= I J X e 2t ue_at dx dt
o ‘0 21 t
- 1
2V 2a
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Comparing this with the above, we see c=1, hence

1 if x>0

e2 Ve x if x<0

p(x) =

so that pzs' = ZVIEQ , and the generator of Lx is

2
€ = u —95 + (6x) - 2V 20 w) é%.
du

For the interpretation of this in terms of Bessel processes, see ( 6)

or ( 8).
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