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ON BIFURCATIONS OF ORIENTATION REVERSING

DIFFEOMORPHISMS OF THE CIRCLE

Henryk Zotgdek

We consider several-parameter families of orientation rever-
sing diffeomorphisms of the circle.
In (1) Brunovsky investigated arcs of preserving orientation diffeo-
morphisms of the circle. In the orientation reversing case we shall
obtain stronger results than in the orientation preserving case. In
particular, in (2) Guckenheimer proved non-genericity of structurally
stable n-parameter families of orientation preserving diffeomorphisms
of the Circle for n > 1 . Our goal in this paper is to investigate
genericity of structurally stable families in the orientation reversing
case. We shall prove the density of structurally stable families for n=1,2. Let
Diffg(51) be the space of orientation reversing Cr-diffeomorphisms of the circle
and let D" be unit ball in R%,D” = {xeR" : |x| < 1} . Define F“' as the spa-

ce of Cr—maps fron D" to DiffS(S1) with Cr—topology .

Two families & , n ¢ F'' T are called topologically conjuga-
ted iff there is a homeomorphism h of p" and n-parameter conti-
nuous family hu of homeomorphisms of the circle, for which the fol-

lowing condition is satisfied
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hu on(u) = gth(u)) o hu

The family ¢ ¢ F* T is called structurally stable iff there is

an open neighbourhood U of ¢ in T

, such that for each n ¢ U
n and ¢ are topologically conjugated.

Instead of n-parameter families of diffeomorphisms we may consi-

der functions on D" x R1 satisfying condition f(u,x+1) = £f(u,x)-1
such that for every (u,x) ¢ anR1 §§ (u,x)< 0 . Topology of

this space is defined as the topology of uniform convergence with all

derivatives to order r.We denote fu = f(u,.). It is a well known
fact that every orientation reversing diffeomorphism of the circle
has exactly two fixed points and that any other periodic orbit has

period 2.
Further under '"x is a periodic point of fu" we shall under-

stand”exp(2mix) 1is a periodic point of the diffeomorphism induced by

fu i.e. a either Hyufu(x) = x+n and then exp(2rix) 1is a fixed

point | or fﬁ(x) = x and then exp(2nix) is

periodic of period 2. For f ¢ F"*T there are two CY'- functions

00X ¢ Dn—>R1 . 1< Xg < X4 such that fu(xo(u)) = xO(u) and
fu(x1(u)) = x1(u)-1 . If x e (x1(u}on(u)) then fu(x) € (xo(u) ,
x](u)) and if x € (xo(u)-O , x1(u)) then fu(x) € (x1(u)—1,x0(u)).

n o R1

We denote Gg(f) , G?(f) as n-dimensional C'-submanifolds in D
(with boundary) being the graphs of the functions Xg 5 X - Easy

proof of the following two lemmas we leave to the reader.

Lemma 1.

Let f:R1 > R1 of class C2k, k > 1, be such that
2 2, (2k-1
£(0) =0, £'(0) = -1, (f)"(0)=0,~-.,(f)( )(0)=0

then (£2)(ZX) 0y = 0 .
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Lemma 2.

Let f£:R'—sR' of class Ck , k>2 , and x ¢ R' be such

that £(x) # x; 2 (xg) = xg » £10xp) # 0

Then (£2)'(xy) = 1, (£9)"(x) 0, (£ M (x) = 0 imp1y

E) (Fx)) = 1, (" (Ex) = 0,0, (B W (£ (x)) = 0 .

Lemma 3.

r
There is an open, dense subset F?’ el A , T > 2n+1 , such

n"‘ .

that for any f e F1

a) the maps GO(f),G1(f) T ) Rn+1 defined as follows

Go ey (B (W) = (£3(xg(qy () *+ 1, (F™Cxg(qy (W), o5 (£))
(Xg (19 (W)

(2n+1)

n+1

are transversal to Qj = {(0,...,0,y1,...,yj) e R (y1,...,yj)eR)}

for j > 0.

b) the restrictions of the maps GO,G1 to 5Dn=Sn-1 are transversal to Qj

Proof.

This lemma follows from Thom Transversality Theorem in the form

2n+1

given in (4). We define in jet bundle, J (Dn X S1,S1), submanifolds

Cj . Let (u,x) be coordinates in D™ x S1 , y-coordinate in S1 and
let {u,x,y,auB} , ae N* ', BeN |a] + B8 < 2n+1 be coordinates in
g2t pn o 51 8Ty (agg = ¥) - Cj is defined by y-x=0 , aj, + 1 =0

and n-j equations H1@01A02...,a021+1) =0, 1=1,...,n+1-j . We need

to define the functions H1 . Write (fz)(21+1)(x) =0 in form

K (£ 0 £(x), €' (x),..., £ £, 21Dy = 0 . Define

Hl(ao1,...,3021+1) = Kl (a01,ao1,...,a021+1,a021+1) . Hl is a polyno-
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S Hy

d2021+1

21+1

mial such that = ao1+(ao1) . If agy = -1 then this

derivative is different from 0/is equal to -2/ . So C. are subma-
nifolds of class C Janrlpn gl

(D" x S ,S1). From Thom Transversali-

ty Theorem it follows that the set of maps £:0" x S1 > S1 of class

, in

o

C , 2n+1- jets of which are transversal to all submanifolds C, is
dense in C“(Dn b S1,S1) . It is easy to see that such maps satisfy
both conditions a),b) of Lemma /note that we are dealing with the
fixed points/.

n,r I

This proves the density of F1’ in Proof of the openess

of F?’r in F™T s simple and we left it to the reader.

Denote GEE}) = { (u,x) ¢ G3(1) : f;(x) = -1}
oy T = Sy 2 7 = 0
ngi) = {(u,x) e G3E3;1’ 2 3"Wx) = 03 for j=2,....n.

From Lemma 3.
It follows that these sets are submanifolds
We also define Hn(f) = {(u,x):xe(xo(u),(x1(u)) U

UG, -1, xg@) ,  £ix) = x),

1 6) =( (u,x) efP(f);(fi)'(x) .

HY I (f) =t (u,x) ¢ H* 'Y :(fi)(j)(x) = 0} for j=2,...,n .
Now we investigate the set of periodic points of f near

xo(u) .

Proposition 4.

Let 7r>2n+1 and f ¢ AR
Then there is R > 0 such that in

Vo = {(uw,x) : |x-x5(u)| < R},
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n-

the closures of H k form submanifolds, which are transversal to Gg

and the intersections of these submanifolds with are equal

Gn-k—]

to 0

Moreover, in VO\GE the following properties hold :

a) the map H(f) : V0 N\ Gg _— Rn+2 defined by the formula
OO (0 =[(£200 = x5 (£ -1, (£2) ")y, (£2) D )] i

transversal to P1 ={(0,...,0,y1,...,y1) : (yT,...,y1) € R1}

for 1> 0.

1

b) the restriction H(f) to the set (VO\GE) n (3" x r )

is transversal to Pj .

Proof.

If  (ug,xy) e GE\GB_1 then x; is hyperbolic fixed point of
fuo and there are no periodic points of period 2 of fuo(u close to uO)
near x,(u). Let (uy,x;) e Gg_j Gg-j_1 » j >0 . We can choose the

system of coordinates in a neighbourhood of Uy in the set of para-

meters and a n-parameter family of the diffeomorphisms L A > B,
1

A isaneighbourhood of Xy > B 1is a neighbourhood of 0 in R ,
¢u(x = x-xO(u) , such that in this coordinates the following condi-
tions hold.

(0) (fu(x) =X =0

0 3

n
»
i
o
-
=

\J - = 9 |l
(1) (£D'(0) = - 1 <=> u =0, 5= [fu(O)]u=0 £ 0

1
@ T =0 wy =0, G [(EDTO)] g # 0

u=0

) B D) =0 uy =0, gﬁg[(fﬁ)(Zj'1)(O)]u=o #0

Geny (2D 0y £ 0

For k=0 the first part of Proposition is true because by (0)
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2 1 .2 n
£.00-x = x.hg(w,x) 5, hy(w,x) = fo (fu)'(to.x) dty-1 , and thus H

is given by the equation ho(u,x) = 0 and by (1) the closure of g

3h
is a regular submanifold. axo(u,O) = %(fi)"(O) =0 for wy o= 0o,
hence H" is transversal to Gg at H® N Gg = {(n,x) : x=0 , u1=0}
_ ~n-1
= GO

Further we prove the following assertions by induction.

(1) for 1<j L s given by the equations

ho(u,x) = 0,...,h1(u,x) =0
1+1

1 ~ )

(i) (fﬁ(x)~x(1) - .Z hl.cil(u,x)+x h1 , 1=1,...,j , here

c;; are some functionsi=?
ahl 1

(iii) %= = iZO hy - d; G,x)+xehy 0, I=1,.00,5-1 , d;; are

some functions
) 1-1 2 21+1 .
(iv) wy = iZO hi.bi1+x-/jz0 Blj)’ 1=1,...,j , here b,, are

some functions,
_ 1 1 4o a
B1j = gea.fo ce jo Q (ty,eeesty PT.x)dt,...dt .

¢} a
)'gj(P1°U1"")Pn'Un’ o

o

. a o o . .
Here e -some functions, Q ,P ,Pv—monomlals of t ...,ts with

1’
coefficient equal to 1 , gj(u,x) = (fﬁ)(J)(x)

21+1

(V) hl(u,x) = Ajieq +oxe( jZO Alj) , here Alj takes the same

form as B,. and
1j

_ r1 1 2
Ajieq = fo"'fo (tgee oty )7 e8yqaq(tyseeestyoisee sty gsene,
b tges ety X) dtg, ..., dty

From our assumptions on f and from (v) it follows that the clo-

sure of Hn_k k < j, is a regular submanifold.
s J

hl(p,O) =0 <=> A21+1(u,0) = 0 and it is equivalent to M4 = 0

oh
- -k- ~k-1 -k .
Thus H" k n Gg = Gg k-1 . Because of axl =0 on Gg H" is
transversal to Gg .
Note that if k=j then g, , (0,...,0) # 0 and H"™K oy ina
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neighbourhood of (0,0)

Now we prove the above assertions. Let (i)k,...,(v)k be the as-
sertion (i),...,(v) for 1<k it may happen that some of these are
empty).

The scheme of the proof is

I. (iv)k,(v)k => (iv)k+1’
II. My (V) = Gid), (D, .
III.  (iii),, (i1)y = (ii)y,,.

IV. (1)), = Dy,

We prove only implications IL,III, and IV because the proof of
the first implication is similar to that of II.

II. (V) (i), = (1ii), (D, -

From (v), one contains ;;K = 35%511 + 2$E1 Akj+x./2%§13ﬁ%%
j=0 j=0
Let us ﬁE?erve that Akj(u,x) =0 for My S My TeeeTHp,q T X =0,
thus Akj = 121 Wy oeooy (u,x) + x . Aﬂj+1 s Aij+1 takes the same form
as Akj+]

A, .
Now by Lemma 1. —sél(u,x) and Aij+1(u,x) are equal to 0 for
My T oMy Seee=upgg T X = 0 and so they are in form
k+1
iz1uiBi+x.Aﬁj+1+x'Aﬂj+2 Bi are some functions and AEj+1 R Aﬂj+2

takes ;Ee gzm: form is Akj+1 or gijgz . From (1V)k+1 it follows
k_""2k+1 2 - v

that X ik + izo hk Y ot oxh ( jzo Akj)’Akj takes the same form
as Akj . One calculates that
dA k+1

2k+1 _

ax iZ1 s 806X XAy g

ahk k 2k+3
So —— = 121 hyedipag + XAg X" ( jZO Ak+1j) . Define
2k%3

Preq T Agpagtx( jzo Agary)
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From this one obtains (iii)k and (v)k+1

III. (iii)k, (ii)k => (ii)k+1 . Proof is straightforward.
IvV. (ii)k+1 => (i)k+1 .

If (1,Xx) € pnk , i.e. hy(u,x) =...= h (s,x) = 0, then

(u,x) ¢ HET e (fﬁ(x)—x)(k+1) =0 but by (ii),,, it may hap-

pen iff hk+1(u,x) =0 .

Proof of the last part of proposition is easy and we omit it.

Lemma 5.

There is an open dense subset Fg’rc:F?’r , T > 2n+1 , consisting

of such f that

a) the map H(f):{(u,x):x ¢ (xo(u),x1(u))} > Rn+2 defined as fol-

lows H(£)(u,x) = [fz(x)—x,(fz)'(x)—1,(f2)"(x),...,(fz)(n+1)(x)] is
u u u u .

transversal to Pj = {(0,...,0,y1,...,yj) : (y1,...,yj) e R7}

for j >0

b) the restriction of the map H(f) to

{(u,x) : u e op™ , X g (xo(u) , x1(u))} is transversal to Pj

Proof of this Lemma is not difficult and we omit it.

The above considerations give no still answer to the question

g, T

are structurally stable families dense in For n=1,2,3 the

answer is 'yes'". At first we give an idea of the proof. The submani-
folds H™J and 6™ J are not so interesting as their projections on
the set of the parameters. These projections give a stratification of
the set of the parameters. If HysHy belong to one of the strata then

f and fu2 are topologically equivalent. The problem of genericity

ul

480



ORIENTATION REVERSING DIFFEQMORPHISMS

of structurally stable families reduces to the following:are families
f such that for f1 close to f the above stratifications are ho-
meomorphic i.e. there is the homeomorphism h of N such that
h(stratum) = stratum , dense in FT. Some additional transversalities
must be used in proving of structural stability of f . We giveaproof
of density for n = 1,2 . Now we consider the case n=1

T
By lemma 3 and lemma 5, we see that for f e F;’ , T >3

(i) f_1 and f1 are structurally stable (3 D1 = {-1,11) ,

(ii) if(u}kD&ﬂ is such that x 1is a fixed point of f, (for
example x = xO(u) ) then

either x 1is hyperbolic,

or x 1is quasi-hyperbolic (i.e., f;(x)=—1,(fﬁ)"'(x)#0) ,

L (£5(xg(1) 5o, # O
(iii) if (u,x) is such that x 1is a periodic point of period 2
of fu then

either x 1s hyperbolic ,

or Xx 1is quasi-hyperbolic (i.e. (fif(x) =1, (fi)"(x)#o

and %(fi(x))“:u £ 0

We also know that the set of (u,x) such that x is a quasi-
hyperbolic point of f'/l is finite. By a small change of dependence of

f on 1y we obtain a family g such that (iv) for every wu e D g,

has at most one quasi-hyperbolic periodic point. Families g e Fg’r

satisfying the last property (iv) are dense in F™ T (denote the set

of them by F;’r). It is not difficult to prove that every feF;’r is structurally sta-
ble (note that enough to consider a neighbourhoods of (u,x) s.t. x is a quasi-hyper-
bolic periodic point of fu)' I shall omit proof of this fact (is based on ideas of
Sotomayor (3)). Now we consider the case n=2. By above facts we know that in the ge-
neric case fIBszR1 is structurally stable, for fng’r. If (u,x) is such that x is a
hyperbolic periodic point of f then in the generic case we need to obtain structu-

ral stability near (u,Xx). Two cases are interesting :
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(a) xp 1is a periodic point of fu of period 2 and
0

2

2 " = .
(f “0) - (xg) =1, (f“O) (xg) =03

(b) x; is a fixed point of f£, and fﬁo(xo)

2
1, () (xg) =0
0 )" o

Consider the case (a), for f ¢ Fg,r , T >5,n=2.

By lemma 5., we need only to assume that (ffOT(XO) =0 and
the map (p,x) ~ Kfﬁ(x)—x,(fﬁ)'(x)—1,(f2)"(x)] is regular at (uo,xo)
Thus the map (p,X) +(fﬁ(x)-x s (fﬁ)'(x)-1) is regular at (up,Xq).

We can choose coordinates (p,A) 1in D2 near wu, such that

(0,0) and == (fﬁO(O)) w0 0 fﬁAUD =0 <=> A =0

Yo 7 u

and §l (£2,07(0) g # 0, (£2,)7(0) = 1 <=> 2 = 0, (we put X = 0)
A

By Weierstrass-Malgrange Preparation Theorem, we can assume that

2 _ 2
£, (X)=x = ¥.ho(¥,0) + Achy(,0)x + (“°h2+*h3(u,x)) -

+ hy(u,2,x) . X

Here h;(0,0) #0, hy(0,0) # 0 ,h;(0,0,0) # 0.

fﬁA(x)-x = 0 is an equation of HZ

2
uA

(£2,7(0-1=0

f
H1 is given by a system of the equations

(x)-x=0

which is in our situation equivalent to the following system

w=g (4,2, %)x°

A=g2(u,x,xlx2
here g, and g, are the fonctions depending on hO,...,h4 such
that g1(0,0,0) # 0 and gZ(O,O,O) #0

It is not difficult to prove that in general position the situa-
tion looks like at the picture and for g «close to f the submani-
folds Hz(g) , H1(g) and their projections are close to the analogous

submanifolds and their projections as for f .
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W)

=R

@' ()

ﬁxk has one hyperbolic periodic point in the domain I , 3 hyperbolic
periodic points in the domain II and one hyperbolic and one quasi-

hyperbolic points in n(H1) , all near 0 . Now we consider the case
(b)

We can choose the system of ccordinates (u,A) and 2-parameter
family of diffeomorphisms of R! such that after these changes
£2,00-x = wohyGuyn)ex + why(u,2).x% + Ahg (u,0)x3 + (u.hy + A.hy) .t

+ hg (u,1,%)x°
and here h1(0,0) # 0, hS(O,O) #0, hS(O,O,O) # 0 . It is true in
generic situation, and it follows from Lemm 3. (f&X(O) = -1 <=>

p = 0 and qu(x) = X <=> X = 0) in a neighbourhood of (0,0,0) .

Gg(f) is equal to {y = 0 = x}

Hz(f) is equal to {(u,A,x):“h1+ thzx + Ah3x2 + (uh4+Ah&)x3
+ hgxt = 0}
H1(f) is given by the system of equations
2 3 4
Why o+ whgx + dhgx ¢ (ehyah)x tRosxt <o
u(h, + 2h,x)+ 3rh.x? + 4(wh,+h'\)x> + (Sh_+ 3h5,x)x4 =0
1 2 3 4 74 5 9x -

which is equivalent to the following system

p x4g1(u,x,x)

A

x?gz(u,k,X)

483



H. ZOEADEK

here g, , g, are the functions depending on h1,...,h5 such that
g1(0,0,0) # 0 and gz(0,0,0) # 0. As in the case (a) it is not diffi-
cult to prove that in general position the situation looks 1like at

the picture below,

b 1
m(H")
I
TI(GI) H(Gg)) A
ITI
|
u
In the domain I qu has one fixed hyperbolic point and one hy-
perbolic periodic orbit of period 2, in the domain II qu has one fi-

xed hyperbolic point and 2 hyperbolic periodic orbits of period 2, in
the domain III fu has one fixed hyperbolic point ; on (H1) qu
has one hyperbolic fixed point and one quasi-hyperbolic periodic or-
bit of period 2 , if u = 0,A<0 then fu* has one quasi-hyperbolic
fixed point , if u = 0,)>0 then qu has one quasi-hyperbolic
fixed point and one hyperbolic periodic orbit of period 2

The same situation we obtain for g close to f .

From the above considerations we know that there is only a finite
set of points (p,x) such that fu has a non-hyperbolic periodic
orbit of type (a) or type (b). By a small change of the dependence
of £ on 1 we can obtainafamily g for which all the intersections
and self-intersections of
n(Hl\HO) , w(HO) , n(Gé\Gg) s n(G}\Q?) s n(Gg) s n(G?) are transver-

sal. It is easy to see that such family is structurally stable.
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From above and from the considerations connecting the case n=1

one obtains the following.

Theorem 6.
For n=1,2, r 2n+1 , the structurally stable families of T

. n,r
are dense in F’

We can ask what happens for r < 2n+1 . Before I show how situa-
tion for 3-parameter generic families looks like. Below is given the
stratification of the set of the parameters in a neighbourhood of a

point w such that fu has a non-hyperbolic periodic point.

We see that in this case w(Hz\Hl) intersects itself (or inter-
sects n(GZ)) arbitrary close to wu . It is not difficult to prove
that in generic situation these intersections are transversal. As in
the case n=2 we can prove of the density of structurally stable fa-
milies in FS’r , for r > 7 . For n > 3 calculaticns are complica-
ted in I don't know how to prove analogous to Theorem 6. for arbitra-

TY n .

Now, I shall prove the following .
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Theorem 7.
For n=1 or n=2 , if 1 < 2n+1 there is in F™' an open sub-

set consisting of unstable families.

Proof.

We prove Theorem only in case n=1 . Proof of Theorem in case
n=2 is similar and is based on results connected with the case of
n=3 , r >7

Let in a neighbourhood of (0,0) £ has the form

flu.x) = (-Nx

Any g close to f in F1’r

is in the form
g0, X) = (1) (x-xp) (1))+ d(w). (x=xg) (1)) + 0(x=xp) (W) + x

In a neighbourhood of (uo,xo(uo)),(c(uo)) = -2) we can perturb

F1’2 to the following one

g in
gq(u,x) = X*C(u)-(x-xo(u) + d(u)-(x-xo(u))z + e(u)-(x-xo(u))3
st (g3 )" (xp) = 0

2,5

2.5 . We can perturb q to q € FZ

Let q(u,2,x) = g, (u,x) e F"°
and we bring the 1-parameter family gz(u,x) = q1(u,A,x) (r=const).
For some small A we obtain a family such that for u close to 0
gZu has one quasi hyperbolic periodic orbit, close to 0 , and thus
the number of periodic orbits of period 2 is bigger than for g. This

implies unstability of g .
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