
Astérisque

HENRYK ŻOŁĄDEK
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Astérisque 51 (1978) p.473-487 

ON BIFURCATIONS OF ORIENTATION REVERSING 

DIFFEOMORPHISMS OF THE CIRCLE 

Henryk Zoladek 

We consider several-parameter families of orientation rever
sing diffeomorphisms of the c i r c l e . 

In (1) Brunovsky investigated arcs of preserving orientation diffeo-

morphisms of the c i r c l e . In the orientation reversing case we shal l 

obtain stronger resul t s than in the orientation preserving case. In 

par t icu la r , in (2) Guckenheimer proved non-genericity of s t ruc tura l ly 

stable n-parameter families of orientation preserving diffeomorphisms 

of the circle for n > 1 . Our goal in this paper is to investigate 

genericity of s t ruc tura l ly stable families in the orientation reversing 

case. We shall prove the density of structurally stable families for n=1,2. Let 

Diff^fS1) be the space of orientation reversing Cr-diffeomorphisms of the circle 

and let Dn be unit ball in Rn,Dn = {xeRn : |x| < 1} . Define F^1* as the spa

ce of Cr-maps from Dn to Diff^S1) with Cr-topology . 

Definition 

Two families E, , n e F n , r are called topologically conjuga

ted iff there is a homeomorphism h of Dn and n-parameter conti

nuous family h^ of homeomorphisms of the c i r c l e , for which the fol

lowing condition is sa t is f ied 
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h u o n(u) = 5 0i(u)) o h u 

The family £ e F n , r is called s t ructura l ly stable iff there is 

an open neighbourhood U of £ in F n , r , such that for each n e U 

n and £ are topologically conjugated. 

Instead of n-parameter families of diffeomorphisms we may consi

der functions on Dn x R1 satisfying condition f(u,x+1) = f(u,x)-1 

such that for every (u,x) e DnxR1 ^ (u,x)< 0 • Topology of 
ox 

th is space is defined as the topology of uniform convergence with a l l 

derivatives to order r.We denote fu = f ( u , . ) . I t is a well known 

fact that every orientation reversing diffeomorphism of the c i rc le 

has exactly two fixed points and that any other periodic orbit has 

period 2. 

Further under "x is a periodic point of f " we shall under* 

stand"exp(2irix) is a periodic point of the diffeomorphism induced by 

f u " i . e . a e i ther 3 ^ ^ U W = x + n a n c * then exp(27rix) is a fixed 
2 

point , or "^u^ = x a n c ^ then exp(2TTix) is 

periodic of period 2. For f e F n , r there are two C r - functions 

x 0,x.j : Dn->R1 , - 1 < XQ < x 1 such that f u (x Q (u ) ) = x Q(u) and 

f ^ x ^ u ) ) = x-,00-1 . If x e (x 1 (uHx G (u)) then f u (x) e (X Q (U) 

x^fu)) and if x e (x o (u)-0 , x ^ (u) ) then f u ( x ) e (x-j (u)-1 , X q (u) ) . 

We denote G^(f) , G n(f) as n-dimensional Cr-submanifolds in Dn x R1 

(with boundary) being the graphs of the functions xQ , x̂  . Easy 

proof of the following two lemmas we leave to the reader. 

Lemma 1. 
1 1 ?k Let f:R + R of class C , k > 1 , be such that 

f(0) = 0 , f ' (0) = -1 , ( f 2 )"(0) = 0 , . . . , ( f 2 ) ( 2 k " 1 ) ( 0 ) = 0 

then ( f 2 ) ( 2 k : ) (0) = 0 . 
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Lemma 2. 
Let f:R 1 *R1 of class Ck , k > 2 , and x € R1 be such 

that f (x o ) + xQ , f 2 (x Q ) = xQ , f*(x 0) t 0 . 

Then ( f 2 ) ' ( x 0 ) = 1 , ( f 2 ) " (x 0 ) = 0 , . . . , f £ 2 ) ( k ) ( x Q ) = 0 imply 

( £ 2 ) ' ( f ( x 0 ) ) = 1 , ( f 2 r ( f ( x 0 ) ) = 0 , . . . , ( £ 2 ) ( k ) ( £ ( x 0 ) ) = 0 . 

Lemma 3. 
There is an open, dense subset F n , r ^ F n , r , r > 2n+1 , such 

that for any f £ F n , r : 

a) the maps G Q (f),G 1 (f) : Dn + R n + 1 defined as follows : 
G 0 ( 1 ) ^ ^ - C £ i < * o c n < u » + 1 • ( £ S ) , H ( x o ( i ) t u » , . . . . ( f J ) C 2 n + 1 ) 

( x 0 ( 1 ) ( u ) ) . 

are transversal to Q. = { ( 0 , . . . , 0 , y 1 , . . . , y . ) e R n + 1 : ( y 1 , . . . , y . ) e R J } 

for j > 0 . 

b) the restrictions of the maps GQ9G^ to ^Dn=Sn 1 are transversal to Q. . 

Proof. 

This lemma follows from Thorn Transversality Theorem in the form 

given in (4). We define in j e t bundle, J 2 n + 1 ( D n x S 1 , S 1 ) , submanifolds 

Cj . Let (u,x) be coordinates in Dn x , y-coordinate in and 

let {u ,x ,y ,a a ^} , a e Nn , |5 e N |a| + 3 < 2n+1 be coordinates in 

J 2 n + 1 ( D n x S 1 ,S 1 ) . ( a Q 0 = y) . C. is defined by y-x=0 , a Q 1 + 1 = 0 

and n-j equations HjCao 1,ao 2> • • • , aQ21+l ) = 0 ' 1 = 1 , . . . ,n+1 - j . We need 

to define the functions H1 . Write (f 2 ) ^ 2 1 + 1 ^ ( x ) = 0 in form 

K 1(£ f o f (x) ,f1 (x) , . . . ,f ( 2 l + 1 ^ o f (x) , f ( 2 l + 1 ) ( x ) = 0 . Define 
H l ( a 0 V - ' a 0 2 l + 1 ) = K l ( a 0 r a 0 r - - - ' a 0 2 l + r a 0 2 l + 1 } • H l i s a P 0 1 ^ 0 " 
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miai such that 
à H1 

ò a 02 l + 1 
^ 21+1 a 0 1 + ( a o l ) If a Q 1 = -1 then th is 

derivative is different from 0/is equal to -2/ . So are subma-

nifolds of class C , in J 2 n + 1 ( D n x S 1 , S 1 ) . From Thorn Transversali-

ty Theorem i t follows that the set of maps f:D n x S1 •> S 1 of class 
00 

C , 2n+1- j e t s of which are transversal to a l l submanifolds C.. is 

dense in C^fD11 x s \ s ^ ) . I t is easy to see that such maps sat isfy 

both conditions a),b) of Lemma /note that we are dealing with the 

fixed po in t s / . 
This proves the density of F ^ , r in F n , r . Proof of the openess 
n "i* n t* 

of F^' in F ' is simple and we lef t i t to the reader. 

Denote G ^ ] } = { (u,x) e G £ ( 1 ) : f^(x) = -1} 

G o ( i ) = ^ ^ ; x \ e G o m ; }£p"[™ = °} 

= {(u,x) e G ^ ' J 1 : (£ *) ( 2 j "1 } (x) = 0} for j = 2,.. . ,n. 

From Lemma 3. 

I t follows that these sets are submanifolds . 

We also define H n(f) = { (u ,x ) :xe (x n (u ) , (x 1 (u ) ) U 
U(x1(u)-1 , x Q (u)) fj(x) = x} , 

H n " 1 ( f ) ={(u,x) E h^(f) : (f^) ' (x) = 1} 

H n"J(f) ={(u,x) e Hn"^ + 1ffJ ; ( f j ) ( ^ ( x ) = 0} for j = 2 , . . . , n . 

Now we investigate the set of periodic points of f near 

XQ(U) . 

Proposition 4. 

Let r>2n+1 and f e F n , r . 

Then there is R > 0 such that in 

VQ = { (u,x) : |x-x 0 (u) | < R } , 
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the closures of H N " K form submanif olds, which are transversal to GQ 
and the intersect ions of these submanifolds with are equal 
to GQ 

Moreover, in v Q N G Q the following properties hold : 

a) the map H(f) : VQ \ G£ > R n + 2 defined by the formula 

H(f)(u,x) =[(f u (x) - x , ( f 2 ) ' ( x ) - 1 , ( £ j ) " ( x V . . , ( f J ) ( n + 1 ) ( x ) ) ] is 

transversal to P]_ ={ (0 , . . . , 0 ,y ^ , . . . ,y ) : ( y r - . . , y 1 ) e R 1 } 

for 1 > 0 . 

b) the r e s t r i c t ion H(f) to the set (VQ\GQ) A (&)n x R 1 ) 

is transversal to P. . 
3 

Proof. 

If (UQ,X q) e g Q \ G 0 ^ then x Q is hyperbolic fixed point of 

f and there are no periodic points of period 2 of f {u close to u n ) 
0 . 0 u 

near x Q ( u ) . Le t (u 0 ,x Q ) e GQ' J G Q " j ' , j > 0 . We can choose the 
system of coordinates in a neighbourhood of u Q in the set of para

meters and a n-parameter family of the diffeomorphisms <J>U : A -> B , 

A isaneighbourhood of XQ , B is a neighbourhood of 0 in R^ , 

<J>u(x = X-XQ(U) , such that in this coordinates the following condi

tions hold. 

(0) (f u (x) = x = x = 0 , uQ = 0 , 

(1) (f ) f ( 0 ) = - 1 < = > n = 0 , ~ |"f'(0) n + 0 ^ J v u K J 1 ' 3û  L u ^Ju=0 

(2) ( f 2 ) M I ( 0 ) = 0 <=> u = 0 , - i - r ( f 2 ) " ' ( 0 ) n + 0 v J K uJ K J 2 9 8u2 L u Ju=0 

(j) ( f ^ ( 2 j _ 1 ) ( 0 ) = o <=> U j = o , a ^ [ ( f u ) C 2 j ' 1 ) ( 0 ) ] u . 0 / o 

(j + D ( f 2 ) ( 2 j + 1 ) ( 0 ) t o 

For k=0 the f i rs t part of Proposition is true because by (0) 
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2 
f y (x)-x = x.h Q (y,x) 

h Q (y ,x) = ¡1 ( f 2 ) ' ( t Q . x ) dt Q -1 and thus Hn 

is given by the equation h Q (y,x) = 0 and by (1) the closure of Hn 

ah n 1 ? 

is a regular submanifold. - _ H ( y , 0 ) = ~(f^)"(0) = 0 for y. = 0 , 
oX Z y I 

hence Hn is transversal to at Hn H Gj = {(y,x) : x=0 , y^O} 
_ P n-1 
" G0 • 

Further we prove the following assertions by induction. 

(i) for l<j Hn 1 is given by the equations 

h Q (y,x) = 0 , . . . , h x ( y , x ) = 0 

( i i ) ( f 2 ( x ) - x ( 1 ) = 1 h l . c i l ( y , x ) + x l + 1 h l , 1 = 1 , . . . , j , here 
^= i =0 c . n are some functions? i i 

ah 1 
( i i i ) — = J h± . d i l ( p , x ) + x . h l + 1 , l = 1 , . . . , j - 1 , dn are 

some functions 
1-1 2 21+1 

(iv) y- = J h . .b +x>/ I B . ) , 1 = 1 , . , here b are 
1 i=0 1 1 1 j=0 1 3 1 1 

some functions, 
B i j • K - ' ! ••• / 1 Q a ( V - - - > t s ) . g j c p ^ . y 1 , . . . , p ^ p n , p a . x ) d t 1 . . . d t s . 

J a a ot 
Here e -some functions, Q a,P a,P a-monomials of t „ , . . . , t with a 9 ^ 9 9 v 1 s 

coefficient equal to 1 , g.(y,x) = ( f 2 ) ^ (x) 

21+1 

(v) h^fyjX) = &2i+-\ + X " ( I A l j ^ ' n e r e A i j takes the same 

form as B.^ and 
1 1 2 A21+1 = V ' ^ O ( t 0 ' - - t l - 1 ^ - S 2 l + l ( t l , . . . , t l . y 1 , . . . , t l . y 1 , y l + l , . . . , 

y n , t Q . . . , t 1 x) d t 0 , . . . , d t l 

From our assumptions on f and from (v) i t follows that the clo-
n-k 

sure of H , k < j , is a regular submanifold. 
h-̂ CyjO) = 0 < = > A 2 1 + 1 (y ,0) = 0 and i t is equivalent to + 1 = 0 . 

I Tn-k n „n-k-1 „ r a h l n n n-k-1 u n-k . Thus H (1 GQ = GQ . Because of 8 x = 0 an GQ H IS 

transversal to GQ . 

Note that if k=j then g + 1 ( 0 , . . . , 0 ) f 0 and H n ~ k = <f> in a 
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neighbourhood of (0,0) . 

Now we prove the above asser t ions. Let ( i ) ^ , . . . , ( v ) ^ be the as

sert ion ( i ) , . . . , ( v ) for l<k i t may happen that some of these are 

empty). 

The scheme of the proof is : 

I- ( i v ) k , ( v ) k => ( i v ) k + 1 > 

I I . ( v ) k , ( i v ) k + 1 => ( i i i ) k , ( v ) k + 1 . 

I I I . ( i i i ) k , ( i i ) k => U i ) k + 1 • 

IV. ( i i ) k + 1 => ( i ) k + 1 > 

We prove only implications I I , I I I , and IV because the proof of 

the first implication is similar to that of I I . 

I I . ( v ) k , ( i v ) k + 1 => ( i i i ) k , ( v ) k + 1 . 
3h 3A? V . 2k+1 2k+1 8A, . 

From (v ) k one contains ^ = — f f J . • A k j + x . / ^ - g . 

Let us observe that A kj(y,x) = 0 for ŷ  = y 2 =. . . = y k + -j = * =0, 
k+ 1 

thus A, . = Y y. . a. (p,x) + x . A,1 . . , A,' . i takes the same form kj I I K J kj + 1 kj + 1 
as A. . 1 . 

J

 3 A k Now by Lemma 1. - 9 x

J (y ,x) and A^. + ^(y,x) are equal to 0 for 
y 1 = p 2 = ' ' ' = yk+1 = * = 0 and so they are in form 
k+1 

I ^ i e i + x . A £ j + 1 + x ' A y j + 2 t± are some functions and A£j + 1 , A - j + 2 

takes the same form as A, . * or A, . 9 . From (iv), . i t follows 
8 h k 3 A2k+1 k 2 2k*3 - -

that —^-—fii— + , I q

 h k Y i + x ' ( lQ

 A k j ^ A k j takes the same form 

as A, . . One calculates that 

3 A 2 k + 1 k+1 

— H - 1 = .1, H • 6 i ( ^ X ) + X - A 2 k + 3 * 
3h, k ? 2k+3 

So -r̂ - = I h . . d . l 4 - 1 + x.A 9, + x . ( J A, . Define 9x ^ i ik+1 2k+3 v y=Q k+^зJ 

h k + 1 = A 2k + 3 + x ( J0 V l j ) ' 
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From this one obtains ( i i i ) ^ and ( v)^+i • 

I I I . ( i i i ) k , ( i i ) ^ = > * P r o ° f is straightforward. 

iv. ( i i ) k + 1 => ( i ) k + 1 . 

If (y,x) e H n " k , i . e . h Q (y,x) = . . .= h k (y ,x) = 0 , then 

(y,x) e Hn~k""1 iff ( f 2 (x)-x) f k + i ; ) = 0 but by ( i i ) w 1 i t may hap-
y K * I 

pen iff h k + 1 ( y ,x) = 0 . 
Proof of the las t part of proposition is easy and we omit i t . 

Lemma 5. 

There is an open dense subset V1^9 ^^F1^9 r , r > 2n+1 , consisting 

of such f that : 

a) the map H (f) : { (u ,x) : x e (xQ (u) ,x^ (u) ) } -> R n + 2 defined as fol

lows H(f)(u,x) = [ f 2 f x ) - x , ( f 2 ) » ( x ) - 1 , ( f 2 ) " ( x ) , . . . , ( f 2 ) ( n + 1 ) ( x ) ] is 

t ransversal to P̂  = {(0 , . . . , 0 , . . . ,y ) : ( y ^ . - . j . ) E RJ } 

for j > 0 . 

b) the r e s t r i c t i on of the map H(f) to 

{(u,x) : u e 3Dn , x e (x 0(u) , x^fu))} is transversal to P.. . 

Proof of th is Lemma is not d i f f icu l t and we omit i t . 

The above considerations give no still answer to the question : 

are s t ruc tura l ly stable families dense in F n , r . For n=1,2,3 the 

answer is "yes". At first we give an idea of the proof. The submani-

folds Hn~-' and Gn ^ are not so interes t ing as the i r projections on 

the set of the parameters. These projections give a stratification of 

the set of the parameters. If y j ,y 2 belong to one of the s t r a t a then 

f^ and f 2 are topologically equivalent. The problem of genericity 
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of s t ruc tura l ly stable families reduces to the following:are families 

f such that for f̂  close to f the above s t r a t i f i ca t ions are ho-

meomorphic i . e . there is the homeomorphism h of such that 
n r 

h(stratum) = stratum , dense in F ' . Some additional t ransversa l i t i es 

must be used in proving of s t ructural s t ab i l i t y of f . We giveaproof 

of density for n = 1,2 . Now we consider the case n=1 . 
1 r 

By lemma 3 and lemma 5, we see that for f e F^' , r > 3 : 
(i) f_1 and f̂  are s t ructura l ly stable (3 D1 = {-1,1}) , 
( i i ) if (u,x)eDxR1 is such that x is a fixed point of (for 

example x = x^(y) ) then 

ei ther x is hyperbolic, 
2 

or x is quasi-hyperbolic ( i . e . , f^(x)=-1,(f^)" 1 (x)^0) , 

^ ( f { ( x 0 ( A ) ) x = y * 0 
( i i i ) if (y,x) is such that x is a periodic point of period 2 
of f then : 

y 
ei ther x is hyperbolic , 
or x is quasi-hyperbolic ( i . e . (f^/(x) = 1 , (f^)M(x)^0 
a n d Jx^l^W-v * ° 

We also know that the set of (y,x) such that x is a quasi-
hyperbolic point of f̂  is f i n i t e . By a small change of dependence of 
f on y we obtain a family g such that (iv) for every y e 

n r 
has at most one quasi-hyperbolic periodic point. Families g e V^9 

satisfying the las t property (iv) are dense in F n , r (denote the set 
1 r 1 r 

of them by F^' ). It is not difficult to prove that every is structurally sta
ble (note that enough to consider a neighbourhoods of (y,x) s.t. x is a quasi-hyper
bolic periodic point of f ). I shall omit proof of this fact (is based on ideas of 
Sotomayor (3)). Now we consider the case n=2. By above facts we know that in the ge-

2 1 r neric case f | 3D xR is structurally stable, for feFtJ* . If (y,x) is such that x is a 
hyperbolic periodic point of then in the generic case we need to obtain structu
ral stability near (y,x). Two cases are interesting : 
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(a) XQ is a periodic point of of period 2 and 

c f 2

y Q ) • c*o> = 1 • ( £ y 0

) M ( V - 0 > 

(b) x Q is a fixed point of fy and f̂ J (xQ) = -1 , ( f 2 ^ ) , M ( x 0 ) =0 

Consider the case (a) , for f e > r , r > 5 , n = 2 . 
2 

By lemma 5 . , we need only to assume that ( ^ ^ ' ( X Q ) =0 and 

the map (p , x ) - [(£ 2 (x) -x, ( f 2 ) ' (x)-1 , ( f 2 ) " (x)] is regular at O 0 , x Q ) 

Thus the map (y,x) ^(f^(x)-x , ( f 2 ) , ( x ) - 1 ) is regular at ( y Q , x 0 ) . 
M y 

2 
We can choose coordinates (y,X) in D near yQ such that 

yQ = (0,0) and ^ (fj CO)) y = 0 f 0 , f 2

x(0) = 0 <=> * = 0 
and -2. ( f 2

x ) ! ( 0 ) A = Q ^ 0 , ( f 2

x r ( 0 ) = 1 <=> X = 0 , (we put x Q = 0) 
Ox 
By Weierstrass-Malgrange Preparation Theorem, we can assume that 

f 2

A ( x ) - x = y.hQ(v,A) + A.h^y.Xj.x + (y .h 2 + X h 3 ( y > x ) ) . x 2 + 

+ h 4 (y ,X,x) . x 3 

Here h Q (0,0) * 0 , 1^(0,0) + 0 ,h 4 (0 ,0 ,0) t 0, 2 2 f ^(x)-x = 0 is an equation of H 

, f2 (x)-x-0 
H is given by a system of the equations , 

(f^) '(x)-1=0 

which is in our s i tuat ion equivalent to the following system 

f u=g1 (M,X,X).X 3 

I X = g 2(y,X,x),x 2 

here ĝ  and g 2 are the fonctions depending on h Q , . . . , h ^ such 

that g 1 (0 ,0 ,0) + 0 and g 2 (0 ,0 ,0) ^ 0 . 
I t is not d i f f icu l t to prove that in general posit ion the s i tua

tion looks l ike at the picture and for g close to f the submani-
2 1 

folds H (g) , H (g) and the i r projections are close to the analogous 

submanifolds and thei r projections as for f . 
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f has one hyperbolic periodic point in the domain I , 3 hyperbolic 
y A 

periodic points in the domain II and one hyperbolic and one quasi-

hyperbolic points in TT(H1) , a l l near 0 . Now we consider the case 

(b) . 

We can choose the system of coordinates (y,x) and 2-parameter 

family of diffeomorphisms of R1 such that after these changes 

f 2

x ( x ) - x = vh-jCvjXl.x +' y .h 2 (y ,X ) .x 2 + X.h3(y,X)x3 + (y .h 4 + X .h 4 ) .x 4 

+ h 5 (y ,X ,x)x 5 

and here h-|(0,0) f 0 , h 3 (0,0) + 0 , h 5 (0 ,0 ,0) / 0 . I t is true in 

generic s i tua t ion, and i t follows from Lemm 3. ( f ^ ( 0 ) = -1 < = > 
p = Q and f (x) = x <=> x = 0) in a neighbourhood of (0,0,0) 

y x 
Gj(£) is equal to { y = 0 = x } 

H 2(f) is equal to { (y ,X ,x) :^h^+ v^h^x + x h

3

x 2 + (yh 4 +xhpx 3 

+ h 5.x 4 = 0} 

(f) is given by the system of equations 

( ^ ih1 + y^h2.x + X.h3-x2 + (y-h4+X.h4) x 3 5x 4 = 0 

| y ( h 1 + 2h2.x)+ 3Xh3«x2 + 4(y.h4+h'X)x3 + (5h5+ ^ - f X > x 4 = 0 

which is equivalent to the following system 
4 

v = x •g1 (y ,X ,x) 
2 

X = x.g 2(y ,X ,x) 
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here g 1 , g 2 are the functions depending on , . . . , h 5 such that 
g 1 (0,0,0) f 0 and g 2 (0 ,0 ,0) + 0. As in the case (a) i t is not d i f f i 
cult to prove that in general position the s i tuat ion looks l ike at 
the picture below , 

In the domain I fu$ has one fixed hyperbolic point and one hy

perbolic periodic orbit of period 2, in the domain II f has one f i -
y A 

xed hyperbolic point and 2 hyperbolic periodic orbits of period 2, in 
the domain I I I f has one fixed hyperbolic point ; on (H^) f . 

y y A 
has one hyperbolic fixed point and one quasi-hyperbolic periodic or

b i t of period 2 , if y = 0,A<0 then f has one quasi-hyperbolic 
y A 

fixed point , if y = 0,A>0 then f , has one quasi-hyperbolic 
y A 

fixed point and one hyperbolic periodic orbit of period 2 . 

The same s i tuat ion we obtain for g close to f . 

From the above considerations we know that there is only a f in i t e 

set of points (y,x) such that f has a non-hyperbolic periodic 

orbit of type (a) or type (b). By a small change of the dependence 

of f on y we can obtainafamily g for which all the intersections 

and se l f - in tersec t ions of 

Tr(H\H°) , TT(H°) , TT(GJ\GJ) , TT(G]\GJ) , TT(GJ) , TT(GJ) are transver

sa l . I t is easy to see that such family is s t ruc tura l ly s tab le . 
484 
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From above and from the considerations connecting the case n=1 
one obtains the following. 

Theorem 6. 
For n=1,2, r 2n+1 , the s t ructura l ly stable families of F n , r 

, . r i i , r are dense in F ' 

We can ask what happens for r < 2n+1 . Before I show how s i tua

tion for 3-parameter generic families looks l ike . Below is given the 

s t r a t i f i ca t ion of the set of the parameters in a neighbourhood of a 

point y such that has a non-hyperbolic periodic point. 

2 1 
We see that in this case TT(H \H ) intersects i t s e l f (or in te r -

2 
sects TT(G )) arbi trary close to y . I t is not d i f f icul t to prove 
that in generic s i tuat ion these intersections are t ransversal . As in 
the case n=2 we can prove of the density of s t ructura l ly stable fa-

3 r 
milies in F ' , for r > 7 . For n > 3 calculations are complica

ted in I don't know how to prove analogous to Theorem 6. for a rb i t ra 

ry n . 

Now, I shall prove the following . 
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Theorem 7. 

For n=1 or n=2 , if r < 2n+1 there is in F n , r an open sub
set consisting of unstable families. 

Proof. 

We prove Theorem only in case n=1 . Proof of Theorem in case 

n=2 is similar and is based on resul t s connected with the case of 

n=3 , r > 7 . 

Let in a neighbourhood of (0,0) f has the form 

f(y.x) = (y-1)x 
i r 

Any g close to f in F 9 is in the form 
g(y,x) = c (y) . (x-x Q ) (y) ) + d(y) . (x-x Q ) (y)) + 0 (x -x Q ) (y ) ) 2 + x 

In a neighbourhood of ( y Q , x Q ( y Q ) ) , ( c ( y Q ) ) = -2) we can perturb 
1 2 

g m F ' to the following one 2 3 g - j ^ x ) = x+c(y) . (x-xQ(y) + d(y) . (x-x Q(y)) + e(y) . (x-x 0 (y)) 

s . t . (g 2y ) " ' ( x 0 ) = 0 
0 

2 5 2 5 Let q(y,X,x) = g^(y,x) e F * .We can perturb q to q̂  e F 2 ' 
and we bring the 1-parameter family g2(y>x) = q^(y,A,x) (x=const). 

For some small X we obtain a family such that for y close to 0 

g 9 has one quasi hyperbolic periodic orb i t , close to 0 , and thus 
z y 

the number of periodic orbits of period 2 is bigger than for g. This 

implies uns tab i l i ty of g . 
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