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Polynomial integrals of hamiltonian systems 

by A. M. Stepin 

In the last ten years a new method of investigating dynamical 
systems, called the (L,A)-pair method, has been developed. 
Essentially, it consists of the construction of prime integrals 
and the action-angle variables for hamiltonian systems as spectral 
invariants of some operator function L defined on the phase 
space of a system and satisfying the equation L« (L, A) for 
some operator function A • The (L , A) - pair method has made 
possible the integration of many important nonlinear partial 
differential equations and has been succesfully applied to the 
systems of analytical mechanics: it has been shown that the system 
of n particles on the real line with the Weierstrass ^-function 
as the potential of their interaction and the problem of the 
solid body dynamic in R3 are fully integrable. [7] and [3]. 

There is a distinguishing feature of prime integrals constructed 
by the (L , A)-pair method, namely the polynomiality of their 
variational derivatives for infinite-dimensional systems and 
the polynomiality of the integréis with respect to the impulses 
in the case of finite-dimensional systems. We note also that 
almost all of the integrated problems of analytical dynamic 
with the natural hamiltonian possess a full set of involutive 
integrals polynomial with respect to the impulses. Therefore, 
it is natural to approach the description of all integrable dynamical 
systems by determining Hamiltonians admitting prime integrals 
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polynomial with respect to the impulses and independent of the 
energy and the kinetical moments of the given system. By kinetical 
moments we call the prime integrals associated, in virtue of 
the Noether's theorem, with the configurational symmetries of 

the Hamiltonian. 
In the present paper this problem will be investigated in 

the case of n-particle linear system with the hamiltonian 

H -
1 
1 

11 

i«1 pi + i<3 
V (xi-xj) CD 

where JL^ and pj_ are, for i- 1,...,n , the coordinates and im­
pulses of the particles, respectively. The function V will 
be called in the sequel the potential. It will be said that 
a potential V admits a prime integral P if P is a prime 
integral for the system with the hamiltonian CO . 

Let us choose now a suitable space of possible potentials. 
Namely, let Vp ; J>>0 be the space of meromorphic functions 
hDlomorphic in a punctured neighbourhood of zero of the form 
ci* : O<|z|<P} . endowed with the norm 

IIVllj, - sup PUi>l + sup |V+(z)], 

where 7. and 7 + are fundamental and regular part of the 
Laurent expansion of 7 in 0 , respectively. 

Theorem 1. The family of all potentials 7e l£ admitting 
a prime integral being a polynomial of a given degree with respect 

uniform to the impulses and with non-constant coefficients of the funda­
mental part 7_ is finite-dimensional in Vf . 

Theorem 2. The family of all such potentials YeVj> that 
H - \ ( P I + P 2 + P § / + c37(x1-x2)+ c?7(x1-x3)+ c 17(x 2-x 3) 

(2) admits a prime integrai involutive with respect to the full 
impulse P of the systemi polynomial with respect to the impulses 
and functionally independent of H and P is finite-dimensional 
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in Up for almost all choices of the triple (c-j , 0 2 * 0 3 ) • 

Remark:: A finite-dimensionality theorem similar to the theorem 

2 holds also for the hamiltonian 
2 2 2 

H *2i7 + +2m| + v(*1-*2> + V^ 2-x 3) + V(x ri 5) 

for almost all masses. If we assume, in addition, that the hamil­

tonian (1) admits a "typical integral", we are able to refine 

both theorems 1 and 2. 

Definition: A prime integral F , polynomial with respect to 

the impulses of a given degree d is in general position if 

(a.) P is in involution with the full impulse P, 

(b) the uniform fundamental part *P of P has constant 

coefficients, 

* \ / JL 3 % d- 3 r* 

( c l Ẑjj 5p̂ J F is not a function of elementary symmetric 

polynomials and ¿2 • 

A function F(x1, •.. p^ f... ,pn} is called symmetric if for 

every permutation % of the indexes 1,...,n 

*(*tf})> •••'z4tPtf!)> • P f r i f . . a c n f p 1 > . . . f p n ) . 

Theorem 3 . Ii the potential V admits a symmetric integral 

in general position then V satisfies the differential equation 

3V#V1"- 4 V " 2 - aY" + bV + c , 

where a,b,c are arbitrary parameters. 

Remark. It is also possible to show a differential equation 

for potentials without the assumption b and the symmetry of 

the integral. 

Theorem 4. If the hamiltonian 

H ~ ^ ( P I + P 2 + P | ) + v ( x 1 - X 2 ) + v ( x 1 - x 3> + V ( x 2 - X 3 > 

admits a symmetric prime integral in general position then the 

potential V is either the Weierstrass ^-function or one of 

its degenerated forms : ~2 , § — , — | — . 
sin kx sh kx 
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Systems with the hamiltonian (1) and the potentials enumerated 
in the theorem 4 have been investigated by Moser £4! , Calogero f 1 J , 

Olshanetski and Perelomov £5.). The paper £5} is devoted to the 
investigation of systems with the hamiltonian of the form 

H • 5 25 Pi + a Jrv(xk- x j + V£ k + xl] b£T V(xl)+ c .jf vfcx^ 

Pacts, analogous to the theorems 1 - 4 hold also for such 
systems. We note moreover that Marcus and Meyer fij have 
shown that the set of hamiltonians admitting no prime integrals 
independent of the energy is massive (infinite-dimensinal)for 
all systems with two-dimensional compact phase space. The 
proof involves the Bobinson's theorem about periodic trajectories 
with multipliers +1 of hamiltonian systems. It is not known 
whether or not a theorem of this form holds for hamiltonians 
of the form ( 1 ) . 

The results formulated above can be obtained in the following 
way: the first step is the proof of polynomiality with respect 
to the x^-s of the leading coefficients of a primeintegral 
regarded as a polynomial in the impulses and the description of 
the remaining coefficients; this inductive procedure of computing 
the coefficients ends with the integral-differential equation 
for the potential similar to an addition formula for elliptic 
functions; then we check that the resulting formula is non-trivial 

£this can be done either by computation of the order of the pole 
in origin of a potential satisfying the addition formula or by 
the check of the fact, that the leading coefficients of the inte­
gral are constant for the systems of n particles on a line 
interacting with the Weierstrass ^p-function as the potential 
because of their complete integrability £7]jji after all that, 
the addition formula can be reduced to an algebraic differential 
equation. 
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The following two lemmas contain the description of the coeffi­

cients of prime integrals polynomial with respect to the impulses 

Lemma 1. Let F he a polynomial with respect to the impulses 

prime integral of a system with the Hamiltonian of the form fl) 

or (2) and let 
F = S 

k1+...+kn=d 

Ek1,...,kn 
t x1 > • • • > xn/ pï1...p£n 

he its leading uniform component. Then Ek1,..., kn is a poly­

nomial of ^ XJJ and d e g x | k 1 ' •••»kn ̂  d-kj • 

We denote now by A n the differential ring of polynomials 

of n variables x-t,...,xn with the distinguished differentiations 

^ and by An^v} the smallest differential ring obtained by 

attaching to A n the functions V x^-x^ . More precisely An{ v} 

is the ring of polynomials of infinitely many variables: 

and 

A^v} - Ajjtv', . , i,j« 1,...,n; s - 0.1....} 

a/axk v(s) ij = 0 a/axi V(s)ij = V(s+1) ij, a/axj v(s) ij = -V (s+1) ij 

The smallest differential ring containing the primitive funct­

ions of all elements of a given differential ring $ will be 

called the 1-extension of $ . We define higher extensions 

inductively, letting the n+1-extension to be the 1-extension of 

the n-extension of ?R * 

Lemma 2 . For every natural d there exists N « N(d) such 

that the coefficients of a prime integral of a system with the 

Hamiltonian (1 ) or ( 2 ) , being a polynomial of degree d of the 

impulses belong to the N-extension of the ring A

n {
v | * 

Definition, Let p(v) be an element of the N-extension of 

A n (v}. A potential V satisfies the addition formula P ( V J - 0 

if substituting V in P we obtain a functional equivalence. 

If we restore the coefficients of the k-th uniform component 
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of the integral F by the coefficients of its lc+2-component, 
according to the equation {F, H} - 0 , we obtain at the end 
some addition formula. If there are no even-degree monomials 
in F then this formula becomes 

E 1 . 0 , . - . , 0 ^ + M # + E 0 , . . . , 0 , 1 ^ , o f where * 1 " » 

if there are no odd-degree monomials in F then the addition 
formule is of the form: 

JL/2E 2 ' 0 , ...,0 t i + E 1 , 1 , 0 , . . . , 0 J 2 + > > # + E 1 , 0 , . . . , 1 .J. 
. J L ( 2 E 0 , 2 , 0 , . . . , 0 ^ + E 1 , 1 , 0 , . . . , 0 ^ + _ + E 0 , 1 , 0 , . . . , 0 Q 

9*2 

Trying to reduee these equations to ordinary differential 
equations we will investigate their non-triviality. An addition 
formula is trivial if it is satisfied by any potential V 
Sueh formula leads us to the integral depending polynomially 
on the full impulse and energy. An addition formula turns out 
to be non-trivial in the following cases: 

(a) the integral F is in general position; 
(bl the leading coefficients of F are not constant; 
(c) the integral F of a system with the Hamiltonian 2 

is not a function of the full impulse and energy. 
Lemma 3» If the potential V admits an integral F in 

general position then either V is regular in zero or it has 
there a pole of the order 2 . 

Lemma 4. Let G be a polynomial of x^pi i«1,...,n • 
Suppose that for every potential V there exists an integral 
Gry of a system with the Hamiltonian (l) such that G y is 
a polynomial of p^ and its leading uniform component is G . 

Then G is a polynomial of p£ with constant coefficients. 
The proof of the lemma 4 is based on the investigation 

of the system with the potential EP and its billiard limit 
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for E->o and the fact that inveriant tori of the first degree 

are close to the polyhedral invariant tori of the billiard 

system. It is also to the point to recall the problem of 

the realization of integrable billiard systems in polyhedra 

as the billiard limits of classical integrable billiard systems. 

Corollary. If F is a symmetric integral for the 

•amiltonian (l) with the potential ̂ , being in involution 

with the full impulse then F is a polynomial of the Moser-

Calogero integrals I 1 f...,I n . 

It has been proved in the paper £7^ that the assumption of 

the symmetry of an integral F can be omitted if F is multi­

linear with respect to the impulses. It follows then, as it was 

established in f73, that the Moser-Calogero integrals are involutive. 

Therefore, aticwst all solutions of the system with the Hamiltonian 

H«-j 3C!j p| + ̂ C^p^-Xj) are almost periodical. On the other 

hand, we can investigate the dispersion for the system with the 

decreasing potential 4> or —4s— . From the mathematical point 
x ¿ sh¿x 

of view, the dispersion in these systems is connected with the 

Stolces phenomenon for the functions describing changes of the 

phase variables with the time. The dispersion mapping is explicitly 

computable for the systems with the potential 1, with the help 
x2 

of the polynomial integrals. 

We note also in the connection with the lemma 4, that the 

potentials admitting polynomial with respect to the impulses inte­

grals with non-constant leading coefficients have been also found 

in an explicit form ^the leading coefficients are always polynomial 

with respect to the x^-s - see lemma l). For example, the 

general form of a symmetric, quadratical with respect to the 

impulses prime integral for a system with the Hamiltonian (l) 

and n*3 is, up to a summand depending on H , of the form: 
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P " ~lKx2~x3f p1 •^•••+^C1"X?)^2,"X3)P1P2 + c( x1> x2» x3^ • 
If we write down the corresponding addition formula and reduce it 
to a differential equation for the potential we obtain: 

x 2v " - x r + 4 V » 8 a x 2 + b , 
-2 2 4 with the general solution V « C - 2 X 0 + C 2 X + c4 

The integral P does not depend on the mass center u , hence 
it is involutive with the full impulse. It follows now that the 
system of three particles with the interaction potential described 
above is fully integrable. 

The general form of symmetric cubical integrals with non-const­
ant leading coefficients has been computed by S. Pidkuika: 

F - A-jp^..^ B 1 2p 2p 2+...+ ciJ)cPiP3Plc + linear "terms, 
i<D<k 

where 
A 1 » a(x| + . ••+ x^ ) - 2a 

5^2 2$i<;j$n 
xix,1 9 

B 1 2 « a(x 2 -2x 1x 2) + 5 ^ (x^+.. ,+x^x^ + b (x23+...+x2n)-

n-3 3<i<;j*n 
xi xJ 

P 2a 
c 1 2 3 * "n^2 (x^+x|+x|)- 2b(x1X2-»-X2X5+X5X1) + 

+3b/n-3 ̂ x1+x2+X3)^c4+. • •+x n) 3b 2TP3 (x24+...+x2n), 

and b- 4a 
n-2 

Lemma 5. For an everywhere dense set of triples C°1•c2>03) 

there exists a potential Vt'fy such that the system with the 
Hamiltonian (2) admits no polynomial integral involutive with P 
and being no function of H and P . 

The proof of this lemma adopts the Siegel s method of "blowing 
up" the convergence of Birkhoff transformation. 

We shall now outline the reduction of a non-trivial addition 
formula to an algebraic differential equation. Let the addition 
formula he of the form P(v) - 0 , where P(v) is an element 
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of the N-extension of the differential ring An(V). Fix 
x 1....,x n - 1 and let x^—* x

n-i • Denoting x n-x n - 1 by y 
we develop every function V,V'f... and every polynomial in ? V 
with respect to the powers of y . After integration by y 
we can write ? ̂ v) in the form 

S 
k 

S 
101 

Pkl (V) yklnly 

where L is a finite set of natural numbers since there is only 
finite number of integrations in P(VJ. Integrating the formula 
Ofcr) JJL c^y111 , where Q is a polynomial, we obtain lny , then 
integrating £ cm y mlny we oltain ln2y and so on. m 

Therefore, our addition formula takes form 
p(v)«Z 21 p J y V y - 0 . 

k 1 J C A V 

where all factors Pkl are dements of the N-extension of the 
differential ring ^J^lt ° f functions of n-1 variables x 1 t..» fx n_t. 
The above given equation implies that any potential satisfying 
p(y)« 0 satisfies also P k l ( n ) » 0 for every k,l. 

Since our addition formula was non-trivial, there exists 
a pair k,l such that I^i(v)- 0 is also non-trivial. We repeat 
now our procedure fixing x-j,. •. fx n_2. and le"t"fcin€ x

n --j converge 
to x n_2* At the very end, we obtain an algebraic differential 
equation Q(v)*0 . "Algebraic" means here that Q is a polynomial 
of V, derivatives of V and the variable x . 

Remark. Some information about the potential V can be lost 
sn the process of the reduction of addition formula to the resulting 
differential equation. This means that the final equation can 
be satisfied by a larger class of functions then these satisfying 
the initial formula. This loss of information can be however 
controlled. Namely, writing down all equations Qi(v) = o, i = 1,2,... 
resulting from the addition formula we obtain a set of equations 
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equivalent to the initial one. Applying now the Ritt-Rodenbush 
basis theorem to the differential ideal generated by Q^v) we 
obtain a finite set of differential equations Q, (v)» 0 .... 
Q. (v)« 0 , equivalent to the initial addition formula. Potentials 

1 8 

satisfying this set of equations admit integrals independent of 
H and P . For example, in the case of therem 4 the addition 
formula is equivalent to the differential equation for the Weier-
strass )P~function. 

We turn now our attention back to the finite-dimensionality 
theorems 1 and 2 which can be obtained from the above given 
results in the following way. A function V , satisfying an algebraic 
differential equation cannot possess in origin a pole of arbitrarily 
high order. 

Therefore, all solutions of the equation Q(v)m 0 are of the 
form , where U is holomorphic and satisfies another algebraic 

x 
differential equation *Q (u)« 0 . A solution U of the equation 
Q*(u)« 0 will be called regular if it has the only multiple roots 
in finite number of points in the disk |*)*J> » when regarded 
as a polynomial of its highest-order derivative. Otherwise, such 
solution U of ^(p) - 0 will be called^singular. It satisfies 
the algebraic-differential equation ^^5)" 0 » w h«re I^m' is 
the highest order derivative in Q • 

The following observations make up the proofs of the theorems 
2 and 1 : 

(a) the theorem about smooth dependence of solutions on initial 
data tells us that the set of regular solutions is a smooth image 
of a finite-dimensional Euclidean space; 

(b) singular solutions satisfy an algebraic differential equation 
of lower order, which can be obtained by elimination of the highest 
derivative in ~(u)« 0 and "^5) , s 0 • Then we regard regular 
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solutions of the resulting equation and so on. 
Remark. The set of solutions of a differential equation can 

be infinite-dimensional in the space of smooth functions. It is 
a by-effect of multiple switching from one singular solution 
to an another one. 

It is very important that the proposed here approach to the 
description of potentials admitting supplementary prime integrals 
polynomial with respect to the impulses can be successfully 
applied to the multidimensional multiple-particles systems 
with the interaction potential of the form V(r)«f(r2^, where f 
is a meromorphic function. 

If the interaction is given then our method gives us, in theory, 
the opportunity of an explicit computation of the prime integrals 
polynomial with respect to the impulses. Computing Poisson 

brackets of these integrals we obtain some information about the 
group of all symmetries of the system, e.g. the well-known results 
of Foe and Moser can be obtained in this way in the cas* of 
Kepler systems. However, the computation of the Pois«on brackets 
may be very complicated and technically difficult. To this point, 
we state a theorem which can help us in the check of the involuti-
veness of integrals found: 

If •Fi>i,2 are analv,tic integrals of a Hamiltonian system close 
to a nondegenerate, completely integrable system then { F - J . F ^ =0 • 
Therefore, if a system with degree of freenes n , close to a non-
degenerate integrable system possesses n independent integrals 
then it is integrable. 

Now we show an application of our method to Euler systems. 
Let ^ be a semi-simple Lie algebra and let A be an operator 
self-adjoint with respect to the Killing form in ^jf. The system 
i * [ A X , X ] is called an Euler system in^p . Mishtshenko and Fomenko 
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£3j have determined a class of operators A for which the Euler 
system is integrable on the orbits of the adjoint representation 
being in general position. The class contains operators of the form: 

A ~ ad;1 ad b © A 0 , (3) 

where a, b are in general position in the Cartan subalgebra ̂ # of 
and A is self-adjoint in of.. Differentiation in the direction 
of the vector a maps the integrals of the Euler system for such A 
into themselves. Under the hypotheses of the theorems 3 and 4 
the differentiation n 

i-1 
has analogous properties and this 

allowed us to describe potentials admitting integrals in general 
position. Similarly, the following opposite theorem holds also 
for Euler systems. 

Operators A admitting a differentiation in general position 
with constant coefficients leaving the set of prime integrals 
invariant for the equation x - £Ax,xJ are of the form (3)» 

An another interesting connection between Euler systems and 
systems with the hamiltonian 1̂) should be noted. The right-hand 
side of the equation x « [ A X , X ] is uniform and therefore, as it 
was noticed by Mishtshenko, the problem of description of all 
analytic integrals of this system can be reduced to the description 
of the polynomial and even uniform integrals. It turns out 
also to be true that the system with the hamiltonian 
1 
2 

n 
i«1 

p21 + 
i<3 

P(xi-xj) admits a reformulation as a system of 
differential equations with rational right-hand sides. 

Some of the results presented here have been obtained jointly 
with S.I. Pidkuiko. 
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