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AFFINE TRANSFORMATIONS ON THE SPACE 

OF PROBABILITY MEASURES 

Karl Sigmund 

Introduction 
Let X be a compact metric space, M(X) the compact metrizable 

space of probability measures with the weak topology, T a homeomor-
phism from X onto itself and TM the induced affine homeomorphism 
from M(X) onto itself, defined by Jf dTMy = /foT dy , f e C(X) . 
The systems (T̂  , M(X)) offer a wide variety of examples in topolo­
gical dynamics. One may study, for example : 

a) the structure of the set MT(X) of fixed points ; 
b) the evolution of the time averages N ^ V T̂ y ; 

k<N M 

c) inheritance properties : this includes properties which, when­
ever valid for T , are also valid for T^ , and properties which, 
whenever valid for y e M(X) , are valid for y-almost all x e X . 

Here we shall consider a few results on these questions. 

The connectedness of ergodic measures 
It is well known that the set MT(X) of T-invariant measures on 

X is a nonempty compact convex set whose extremal points are precise­
ly the ergodic measures. Thus the convex combinations of ergodic mea­
sures are dense in MT(X). It happens quite frequently that the ergo­
dic measures themselves are dense in MT(X). This is the case, for example, 
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when T satisfies the specification property (see [4]). 
In [9] it is shown that if T is a mixing subshift of finite 

type (or more generally a basic set for an Axiom A diffeomorphism) 
then the set of ergodic measures is not only dense, but also arcwise 
connected. The proof uses the fact that CO-measures, i.e. ergodic 
measures concentrated on a single periodic orbit, are dense in Mj(X) 
and that any two such CO-measures can be joined by a continuous arc 
of strongly mixing Markov measures. 

A corresponding result, incidentally, can be shown to be valid 
for the space of transformations on the unit interval preserving Le-
besgue measure (with the weak topology). The set of ergodic transfor­
mations is dense and arcwise connected. Here the proof uses the ap­
proximation lemma of Rohlin and Keane!s result on the contractibility 
of the group of measure preserving transformations. 

Topological Transitivity 
T:X X is called topologically transitive if for any two non­

empty open sets U,Vd X there exists an N e Z such that 
TNUr>V f <j> , or, equivalently, if there exists a point x e X whose 
orbit is dense (such a point is also called topologically transitive). 
T is called weakly mixing if the product system T x T is topologi­
cally transitive. 

Proposition : 

If T M is topologically transitive, then T M is weakly mixing. 

Proof. 
We first show that if T M is topologically transitive then T 

is weakly mixing. For this it is enough to show that for any two 
nonempty open sets U,VC= X there exists an N e Z with T NuTIU + <f> 
and T"NunV + cf) (see [8]). The sets N1 = {yeM(X) : y (U) > ŷ } and 
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N 2 = (yeM(X) : y (U) > JQ and y (V) > j^} are open . Thus there 
exists an N e Z with T^(N

2) Pi N1 ^ * and nence a y e M(X) with 
y(U) > , y(T"NU) > j- and y(T"NV) > . This is obviously only 
possible if U n T~NU + $ and U o T~NV t cf> . 

Now, we show that if T is weakly mixing then so is T^ . Let 
be the (closed) set of probability measures consisting only of 

atoms whose weights are multiples of 1/n . It is easy to see that the 
restriction of T„ to M„ is a factor of T ^ = TxTx...xT . But M n 
T^n^ is weakly mixing, see [6] . Hence T^|Mn is weakly mixing. Let 
U and V be nonempty open sets in M(X) .If n is large enough, 
M n intersects these sets. The fact that t M I m

r
 i s w e a^ly mixing then 

implies that TJJ(U) r\ U f <j> and TJJ(U) o V + $ for some N e Z , and 
hence that T^ is weakly mixing. 

Note that a weakly mixing T^ need not be strongly mixing. It is 
not known whether any affine homeomorphism of a compact convex space 
which is topologically transitive is also weakly mixing. 

Proposition : 
Let T r be the set of topologically transitive points in X . 

Then y(T̂ ) = 1 whenever y e M(X) is topologically transitive. 

Proof. 
Since T̂  = {x e X : for all open U f <j>, there is an n e Z 

with Tnx e U} , and since there exists a countable base of open sets 
in X , it is enough to show that y((J T nU) = 1 whenenver y is 
topologically transitive and U =(= <J> is open. If y(|JT U) = a < 1 , 

neZ 
then y(T U) < a for all n e Z . Let v e M(X) be such that 
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v(U) * 1 . Since y is topologically transitive, Tnky -> v for some 
"nk 

subsequence n̂ . and hence lim inf y (T U) > v (U) = 1 , a contradic­
tion. 

Nonwandering points 
A point x e X is called nonwandering if for every neighbourhood 

U of x there is an n ̂  0 such that TnU r\ U f <f> . Let U denote 
the closed nonempty set of nonwandering points. 

Proposition : 

If y e M(X) is nonwandering for , then y(ft) > j 

Proof. 
Let y be nonwandering and suppose y(ft) < . By the regula­

rity of y , there exists an open set UiD n with y (U) < ~ and 
y (U) = y(U) . Since the compact set X\U consists of wandering points, 
one can cover it by finitely many -say N- open balls 0 such that 
T nOnO = $ for all n * 0 . It is clear then that for any n > N and 
any x e X\U, one has Tnx e U . The set V = (peM(X) : p(U) < 1} 
is open, and contains y . Since y is nonwandering, there exists a 
v e V with Tnv e V for some n > N . By a density argument we may 
assume that v is of the form k~1(6(x^) +...+ 6(x̂ ) ), where the x̂  e X 
need not be distinct. v e V implies v(X\U) > ~ , thus at least 
"half" of the x.. belong to X\U. The corresponding Tnx.. are in U, 
thus Tnv t V, a contradiction . 

It is not true that if y is nonwandering, then y(ft) = 1 . In 
fact the bound j is sharp, as can be shown by an example due to Gril-

1 
lenberger. Let x n be tne sequence (x^ e {0,1} with x n = 1 , 
x i - 0 for i f n , and let x«> be the sequence (...000...). Let 
X = {xn , n e Z ̂  °°} and let T be the corresponding subshift. Its 
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only nonwandering point is Xa> . But any measure y e M(X) with 
^(^oo^ - 1 is nonwandering. For example, if y has mass j at 

1 2 

and at XQ > anc* if U is an arbitrarily small neighbourhood of 
y, then y contains a measure v with mass j at XQ and ~ at 
*(_n) , for some large n . Then Tnv has mass ~ at XQ A N C* \ 
at X r > anc* thus belongs to U if n is large enough. Hence 
TnUn U + <f> . 

On the other hand, y(ft) = 1 does not imply that y is nonwan­
dering. This follows from an example in the next paragraph. 

Poisson stability and central points 
Let C be the set of central points for T:X X , i.e. the lar­

gest invariant set such that the corresponding restriction of T has 
only nonwandering points. C is the closure of the set P of Poisson 
stable points, i.e. of the points x such that T x x for some 
sequence n̂  «> (see [1]) . 

Proposition : 
If y is Poisson stable, then y (P) = 1 . If y is central, 

then y(C) =1 . 

Proof. 
The first part of the proposition is due to Jacobs [7]. Let 

-1 -2 
Gc X be a nonempty open set and write U = GuT GuT Gu... . Then 
U=>T~1UZ3 ... and therefore 

P(U) > T M y(U) > T2y(U) > . . . (*) 
nk 

If y is Poisson stable, i.e. if T^ y + y for some subsequen­
ce n^ , one has lim rinf T M

nk y(U) > y(U) , and therefore equalities 
in (*). Thus y(U\T"1U) = 0 , i.e. y(G\(T~1 GuT" 2 G U . . . ) = 0 . Ta­
king for G the sets of a countable base for the open sets, one sees 
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that y-almost all x are Poisson stable. 
If y is central, there exists a sequence of Poisson stable 

measures with v
n ^ ̂  • By the first part of the proposition, 

vn(P) = 1, hence v (C) = 1 . Since C is closed, it follows that 
P(C) = 1 . 

The converse statements are not valid, as can be shown by the 
7 

following example. Let X be a subshift of {0,1,2} , consisting of 
orbit closures of x = (x.) and y = (y.)> where x. = 1 for i=k , 
x. - 0 otherwise, y. = 2 for i = k1 , y. = 0 otherwise, k and i ' 7 1 n ' 7 1 n 
k̂  are two monotonically increasing sequences with k̂  = k̂  = 0 . 
They may be chosen in such a way that x and y are both Poisson 
stable, but that they recur at different times. Let y be the measure 
with mass ~ at x and j at y_ . Then y (C) = y (P) = 1 , but y 
is not Poisson stable, and not even central. Indeed, every measure v 
near y has mass approximately on both cylinder sets {z_ e X : 
ZQ = 1} and {z e X : z Q = 2} . But at most one of these two sets 
can have a measure near for Tnv , n > 0 . 

Note, incidentally, that if R is the set of recurrent points 
(points whose orbit closure is minimal), then y(R) = 1 does not im­
ply that y is recurrent, and y recurrent does not imply y(R) = 1. 
The same is true for pseudo-recurrence. 

Ljapunoff stability 
A point x e X is said to be (positively) Ljapunoff stable for 

T:X -* X if for every e > 0 , there is a 6 > 0 such that 
d(x,y) < 6 implies d(Tnx,Tny) < e for all n e N . T is said to 
be Ljapunoff stable if every x e X is Ljapunoff stable for T . 

Proposition : 
If T is Ljapunoff stable, then so is T M . 
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Proof. 
As a metric on M(X), we shall use the metric d defined by 

d(y,v) = inf { £:y (A) < v(Ae) + e for all Borel sets Aczz X}. (See 
[2]). Here A e denotes the e-ball around A . Let T be Ljapunoff 
stable. Since X is compact, there exists for every e > 0 a 6< e 
such that d(x,y) < 6 implies d(Tnx,Tny) < £ for all n £ N. For 
every A c X and n £ N one has (T~nA)6 cz T~n(Ae) . Suppose 
d(y,v) < 6 . Then y (T"*nA) < v(T~nA)6 + 6 for every Borel set A , 
hence y(T~nA) < v(T~n(Ae)) + £ , i.e. T^ny(A) < T^nv(Ae) + e . This 
shows that d(TM

ny,TM
nv) < £ for all n £ N . 

Proposition : 
If y £ M(X) is Ljapunoff stable for T^ , then every x in the 

support of y is Ljapunoff stable for T . 
Proof. 

Suppose some x in the support of y is not Ljapunoff stable. 
There exists an £ < 1 and a sequence X r -> x such that for every 
n £ N there is a j = j(n) with d(T^x,T^xn) > £ .We may approxi­
mate y by a measure v of the form N~1 )> <$(y.) , where y1 = x, i<N 1 1 

such that v is Ljapunoff stable. Let v n be the measure 
N"1 I <5(y?) , where y n = x and y n = y. for i = 2,...,N . Clear-i<N 1 i n 1 1 
ly v -> v .We shall show that J n 

d( TJ ( n ) v>Tj ( n )v ) > £ for all n £ N , (*) V M ' M n - ^ 
and so obtain a contradiction. For given n (and j = j(n)) let A 
be the closed ball with radius k~r and center T-̂ x, k=0,1,...,N . 

k k-1 
There is at least one k with 1 < k < N such that A \A con­
tains no point of the form T-*x. , 2 < i < N . The atoms of T̂ v 

i n k-1 i lying in A are exactly the same as those of TJv , except for 
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T̂ x. Thus TMJv(Ak"1) - Vv n(A k" 1) + ̂  = V v n ( A k ) + 1 . Setting 
A = A k~ 1 one sees that TM̂ v(A) > TM"* v

n (A^) + f > which implies (*) 

Entropy 
Let h(T) denote the topological entropy of a transformation T. 

Clearly h(T) > 0 implies h(T^) = °° . Ledrappier and Walters (oral 
communication) proved that for the map T:(x,y) + (x,x+y) (mod 1) on 
TQ , for which h(T) = 0, one has h(TM) = - . 

Proposition : 
Either h(TM) = 0 or h(TM) = - . 

Proof. 
Let f^,f2,..., be a dense sequence in the unit ball of C(X). 

We shall use the metric d on the space of finite signed measures 
on X given by 3(y,v) = J 2'1 | /f dp - Jf.dv | 

ieN J J 

This metric induces the weak topology in M(X) . Note that d is 
invariant under translations. 3(ay,av) = a3(y,v) for a > 0 and 
3(y,v) < 1 for y,v e M(X) . 

Now suppose, MT^) > 0 . Then there exists an e > 0 such that 
lim sup ~ log sn(e) = a > 0 

where s
n( e) i s t n e maximal cardinality of an (n,e)-separated subset 

of M(X). Let E be such a subset (i.e. for y,v eE with ŷ v , the­
re is a j , 0 < j < n , with cld^y 9T^J v) > e). Choose N such that 
2(10N-1)"1 < e . Let e * = e. 10"N and define 

E' = {yeM(X) : y = (10N-1)1(TNy» + 10"N y" , for y',y" e E} 
We claim that E ! is (e1,n)-separated. Indeed, let y and v 

be two distinct points of E' , with y = (10N-1)10Ny' + 10~Ny" , 
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v = (10N-1) 10~NV + 10 _ Nv M and y' ,yM ,v 1 , vM e E . 
a) if yf f v1 , then 

A ( T M J P ' T M J ^ * J ( T M V - T M J » ' ) " 3 C T M

3 U , T M V ) - a(TMJv,TMJv-) . 

But 3(TM
3y,TM

3y') < a(0,10"Ny") < 10"N and similarly 
3 (T^ v, 1^ v') < 10 N . On the other hand, there is j,0 < j < n, with 
d(TM

Jy1,TM
Jv') > e . For this j , then , 

^ v ^ ' V ^ - e _ 2 - 1 0 _ N ^ e • 1 0 _ N = e' • 
b) if u' = v' , then vi" t v" . There is a j, 0 < j < n , with 

^ V ^ ' V ^ ' ' ) ^ E * FOR THIS J ' 
aCT^u.T^v) = 10"N dfT^y-.T^v") > e . 10"N = e' . 

2 It follows that s (e1) > card E1 . Since card E1 = [s (e)l n v y - L n J 

this leads to 
h(ef) = lim sup ̂  log s

n( e') > 2 lim sup ̂  log s
n( e) = 2a . 

Iterating this procedure, one sees that h(e) -> 00 for e 0 . 
Hence h(TM) = 00 . 

Minimal centers of attraction and transformations which are  
tracing in the mean 

For x e X the w-limit is the nonempty closed invariant set 
w(x) of accumulation points of {Tnx : neIN} . In [5] and [3], Dowker 
and Bowen characterized the dynamical systems S:Y Y which occur 
as restrictions of some system T:X •> X such that u>(x) = Y for so­
me x e X. Such so-called abstract w-limits are exactly the systems 
S:Y + Y which are S-connected, i.e. such that there exists no 
nonempty open set Ucz: Y with S(U) cz U . 

A similar result can be obtained for minimal centers of attrac­
tion. For x e X the minimal center of attraction I(x) is the no­
nempty closed invariant set 
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{yeX : lim sup N ̂  £ 1TT(Tnx) > 0 for every open Ua y}. A dynami-
n<N U 

cai system S:Y -> Y is called an abstract minimal center of attrac­
tion if it occurs as restriction of some system T:X X such that 
I (x) = Y for some x e X. Such systems are characterised by the fact 
that they support an invariant measure which is positive on all no­
nempty open sets. This is a consequence of the following results 
(see [10] and [11] ) . 

For y e M(X) let V(y) denote the V-limit of v , i.e. the 
set of accumulation points of N~ 1 £ TA/V • This is a nonempty clo-

n<N M 

sed and connected subset of №j,(X) . It is easy to see that I (x) is 
just the support of V(6(x)), i.e. the smallest closed set C with 
v(C) - 1 for all v e V(<S(x)). It can be shown that if Vc=MT(X) is 
a closed connected nonempty set, then there exists a dynamical system 
S:Y -> Y having T:X -> X as restriction and such that V = V(v) for 
some measure y (and even some point measure) on Y . 

It is easy to see that any system (TM,M(X)) is an abstract 
oj-limit. But there exist such systems which are not abstract minimal 
centers of attraction. (Consider the example in §4 : since every inva­
riant measure is concentrated on the nonwandering set, the transfor­
mation T̂ :M(X) M(X) admits no invariant measure positive on all 
open sets, and therefore is no abstract minimal center of attraction). 

A transformation T:X -> X is called tracing (resp. tracing in 
the mean) if for every sequence x n in X with d(Txn,xn+^) -> 0 
(resp. N"1 Y d(Tn ,x .) +0), there exists a zeX with 
d(Tnz,x ) + 0 (resp. N 1 I d(T Z,x ) -> 0) . In [3] Bowen shows that 

n n<N n 

if T is tracing and Zc X is an abstract w-limit, then Z is ac­
tually an co-limit. Similarly, it can be shown that if T is tracing 
in the mean and Zc X is an abstract minimal center of attraction, 
then Z is a minimal center of attraction. Subshifts of finite type 
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and basic sets for Axiom A diffeomorphisms are tracing. If T is 
tracing and strongly mixing, then T satisfies the specification pro­
perty. If T satisfies the specification property, then T is tra­
cing in the mean. The 3-shifts provide examples of transformation 
which are tracing in the mean, but without the specification property. 

Lagrange stability 
Suppose now that X is a complete separable metric space and 
an increasing sequence of compact sets such that every compact set 

K CZ X lies in some . Let L denote the set of points which are 
(positively) Lagrange stable, i.e. such that their positive orbit is 
relatively compact. 

Proposition : 

If y (L) = 1 , then y is Lagrange stable for T^ . 

Proof. 
Suppose that {TM

ny} is not relatively compact. By the portman­
teau theorem (see [2]) , there exists an a > 0 such that for any 
compact K , T^ny(K) < 1-a for some n e N. For each i e N there ni exists an n. with T.. y(K.) < 1-a , and hence a set L. with 
n i M ^ iJ 9 i 
T 1L. O K. = <t> and y(L.) > a . Setting L̂  = O M L. , one has 

1 1 meN i>m 1 

y(LOT) > a . But each x e L̂  belongs to infinitely many L̂  , i.e. 
the orbit escapes from infinitely many and hence is not Lagrange 
stable, a contradiction. 

The converse is not valid, there exist measures y which are La­
grange stable but such that y(L) = 0. Consider the following (conti­
nuous time) example. Let X be the space [o,1] x [-1,l] x R . For 
each s e [0,1] the set X = Is} x [-1 ,1] x IR is globally invariant 
and the phase portrait looks as in the figure below. For each s let 
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x s be (s,-l,0), which is obviously not Lagrange stable, and let y 

be Lebesgue measure on the segment {xg : s e |0,1|} . Let be 

the compact set [0,1] x [-1,lJ x [-i,ij . By suitable parameterizing 

the flows on Xg , one can ensure that y({se [0,1] : Tt(xs) £ C^} < i 

for all t > 0, i = 1,2,... . Hence the family T M % is uniformly 

tight, i.e. the orbit of y has compact closure. But y(L) = 0 . 
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