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ONE-DIMENSIONAL ATTRACTORS OF

A-DIFFEOMORPHISMS ON S2 AND

DIFFEMORPHISMS WITH INFINITELY
MANY SINKS

R.V. Plykin, D.,A, Kamaev, A,Ju. Zirov

The first part of the present paper gives an account of
series of structurally stable diffeomorphisms on 52 having
the spectral decomposition which consists of the connected
one-dimensional attractor and four repulsive periodic points.
Beginning with the example of such diffeomorphisms given
in 110 J we shall give a sequence of its modifications.
With each diffeomorphism of that series we shall connect a
geometric intersection matrix which enables us to calculate
a topological entropy. Considering the sequence of values
of entropy we shall prove that diffeomorphisms of given
series are representatives of a countable set of class of
topological conjugation which is not the result of any
iteratonsof any finite series of diffeomorphisms (theorem
of part 1),

In the second part of the paper the construction of one-
dimensional attractor on 82 is used for investigation of

the question about 01-typicalness of diffeomorphisms with

# This paper is a part of collective report on the activity
of the seminar on topology and dynamical systems in Obninsk
Branch of Moscow kngineering-Physics Institute in 1976.
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infinitely many sources (sinks) on smooth compact manifold
of dimension greater than two, Thft suggested theorem

resu
includes a specification of the of S. Newhouse in dimension

greater than two,

1. Diffeomorphisms with One-Dimensional Attractors

All the comstructions will be carried out on the plane
R2 that will be turned afterwards into 2-sphere by adding a
point at infinity. Let us fix some Cartesian co-ordinate
system (x, y) and introduce the following designations. For
any segment A of axis Ox A and X are its left and right end
points accordingly. For an integer { 0 (¢)is the sign "+" if
i is even and "-" if i is odd. Let L be a fixed smooth curve
on the plane with the following properties: L is convex,
symmetrically with respect to axis Oy, close enough to semi-
circle Xx? +yz= /,;20 and it has (-1, 0), (1,0) as the end
points, moreover its tangents in these points are vertical.
For any segment A of the axis Ox let L*(A) be the curve,
obtaeined from L by similarity transformation centred at
origin followed by displacement along axis Ox. Moreover, the
end points of LY(A) are just the same as those of A. The
curve L™(A) is obtained from L*(A) by reflection in an axis
Ox. We say that curves L'(A) and L™(A) are based on segment
A, For nonintersecting closed segments A, B on Ox (le% AF<
for definiteness) we define /70—(/4,5) (0= +,-)

N

the closed region bounded by segments A, B and curves

LR, B) (A B) anarevve [1°(A8)=/1"(B,A)
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ONE - DIMENSIONAL ATTRACTORS ON §2

Now we are prepared to describe our construction. Let us
lay on axis Ox nonintersecting segments
A, Ag, As, AL A AL Ay Ay, AL A,
Ay As, AS, AL A, Ay, AL, AL ()
ordered by growth of their x—co-ordinates. In addition to
thaéq%egments A: A,o , M, ASG that are noninter-

secting and ordered by growih of x-g¢o-ordinates too. Require
o= AI—A’ A|o< A’< AZ )

A<A3<AS<A‘__A‘, AZ_
Let regions ﬂir (,_: ,2,3; L<p< S where S, = S,
S, = S, = 5) be defined by

2 3 _ 6'('4'+/=—/)
My = 11 (4 AL)
and /7‘, ([: 52, 3/ ) f]l by

S

3
/ ' /
=00, M'=01
P=!
(see region /7 on the fig. 1a). Subsequently /7 will

perform the function of image of region qJ (see fig. 1b)
under diffeomorphism f, that will be defined among others
below,

Now we proceed to describe some construction that will be
used to modify region /7l into regions /7”1’01' any natural n.
Then we shall define regions <“b"a.ud diffeomorphisms

,p : " /7" for any n. The construction is inductive
and looks "on the figure" as follows, Let us consider a part
of /7 / lying in the region ZI bounded in bold outline on
fig. 1a., The set Q1 = /7’”2/ is drawn on fig. 2a and we
shall transform it mto the region R showed on fig. 2b, so

that RN 25 = 11'n %’
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ONE-DIMENSIONAL ATTRACTORS ON $2

Let /72= (”I‘ZI)URZ (see fig. 3). A part Q% of /72
lying in the region Zabounded in bold outline on fig. 2b
is exactly the same as Q1 on fig. 2a. Consequently we may
subject Q2 to the same transformation to produce region
[73= (/72‘22)(//\)3 and so on.
To be more formal let us consider closed regions Q?, Qg,
Qg, Qz defined below by the sequence
ar, al, @y, al ap, 41 4 47, 4., ¢4
of nonintersecting segments on Ox, ordered by growth of
x-co-ordinate. . s #
ar=11'(2,8), @)= @&t s)
Q! = T az) v 1@ 4, Q=115 67)
The closed region Z bounded by curves L / ; j
[(ﬂ,—, !”] and segments [0,,ﬂf] [Z”
contains, the set Q* = (/ (2 (see fig. 2a). Let us lay on

" * h nel he!
[a;z, f | nonintersecting segments a;, a, y as‘: v, %
ne net ne N4 = +
ZJ. g:, g 'g g so that ﬂ,h”‘—' ; P ‘/h“ = ;
and let n net
+
wn(ea)ua.uﬂ(a ,

Rn;l:ﬂ(az' )Ua Uﬂ(ahu ‘:')’
T U A RN TR M OISO

Rh+| n (a @Ml) U QH U [’] (Qq} (‘:'f/)

(see fig. 2b), where Q ?H are defined by (2) with n + 1
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instead of n. For le—"—' (/ :Q we have Q”ﬂ bZ"=
=R™'n JZ Thus, given set Q U C?

as in (2) an induction defines sets Qn Z (n 21)

and R* (n » 2), moreover, @‘ = /e" nz" (n> 2).

Now let the sequence @, 4;, @/, 4, 4/ 4/ 4, . 4 ve a part of

(1) from Ag to Aj inclusive. Then Q' = /3 , (,?z’- s V13,

C? /Zz 0/7/3 @ 35 a.nd boundary of Z is the
wion ot L*(AAY), LTCAL, ALY [ALALT TR AT
(a bond outline on fig. 1a). We construct

sets 0‘ Z and B* (n > 2) and define /7’”’ (/7" z /(/
URIVRY 1= (T~3")UR!, 1% (N2 URg

by induction, then [/ = (//7”” (/7 b ) v R".
Now let us define sets ¢(”) o @/ and diffeomorphisms

o=

,P'<P " (m>1). Let £ = 1(04)/1(0/}
=LA ), Ol-U(AL AL, €= 105 a;) ¢ =114/ 4)
and ¢ be a closed region bounded by a pair of x-segments
and curves 11, li' It is easy to see that cp" “(l/cp"
contains /7 ”

Before constructing the diffeomorphisms /f, N ¢"'-’ §
let us define some partition r of ¢'L consisting of line
segments, Let the line 1;_1 be based on the segment AZ and
choose some point M? in interior of A:-t For any interior
point h of 1i an intersection of a line passing through
points M and h with CP If h is an end po:mt of some 1.
then let X;.'[°’ 1] Thus [= {Xk l L\E UZ j
is a partition of ¢ .

Now define fh P ﬂn so that % (qbt”) = /7¢
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ONE - DIMENSIONAL ATTRACTORS ON §2

and for any J‘/ér ﬁ/&}zﬁ: for some
JZ: el First define /ﬁ, on U /; The boundary of
each /7 :7 consists of the pair of Jf:‘—.’ne segments and pair
of curves 3’”,- and /) We can choose designations of them
so that (/#, is connected and contains the point (0, 0).
Let ‘T/ / (j‘[:’ be an orientation preserving diffeomorphism
mifor:ﬁy expanding each f" and mapping it onto m . with
fixed point (0, O). Define £, for interior points of ¢>.f
Let £, map any }) , h e /.-(/} 4 contracting it onto the
connected component of )2 TR 17" contains ;/i, (4)

Note that if we make our construction more accurately
as in [10] assigning the length to all segments and curves
and defining contraction and expantion coefficients we can
obtain that the product of those in (0, 0) is greater than
1. We shall need that in the second part of the paper.

Any £ may be extended using lemma 1 of part 2 to be
diffeomorphism of Sz. We can produce the extention so that

Z' . Sl~—> .5,2 will have exactly four repulsive periodic

points with one in each connected component of st~ "
and won't have nonwandering points in S'Z‘ ¢n any more.
All these repulsive points are fixed if n is odd., If n is
even then two of these are fixed while two others form a
periodic orbit. These points are in regions bounded by
_,:, Z;L and respective segments of axis Ox. One can
prove as in 30] the hyperbolicity of the invariant set
A= N L5(9")  using ortterion of hyperbolicity by M
Hirsch KaZOd C. Pugh{l|.Robbins theorem implies structural
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stability of :I.’n. One~dimentional compact / L. is common
frontier of four domains thus being well known Wada's
continuum,

Define nonnegative integer 3 x 3 -matrix G( K, ) = 5;n
which will be called (following M. Shub and D. Sullivan |9) )
geometric intersection matrix of fn in respect to partition

n h h h h
(¢ <P1) P.,) of P Element Jy of G is
equal to the number of connected components of
n ]
ﬁ(qj.)/;ﬂ thet 18

30 = card T, [/‘7/ ne:)

n v .
since ;ﬂ (‘PJ = nJ‘ This permits to find G . It is
easy to see that

302
G = 432
221
(see fig. 1a) and
000
GM:G“ 211
211
(see fig. 2a and 2b) implies
3 0 2
CTV\: 2n+2 n+2 n+1
2n n+1 n

Matrix Gn has somewhat another geometric meaning if

is considered as a solenoid that is to say as an inverse
limit of branched manifold and its expanding map (see

R, Williams l7] ). This construction in our case is obtained
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ONE - DIMENSIONAL ATTRACTORS ON §2

as follows. Let us consider an equivalence relation ~ on
GD" which is generated by partition F of an and a
factor space K = ‘pZ It is easysto see that K is homeo-
morphic to bunch of cicles K = _=V 5‘{ and we
enumerate S so that YT(‘P:):: 'S‘-' where i P oK
is a projection. Since /7 is iuvariant under £ a map
Y=o f.": KK is well defined. R. Williams'
axioms [7] are valid for ¥ (» particular ¥, is local
homeomorphismin a neighbourhood of any point x € K except
branch point x'. Thus we may introduce 3 x 3-matrix Gn
setting g: = card ((e:(w)/] S ) for any point x # x' of

S.. Evidently, Gn is just the same matrix as introduced

L
above.,
h
Let X denote an inverse limit of spectrum

Y., 4 " n
K"K Ke o ang v X - X its shift automor-
phism defined by
(K(a’;)-'rz}...)'; (?hwl)x/) a‘gl...)
h
We claim that for homeomorphiem S @ ZAn. — X
defined by

- - K
S@i= (7p, T-£ ),y Tetutp), ) , PENn
the diagram f
A'\ﬁ:,-Ah
S| s
% ya
X”_‘) X commutes,

The fact that segments of invariant partition /" contracts
with coefficients which are less than 1 uniformly implies
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injectivity of S. To prove that S is onto let us consider
for any (x, %, ... )€ /n a family of segments
oLy = /:o 7/'"[&',“,) (K>20) containing in elements
of [’ Since olci, € o, and the length of o« tends to
zero as k — R /7] A consists of unique point /oe/l.,
Evidently S, () = ’(\:)01.,_..) Commutativity of the diagram (2)
is a consequence of the commutative diagram
P Loy P
7/ 0 7
K = K

Topological entropy of %, is equal to logarithm of the
maximal eigenvalue of the matrix G (see [1 2]). since the
spectral decomposition of L (fn) consists of four
periodical points and one attractor /l-n and /.. /An is
conjugate to %

b(hla) = k(4 )= 4 (%)

implies
L(2)= by (ns2e Vorilres)

THEOREM, Diffeomorphisms of the series ; /f,/ nenf ave
representatives of countable many topological conjugacy classes,
these classes are not results by itarations of any finite

series of diffeomorphisms.

PROOF, The first assertion is a comsequence of the fact that
values of the entropy of fn form infinitely sequence,
For the second let us consider any diffeomorphisms F/,., , FK
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ONE-DIMENSIONAL ATTRACTORS ON §2

on S. Let /4; = exp/L(E) (i=1,..,K).

It for any f there exist some Fi such that fn is conjugate
to F; for some integer p, then An =/(-§ were

An = exp h (ﬂ} It is easy to see that

A = dn+ 4- An for some & < A, <Z. Thus our
supposition implies that for any integer number of the form
2n + 4 there exists some integer p such that ]Zn + 4 - /‘?I <1
for some o belonged to some fixed finite set. This means
that any element of the arithmetical progression 2n + 4 is
approximated by elements of finite family of geometrical
progressions which is impossible.

2. On Diffeomorphisms with Infinitely Many Sources (Sinks)

Let Diffz(M) denote the space of Cr-diffeomorphiams of
C™ manifold M without boundary Diff ; (M) (K € 2) denote
the same set with the uniform CX-topology.

Definition 1

Some property of the elements of the set Diffa(M) is
called CE~typical for £€Dife, (M) if there is a residual
subset J3 of an open neighbourhood N(f) of f in Diffg (M)
with this property for each element of B,

Perhaps it is worthwhile saying that the notion of the

Ck-typical property is the generalization of the Ck-stability.
Throughout this paper the notion of CX-stability is used in
its ordinary meaning,

Our aim is to prove the following result.
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THEOREM, For any manifold M of dimension greater than two,
the set of diffeomorphisms in Dif:rz(M) (r > 2), for which

K _typical

the property of having infinitely many sources is C
(k > 1), is cO-dense in Diffr(u).

Our theorem will be proved as follows. First, sufficient
conditions for the appearance of infinitely many sources will
be given, This result is due to S.E, Newhouse [i] . Infinitely
many sources appearance is based on the fact that tangency
points existence for stanble and unstable manifolds is Ck-
stable,for some basic set., Secondly, it will be shown that
the diffeomorphisms with this property are dense in Diffg(m),
dim M > 3, Before proving the theorem it is worth saying a
few words about notations.

Let us recall (see [1] ) that a compact f-invariant
set A is a basic set for £ if it is hyperbolic, topolofically
transitive, the periodic points of £ are dense in /\ , and A
has a local product structure. The basic set is non~trivial
if it contains more than one orbit. In this case it must be
infinite, Given a basic set A; for £, there is a neighbourhood
N of £ in Diff ¥ (M) where each g € N has a unique basic set /13
near A i and there is a homeomorphism h : /]. } d A 3 such
that gh = hf, Por x ¢ /|, and g € W, we denote h(x) by Xge

Let p be a hyperbolic periodic point of £ with period V.
Let //’7/(*/'“) s, ),,..., )‘e be the eigenvalues of the
derivative D f  with /{,/g < fusl < T< 1Al <... </Ael
and let be /‘9’) = !/4,/ , /l(/oj = /Ae/

Now we can formulate the propositions discussed above,
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ONE - DIMENSIONAL ATTRACTORS ON §2

THEOREM A, (S.E. Newhouse "1]) Suppose Afis a non-trivial

basic set for £ € Diff ; (M) which contains a periodic point

pp such that dim W) = d&im M - 1 (ain W (p)=dim ¥ - 1),
let N be a small neighbourhood of £ as above such that each JGM/

g € N has a unique basic set /gnear /lyl Assume there is a

neighbourhood N, © N of f in Diff , (M) such that if g&¥ ,

then W*(4) and W° (Ag) have a point of tangency and

M A <! (>1)

Then there is a residual subset B of N, such that each g € B

has infinitely many sinks (sources). Using our notation the

property of having infinitely many sinks (sources) is

Ck-typical for f»

THEOREM A' (S.E. Newhouse || ) Let p be a hyperbolic periodic

point of £ dim W“'(Of,o))z/ s /é(p).A(P) <4

(@inm WS(C’(F))ri , ) Ap) >4 ). hssume x is a point of

tangency of WS(O(/»)) and W“’(oga)) Then given any neighbourhood

Uof xin M and N of £ in DiffX(M), k > 1, there is age N

which has a sink in U,

THEOREM B, Given any manifold M, dim M > 3, the set of CT-

diffeomorphisms, r > 2, for which condition of theorem A

holds with k > 1 is dense in Diff 7 (M).

Remarks.

1. S.E. Newhouse[ﬂ has shown that on any manifold M,

dim M > 2, there is a diffeomorphism for which conditions of

theorem A are satisfied with k > 2,

2. In [Q] N.K. Gavrilov has adduced conditions when diffeo-

morphism f has infinitely many sinks, f € Diffr(Mz), r> 2,
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Recall some definitions from general topology and
differentiable dynamics.
Let X, Y be metric spaces and X be compact. Let 2% denote
the set of all closed subsets of X,
1.[A,, | A, € 2% , 7€ /\/j is a sequemce of closed

subsets of X.
”é:;(A»/: //3/ Va théldh N /J':‘g?ﬂﬁn‘/

(see [1] )
2, The map F : Y = 2 is lower semicontinuous, if for any
point y € Y and for any sequence //,,é)/,ﬂé /\/_/ P O%—’]

Fp e Lo (Few)
3, The Hausdorff metric on 2% is defined by the formula
aist (4, B) = max [ 50 p(08), sp (4, ¢)f
where P is metric on X (see [8 ).
4, Diffeomorphism £ & Dii’fr(u) is a Kupka-Smale diffeomorphism
(KS-diffeomorphism) if the following conditions are satisfied
(1) All periodic points of £ are hyperbolic.
(2) For any periodic point p Ws(p) and Wn(p) are
immersed copies of Euclidean space.
(3) For any periodic points p, q of £ W(p) and W%(q)
are transversal,
(see [€] )
Let KS(N) denote the set of Kupka-Smale diffeomorphisms in
N c Diffr(M).
The lower semicontinuous map is continuous on a residual

subset B of Y. The set KS(M) is residual subset of Diffr(M).
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ONE - DIMENSIONAL ATTRACTORS ON S§2

X . .
be lower semicontinuous map

LA 1. Let g, Y — &
X
for any ne A/ , then the map J Y » < given by the for-

mula
Jex) = (U fix)
heN

is semicontinuous.

Proof. Recall two elementary properties of ILi ( see [5] )

(1) l(Lih) = Li(An) = Li(LAN)

(2) U [LiA ()] c Li ( U Aulx)
keG h h keG
where «c¢& and ( is arbitrary.
Let the sequence X« €V , k€A converge to x¢€ Y .
From the properties (1)-(2) and the fact thatj,, is lower semi-

contiuous one obtains
Li gt = Lifdd Vg =] =L (U pp(n))>
> (L gotx) > Vg

and hence
j(’:r) = c/[hU/. (z)) c k[;'j(x,‘)

This completes the proof of lemma 1,

et /| be non-trivial basic set of f€ 9,/{/7/‘7/, pedy
be hyperbolic periodic point. Let M/ be neighbourhood of f in
Diffk(M) described above., For any poinjéc/f /'//3 denotesthe homoc-

linic class of p ; that is Hp consists of all periodic points

g
q of g such that W%(o(q)) has a point of transversal intersect-

ion with #%(o(p)) and W*(o(p)) has a point of transversal inter-

section with W%(o(q)). Than H__ contains the periodic points of

Pg
'Aé (see [1] ). The formula H(g)=calg defines the map H: KS(«")

-> 2M. 5(g) denotesthe closure of the set of all sources for g
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and thus it defines the map 5: KS(\') — 24,

LEMMA 2 (see [5] ) H and S are continuous on a residual sub-

set )?)CJ\P.

Proof. For any n let's define maps Hn , S5,

: k(W) > 2t
by the formulas

Ha (8) = He 0 Per, (4)

Sw (§) = SN Per, (8)

where Per, (g7 is the set of fixed points of g®. g is KS-diffeo-
morphism hence the set Perp(g) is finite and thus the sets Hn(g)
and Sp(g) have only finite number of elements. We shall show
that Hpy and Sn are lower semicontinuous ., Than H and S are
lower semicontinuous becous H(g)=cl(%Hn(g)) and S(g)=cl(\v{sn(g))
There are residual subsetsjz)sandBH of KS(J‘r ) on which S and H
are continuous. Thus to prove the lemma we must set% =J3,,n755
(1) The map H, is continuous on k(). Let g'elV be a suffi-
ciently close approximation of g. There is the homeomorphism

h: /\3"]\3' such that heg = geh andy(x,hxkf,for any x¢ /\3 ,
where § >0 if g'-»g. Thus dist(Hn(g),H,(g"'))<¢ because
Hpg=h(H, ) and Pery(g')N /\3‘= h(Pern(g)ﬂ/\g ).

(ii) The map S

L is lower semicontinuous. If gé KS(&°) then

Sn(g)=iza.1,...,ak')3 is hyperbolic set for g. Hence from the sta-
bility theorem for hyperbolic set one obtains that for any £ >0
there is a neighbourhoodJ(;,of g in DiffX(M) such that g'e J\f;
implies the existence of S c Sn(g') with dist(g,Sn(g)) <T .,
so 8,(g) C LJ.Sn(g ). Lemma 2 is proved.

LEMMA 3 Le? g ¢ J\P, then given any periodical point pé€ ]\ its
neighbourhood U and arbitrary nelghbourhoodN of g in lef,'(M),
there is the diffeomorphism g GJ\/;L which coincides with g on

some neighbourhood of Aﬂ and has sink a e U
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ONE - DIMENSIONAL ATTRACTORS ON §2

Proof, Let for LR %e/\a Ws(c*.) and Ww(%‘) have the tangency
point x.

(i) It will be shown that thereis arbitrarily small pertruba-
tion @ | of g outside some neighbourhood of A 3 such that for
any neighbourhood VU, of point x there is x, - the point of
tangency Ws(p' '8, ) and Wu(pz,g‘ ), where p, and p, are periodic
points of g and p ,p,€ [\3 . Por sufficiently small &(, P >0
and any point q ¢ Aa there is stable manifold of size (P:d)
(see 14} ). Global stable and unstable manifolds are defined

by the formulas s _ W e
wicay = U g (Weea)
n w
whg)= Y, ¥ (Wera).-

We need some notations. Let W (9)anda W, (Cp) denote
0<Hw% (Wg (q,)\ and Ua (W%—K(W)) respectively. It

is easy to see that W" . (a,\ ) W (q,) ¢=u,s, There are
inteﬁe'bs Ng, N=>1 such that

xewd gy, XE WL ()5

X € W.:L (Q/LB) x € Wﬂt‘l (7/1,)'

Now we agsert that it is possible to choos sufficiently small
disk V which is the neighbourhood of the point x in M, V < U,

and DS = VN WS (4) CW2, (%) ~Wio (%)

,QK_.V()WV., COVL)CW (%) W, -|(ci/.o.)

S w
where% a.nd@ are smoothly embedded disks., Let us choos perio-
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dical points ?‘ )P;LG AQ close enough to points q, and q,, for

submanifolds W?\S (P)and Wpo (P.)to be sufficiently close to
. ) : .

manifolds WMS(%)and W;: (%_) respectively. Then

Dls = VA W:S(P‘) - Wfls (Pl) N W:‘—' (P')
D= VN W (A CWr (P) S Wi, (P

are smoothly embedded disks in M, Which are sufficiently close
to disks @5 and Q" respectively. Point x is the point of tangen-
cy of @K and :D‘s hence there is sufficiently c*-close to iden=-
tity map diffeomorphism W' M-=M such that w( 27 )and 9,“— have

a point of tangency x, €V and WlM\V =id. From the definition
of V one can obtain that ¢u (97 ) < V\/S(F‘,S,)and F/D:"'CW“'(P,_,‘Q,)
where 4, = W73 . Thus x| is the tangency point of WS(P,)Q,\and
w (e, 4)

(ii) ZLet's show that there is arbitrary small perturbation g2
of g 1in Diff:(M) outside some neighbourhood of /\3 such
that manifolds Ws(f’,})a.nd Wu(l",ga_) have a point of tangency x, in
an arbitrarily small neighbourhood of point x;, where pe A 3 is
periodical point.

FPor simplicity let's consider the case when p,sP,» P are
fixed points. There is the disk ,@,S c WS(P) arbitrarily clo-
se to W :‘ ( W‘fl is a local stable manifold) because p is homo-
clinicaly related to P, . By the same argument there is disk
fO,WC W“’(P) arbitrarily close to Wf;:, . Let's choose disk V
which is a neighbourhood of point x, in i such that

VOU 9l (BF) =9 aa VAU, 9 (27) F9
Let disks 2°C W(P)0V and D“c w(r, )NV be defi-
ned as in (i). Then there are disks %: c @,s and 2’; c 0~

such that for some integers Mg M. >C disks :D; = g:"“s (@i)
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and @;’2 3:““'(@:) are arbitrary close to D° ana D , but
g‘“ (?)f){\\/:_cp foroszsms-iandg:'(@r)n\/;?ﬁ
for 0 st < My -1 , Thus one can obtain the perturbation g,
as in (i).
(iii) DNow we change g, to g5 for Ww(fb )33)1;0 have a tangency
point x, with V\/S(P3 )633’3 near Xx,. Finalli move g3 to g' to
introduce a sink y near X3 using theorem A', Since the sink y ma
may be got arbitrarily close to a certain disk in WS(P)g’) of
fixed diameter ( depending only on the position of x3), its
orbit under g' will get close to p. The proof of lemma 3 is

completed.
Proof of theorem A, Let g ¢J3 where J3c V) is a residual

subset of J\f; on which maps H,S: Diff*(u) — M are continu-

ous, Fix some topological metric on M, Let P, be a finite &,-
net of compact H(g), consisting of periodic points of g,where

E,>90 converges to zero. Ng (9) denotes the ball of radius §

with its center in g. By the lemma 3, given any n there is
a diffeomorphism g, €Ng (8)such that for every Pe, (P) PePy
there is sink qeB, (), q€ $(9.) -Then dust (S(9u), Pu) < En-
From the continuaty of H, S at the point g, Py\ — H(S) n—eC
and

die (($(3.),H(8,)) ¢ et (5(3.),P.) dut (P V(3 )
+ At (H9), mcam)

one obtains H(g)=S(g), the set H(g):cal3 being infinite, so

this completes the proof of theorem A.

Now we can give the proof of theorem B, We'll consider the
case when infinite number of sources appear. We now proceed to

state and prove technical lemmas which will be needed for the
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the proof of theorem B,

LEMMA 4. Let D be a disk with smooth boundary in the plane R®
£f:D—->intD and A:Ra-—s R2 - orientation preserving diffeomorphi-
isms, A has a single nonwandering point a, which is a sink

a €intf (D). Then there are disks D,,D, and diffeomorphism

F:R°—> R? such that
02,2929 2 £(D)

F\R"\DL: A , F |‘/D, =t

( here YCV means closU c intV)

Proof. (i) Let's finde disks D, and % with smooth boundaries
$§§ 29,2 ﬁ(ﬁ) and extention £ of £ on the whole plane
such that "E D R mt D ) £ 'D,: £lbl and
_ﬂ_(z )= -0_({!) . Consider the diffeomorphisms h R¥— it O
which is equal to the identical on {0 and set {= ﬁvh. It is

obvious that any point x from Rl\ﬁol is wandering becouse
E('x\: £ol(xye {@)cD, enda £(0)c :/M:t D, .
Hence _Q_(Z) c D, and (%)= (4) vecause f"b‘ = HQ‘ .
Using the properties of A one can finde disk lebb such that
ﬁ)@ A (703_} @i)k . It is a consequence of the facts that a
is a sink for A and thus A is topologically conjugate to
iinear map whith eigenvalues less than 1. and more than -1,
Thus there is disk D' such that A (D') < ot From the
relation W*(a,A)=R%  one can obtain some nz O with the
property A'n(,i)‘)?)@ , and we set 0, = A‘(m‘ )(D'). Let @N,\
be a disk 0, 95,,?/4@3\' and KK are the rings @z\mffﬁ‘
andl A@A)\MZ(Q) « To prove the lemma it remains to
extend diffeomorphism F oo RANK = ¥~ K which is
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—_ T
given by the formula [ - { Ax |, ¢ R"~D,

~

to the diffeomorphism F of the whole plane so that F (K) = K
then F satisfy to the conditions of the lemma, because F('l<):z)

KN ’IZ = ¢ and hence all points of Rk\i),\ are wandering;
thus N(F)=0(¢) = (¥)

(11) In order to define F we shall comsider the standart ring
on R2
T={(r9)| RespeRrR , o ¥ <am)

where (?,‘f) are polar coordinates. Let S, = -{(P, ¥) | £= R}}
Se={ (e, 9) 1 p=RY

and map some neighbourhoods U(K)and. U( E) onto the neighbour-
hood U (T) of T using diffeomorphisms h ,h, so that

h, (K) :l"z(z) :T)

hy (?0,) = k(P A(R)) = S,

hy (PR2) =hy (2 £ (D))=,
Suppose we shall finde diffeomorphism ¢ ' U ( T)= U ( T) such

that § = h,o Ao h) on {(g¥) g 2R} and
ﬁzhx°f° h, on {(P,v)l fsgo} that
Ax , xe& R ~NDy
F(x) = g0 xe K
Lixy , €Dy

377



R.V. PLYKIN-D. A. KAMAEV-A. Ju. ZIROV

will be a extention of F that we need. In order to find diffeo=-

morphism g it is sufficient to finde such diffeomorphisms w

= id

w =
‘{(9,‘?)\_?$'L 4

and w' that VVI =
{9 2Ry

—

W‘l{(!’.‘f)lle'j‘:':d ) W'l{(s’.v)\f’s kogz t

for some r and r', R, <)< < R and let

_ o wiey) , $>v!
(8, %) = {w,(f’\” et

The definition of w' is the same as that of w and we shall
give one for w only.
(111) et h,o A k' (¢,9) =¥ (£ Y)=

= (¥, (8,9, Yo (5,9))

where Y (S,)= S, that is ¥, (R,9)=R . ¥ is orientation
preserving hence ’3 q;’“ (R, ¥)>0 and there is M>0 such that

0 V.
det DY(9,¥) /'Z_) Rosps R, Let L _V;ea{} ‘—'\\J‘Pz(Q)l
M = WMP%% () | x = (P,Y¥)

- xeT ?

and 0< ¢ < PL/J,MM(LM,L) . Take r from 1;11(3('1-:5Q ,R) so close

to R that there is ® >o, for which

ra% (?)‘P)\ < & and lro%'(f e) | = when n<f < R

The flrst condition is satisfied, because W‘ (R, ¥)y=o
and the second - because rbq‘;a'(e ¥)>0 At last

2y DY Y A w0 Y
¢ ~y > 1Lt 7y oy 2 "\fv_{:'“'?f Z
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Y L 4
hence — > — when L ¢f <R, . Choose constants
) 5} LM
in)]
6 >0 and T >4 so that Q@ < ;0—;‘ R,¥) =T . Let

-
l °Y
oL(¥) =% Zp (R,¥) then £ < o (¥) <4 . Let us

define a smooth function P (£, ¥) such that

q/’ (‘P' Y) = kP/ {R;Y) +?a—?(ki\f) (Jo"' "2) +,3(f,_‘f’)(_f’—Rf':

— R+ TLPI(P~—R) + p(PF) (P-R)Y
Let's divide segment (r,RY by points
Rz Tty < Tye < 3, <2356 AR S Ruc?,, <= R
on segments t.,, &3 )t3)ﬂllt1/0,)t, so that
Tye— 2y, > 7’;;—' (R-%2). For any i=1,2,3 we shall define the

nondecrease C*- function A (¢) with the following properties

1° )‘Lff)=° R j’ﬁ‘l", ') A."(_P):'i ) f?'?.("c ')
" - 4.

2° ;e—f—,‘_)\;(f’):‘—o fon pE T

3° b fa__A:' L Y _ ke
Tore T ow-tu T R-%

where K;_::(Hra’)@—:-E— ) ¥ >o .

e -y
Let's define the increasing ¢ function ,t(f)such that | (p) :_J?
for £ <t and rL(f)="C‘f+R(|—'t) for P >"yo

The existence of such a function follows from relations
Je(Cuo) =T Tyo tR(1-T) > T +(T-1)(R=-)+
tR(1-T) =7 :/‘L('Lq,)

Let's define following maps
Y' (e, %) = (R +7:o<m(f-an».lf)P(f,?)(f-R)’;‘fi(m))

Y (9,9) = (R+T [~ )o.(f)(d(f)-l)](f"—k))\rl(f)y))
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V2 o(e,¥) = (R+T (s~ R), %A3(9)(wz(f,v)-y))
vi(e,9) = (fte), ¥)

It is easy to see that ¥'= ¥  outside the circle of radius R
¢¥-14 1in the circle of radius r and ¥ (£,%) :‘f’:'ﬁ P, ¥)
when P € A,: . ?hus the lemma will be proved if we find that
for i=1,2,3,4 ‘f"' is a diffeomorphism on —}((f, y) ‘ nep g RN']
when R-r is sufficiently small.
(iy) ‘/"’ is a diffeomorphism because the function f«(f) is mono-
tonous. If R-r is sufficiently small then the degree of ‘f":
(i=1,2,3) is equal to that of ¥ whic(:yli.isg 1. Thus to prove
DY

the lemma it remains to prove thet#tr-'-2*#0 when 1< peckR
D, ¥)

and R-r is sufficiently small. Indeed,

l
Z-f? =T () + A (p) P(5Y)(E-R)¥ T X (f)}% (p-RY+

+2 2 (p) PEY)(8-R) 23+ O(5— R)
| 2 @Y P =Rk (s, 9)| 15~ R\ = O (e-R)

then ? k[/;’
Y

~—

= v oL (%) (=) + 4, (9)BE (s-RT= Dg)

o! A% ! ]
YU N L N -
(f,y)  °F vy ®p 7

7 a?o—% L 0(s-R) 228 +0(s-R)

Thus

(1)

2 -
further 2—;—' :'r:[|+,\,.(fJ(o<(:f)—l)J+
FTAL () (A= 1) (P=R) 2T [1+ra(p)(t(n)-1)]=
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N

T (1 =2alp)) +TALF)A () 2 T=TA(8)+220)=

=2+ T(1=-x2(8))— 2 (1= 2tp)) =

Y’
S+ (T-23) (1 =—»p)) ) Ay =T dalp)LpR)=
= O (¢~ 31)
hence Lot
ot OAYT, Y)Wt ‘i; + 0(p~R) 38:0(0-R)
) RCE S
(¢, %) (2)
2>
Finally, from __L _ 4 one obtaines
T B 3
(V1Y) v Tyl
— - T - A
D(P 9 = 3 "bj’ L(l 3 () +

(3)
+ Aqlp) "’L\> T (1- 20y v 25 (9) &) >0

From (1),(2),(3) it follows that ‘V , ¢ , \}’3 are diffeomorphisms
when R-r is small enough. The lemma is proved.

LuMMA 5. @@iven any c°- neighbourhood U of any diffeomor-
phism £ Diff,(M) for a set Z of n different positive values
distinguished from 1, there is a diffeomorphism f, € U having
periodical point p in whose neighbourhood f, is smoothly conju-
to the linear map with a real spectrum and the set of absolute
values of elements from this spectrum is Z R

Proof. (i) M is compact hence there is a nonwandering point

of f. Then there is arbitrarily small approximation f; of f

such that f, has periodical point p. e may assume for simpli-
city that f, has a fixed point p.

(ii) We shall show that there is arbitrarily C -close to £
diffeomorphism £, with the derivative (Df, ) 3 - B having

a simple spectrum. In some coordinate neighbourhood of p f,
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L ®
has the following form f(x)=Ax + (%) where ¥€ C 7 ¥(0) =
= 0 and (DEP)O =0 , Ais a real Jordan form of operator
(Df)p. Let A=diag(h;,...4q,B,,... B¢), where Ap is Jordan cell

corresponding to the real eigenvalue multiple ny m=1,...8,

B:j is a cell corresponding to complex eigenvalue 8{3 +e f:j multi-

ple my, J=1ye0et. Let >0 be sufficiently small and real values
€ux @=03,x=in) and S‘e(d =0t ,2=0,M ) from the interval
(0, &) be such that all values |Ay tEpe |, |G +8\(; + Tl
are different Let E =diag( Emi - Emn,)s Fi=diag( 9y Si SJK
JL, J,,, 5\ 3:,.«) and E—dlag(E1,...Ls,F1,...Ft) Let e (t), teR

be monotonous CT-function with properties

(a) ]’L(t\:i when t<-25:
r(t) =0 when t > ¢

) | R'(®)] < %—

Let {}L('X) = £ ()~ | (1) E o y then spec(Dfy )=

={ 2T e, 3 +¥50 +'LT’} and [{ (%) ~f,0)| < 1[((\3&1)Eoc‘:0
when |x)|2¢§ H,w heol€]Ex| < IENx| < IIENE

when |x(<€ , one can obtain that [£,(%)-{,(x)| is sufficiently
small if § small enough., Consider

| fiw P fem

fIx1)E. (2 )4 p(=) E.| $3 <E
l o Xy ,/“("‘)’ M 4 &€ when [oc |

O when [XI>E&

hence when & is small enough det (@?,_ ),(#O , thus f, is dif-
feomorphism sufficiently C‘-close to f; Choosing values €E,xand
é}e by the some spetial way one can obtain apply Sternberg's
linearization therem and thus we may assume that fz(x)=Ax where

A has a simple spectrum.
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(iii) Let's show that there is arbitrarily C - small pertruba-
tion £ of f such that (ab.f, )P has a real spectrum.
Consider the invariant subspace L corresponding to the complex

eighnvalue G +(T of matrix A, then

Py = Al = (3% +Txa —Tx +28 %)

In polar coordinates the map B has the form D (P,Y)=(°¢5°, -1,
where oL = \/gz’.;cz)ta\}’:—’g— . Let ¢>0 and )\ (t) be a nonde-
creasing smooth function, which is equal to O when +t <§; and

1 when t>¢ . Let B, (f}.j’): (oLf)Y—A(,?)L}’) , it is easy
to see that B, is diffeomarphism because det Z((_(ii'_’%z-):o(,
When § < %: we have D, (j’)ﬂ’) = (°4_f>) ¥) orin prev'ious coor-
dinates B x =« x. Extend B, on the whole subspace so that
outside some neighbourhood of the disk {_’JC& L\ l'-")‘i} it
is equal to f. e shall do the same procedure with other inva-
riant subspaces corresponding to the complex values. Then using
the procedure of (ii) one can obtain diffeomorphism f; which

is smoothly equivalent to the linear map with a simple real
spectrum in some neighbourhood of p.

(iy) Let L be an one-dimentional invariant subspace correspon-
ding to eigenvalue A of the operator A with the simple real
spectrum. For any real rL with sgnrv.=sgn>« and any { >0 there is
8e (o, ?-) and strictly monotonous smooth function V (t),t€éR
such that V(t)=pt  when |£| <} and ¥ ()=t when |£]>€.
Then using arbitrary small c°- perturbatiorfi(fgne can obtain
that ‘¥3 lL:\) in some neighbourhood of p, but other eigen-
values of (D%)r are the same, Lemma is proved.

LEMMA 6. Let £; B> Ep(i=1,2) be ¢! -diffeomorphisms of Banach

spaces Ei such that
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(a) £, is Lipschits and for some %,>0O
% (E, () < tet By (7))

(b) 0€ Ep is a fixzed point for f,.

- -1
Let L({;L') denotes the Lipschitz constant of {L ‘El(,zawhere
R, 20 ., Then for any € >V there is & >0 with the following

-

property. If Z ( ﬁ }43 then there is a neighbourhood § of
diffeomorphism fxf: £+ E D in Diff,' (E£:£)
such that for any F €U there is C - map )f_:[-j/?,}_,,gz
with Lipschitz constant less than £ and graph 7",_- is invariant
under F.

Proof. (i) For definitness we shall suppose that & «£ has
the norm /(X,J)/: max [/z/l /J/) . Let

f@g’] = ([(*J,ﬁg)) , x€b  geky,
F(mJ):[]C G+ 8 (xy) o (e Sy)
where (5: E £ - £, i=1,2 are Cm maps and

A = mwxf//éf/é,) /J‘z/é,/ </

Consider the space of continuous maps from £@) in £ (e )with
Lipschitz constant less than 1. We shall denote this space by
% and let % have uniform topology. % is a complete metric
space, We define the graph transform /; S ﬁ/ - % by

[ =L [tF-0,9)- 800,9]

Let's prove that /7;- is well defined map ?{-—) %( when 4 is
6. -small. First we must show that /;(Vj is defined for any
point of 5/?,}. This is obvious because

F(2 ) = 100 + 8 (x, ¥x)
and f, maps the ball Et)into int E,(2) thus for any x ¢ £
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E(ﬂ, %‘] € F () . Let's evaluate the Lipschitz cons-

tant of /. (¢)
LIC&)= L[} E-Ge)- 8(r,¥) ¢ L)L (P-F (4)-820,8))<
< S[LLIE)LGY) + L(8)LGO]T < §TL(F)+L(8)] ¢

£ S[LU)+L(8)+L(8)] < §[L(4)+ 4]
nence / (F ("/))(/ when 9§ is sufficiently C'-smail, Thus {.'
is well defined map of % into itself.

we shall show that this map is a contruction when S is suf-

ficiently ¢'-small. Let Y ¥ ¢ §  then

VEO -0 < § ) #hel,0)- 800100 - BE-(L9)+ §0(,9) ] €
€ SLLESJIC- $P+ IR ECE)-9E- ¥ I] <

<S[BUP- 114 IPE-00) - PE, )1+ | 9-F-C¥)-¥<h(4#)] <
< S[ANe=-#1+ LE)IC-¥1 +1¢- 0] <

¢ S das L) 1y-vn

and one can obtain that Z[/;}</ as § is C'-small. Thus there is
the unique fixed point 5/;— of /; by the contracting map theorem.

K. satisfies the equation

ALpr %) -8 08)] = &
hence
b (%)= he(L%)
which implies the invariance of gr }I’; under F :
F(Brlsf_.a) -=(J/ ?f-‘/] for any x e £ (2) where y= /,[/7(, fﬁ*]
(ii) Next we investigate the differentiability of ?,'[. Assume
is the space of continuous bounded maps h: LL,—(?J—*Z(EI,/-C.J
such that /4&)[c1 for any x ¢ £ (x) where L(Z,,%,) is the
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space of continuous linear maps acting from E, to £, « The map
3
/;_ N g x ﬁ——) g: &/

is well defined by the formula

k) &= (P, 36 oD - D,.8.f () 42)

where §=(0¥x) | L-F(%],  F= f[5)- 8.(5) 1
[(/,y is small enough. Let %, ‘' £+£, = £, be projection.

#
We shall show that %, /;- /}f ) I is a contrac-

tion. For any /,,/z € J  we have
177704 )69 -5 708, b | €
<12 0Bk (5D, F = D, 8]0, 40 - [h )2, % -
D810 N < LE)146)D, 5 (1409 -
~h(3.) Dy E O, b))+ 14,0500 Dy B (A=) -
- h(5)e D Fe Ohh )l + 11D, 82 (0 h,)-hx)l £
¢S(Ih (s )1 Dy Al b3 - hood # 1 4,(3) - 4 ()11 BT
A hea)l + 1 D85 1T 469-hixg ] €
e S(UDFNe D 5. 0) 1 hoo-heal €
< S(2L(L)+3a) Ih-ht

#
Thus [1/1 is a contruction on the second coordinate provided 5
is small. Therefore, by the fiber contruction theorem [ll.]there

*
is an unique attractive fixed point (‘]i, , r‘,—) of /_;_- « For

smooth map Sﬂ) /Z’Dy’jgg(A ;y and
(r*)way) = (Fy, 27(9)
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#

it follows from the definition of Indeed

0.
ff,——ﬁﬁgl}[/’ll‘/')z

# -1
el (090)e) = D7)/ D¢ D,
= DL OW-5-08)] = 0 ()
([’Fv"(gf"m/j converges to /}‘;’, é,,.] as n->a . Thus f, is
the 1limit of the sequence /7,_-”/9’}, and /,.- is the limit of the
sequence of their derivatives @//-',: (¥)J] , hence 9 };,.' = A

(see [6] )e

(1ii1) To prove the lemma it remains to show that Z# is Clclose

to O when 4- may/ﬂ)//‘,//):yis small, For any x € £ (2) we have
Ifea) = [CG)G] = [ £ (B Oy 2) - 8, G )]

~ L] € L) 14E G gad] )5 e w)]) €
¢ L)% (Fetx) +4)

80 that
/Z;(x)/_é [/]/,}[ mox ‘)f_—(g}#A)
and Jét(z)
4
(> g —
a7

Futher, for any x €£,(z)
I 2.80=17%17 (¢, 00)1 <
c 1 D41/ 19, % 112, 41+12; 81/
PR 8 U 10,0 )1 <
AR b L S S

, Lt
wy. /@l - __i.—————_ -/
e .sté,'//;/// el < 1= [a+LE)ILILT)
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as

-7 7
LIL7) < 45207

And this completes the proof of the lemma.

Proof of theorem B.

(1) Let M be a smooth manifold, dimM» 3, £: M — M be a C -dif-
feomorphism , r>2. Using the lemma 5 one obtains that for any
C° -neighbourhood of f there is diffeomorphism £'in this neig-
hbourhood such that
1) £’ has periodic point p of period v,
2) in local coordinates of some neighbourhood of p f' has the
form (f’)’{x,g) =(Ax, Ay) , x€ /?2, 4 € RT3
where A, A)"’/Qzl A: RTIR™? are linear maps and
ANl <1 while Al > 7 1is sufficiently large.
A point of R” we shall denote in two ways; first (x,y) where
xe R ye R"?

)

and the second (x,, X,, ¥J where X, xzeR.' In

other words, we shall use two decompositions of R" is direct sum
R"-R*0 R™ = R@ p @R,

Further for simplicity we shall suppose that the point p is a

fixed point (¥ =1).

There is an arbitrarily small ¢°- perturbation f£'' of £'
which has a form f”/%y/ = /y/x}l /4/} in a neighbourhood of
the point p which is smaller than one described in 2)., Diffeo-
morphism g: .@2—’/ﬂf »Of where Ozis two-dimentional disk, has the
following properties:

1) g has the basic set /1l < inZ »01, A is a sink;
2) g is absolutely structurally stable;
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3) Oe A is the fixed point of g and in some two-dimentional
disk o€ B< nt Q' g has the form é?/.x,‘l’,} = //uJ,' .A.II)J
where 0</4< 7, A > /; l/u>]'

oxamples of diffeomorphisms whth such properties are given
in [1()] and in at the beginning of the present paper.

Further we shall denote f”byf. Thus /) is the basic set of
diffeomorphism f (we don't make distinction between the sets
AcR? ana A ~{o} cR”, 0€R™ ) and the segment [of the
line {4, X, g =0, y=0} lying in the disk & is inA.
1t D" is sufficiently small nfighbourhood of 0€R”? then the
set ]’ x D7 is local unstable manifold of point O. Every seg-
mentl’t fof the line {( 1,,y)l-1 = £, y= o} lying in B
is local stable manifolds of the point Zt [Ot’ojél . Thus
the disk B is fibered by the family of the segments rt of
stable manifolds of points fromA .

(11i) Now we shall apply the construction due to C.Simon.

ile shall describe it in Rn keeping in mind that it takes place

in a small coordinate neighbourhood of the point p € M.

Let U be a sufficiantly small neighbourhood of A in D*® such that
;/(// < wmt U ; W, - two-dimentional subdisk of B 1lying

in the set 9”(&1/\ U . Consider (n-1)-dimentional subdisk W,

of the disk 7 {(01, y/,/o_;, )€R yé,@”‘ I3

and let A /Jl‘ W}/)]I' W, =@ for any k 20, where
Ay R ® R”? - R"? is a natural projection.

Let V, be a smoothly imbedded in R" (n-1)-dimentional disk
which is transwersal to 02 and let the intersection of that
disk with ’'be a smoothly imbedded in 2* circle SfS’C wnt W

V, denotes (n-1)-dimentional disk for which Vz’“’/ @ and
Vot W, | Let K be smoothly imbedded in R” n-dimentional
disk
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V,UV, = int Kk ana ANK=W, V,NK=W,.
Finally find diffeomorphism h : P”—' /?a with the following
properties:
1) h is identical out of K,
2) A(V,)=V, and A(W,\V2 )JND*=p.
It is easy tosee that /1 is & basic set for hef becouse
hef = £ in some neighbourhood of /1 .
S c W”/Q/?'f} , indeed if (x,y)€8, then
K'lag)e v, <D | nence A fy)=(t,8) wiitag-o.

Consider /ﬁof/(ﬂy’é//z/A-f/Qh’of-l/l/,U/ =
< (hef) o n, ) - £ g1 U, AT ).

The last relation can be easily obtained by induction using
that hof = £ out of K, KNA" =W, A Xvéx, W, .

(QA'/U, Alv)e W"/O,f/, hence ﬂ-f/ -‘/-2.//"’ O  when koo,
It implfies that (x,y) € W (QA=f)thus S« WH(0hof) .

By the same arguments ¥ (] W, = We(z,, hf),

Z, =(0t0)€ J - This follows from the fact that X €W
implies X)€W, UNW, =@ and hence (4 f)/x) = f/%/.
At the same time i is f-invariant neighbourhood, hence
/'{“f/ “ta) < f ‘1) for x€ W, . And we obtain that from

XEW(Z,, £) W, follows X€ W*(z, A-f) .5 is
smoothly imbedded circle in W, , hence it has tangency with some
segmentd fy , but Scw'lor-f) and J, < W?(Zy,. A1)
hence manifolds Wu/ol{°f/ and WS/A,/“f/ have a point of
tangency.

(iii) It is necessary to prove that the property of tangency is

K
C -stable for k=21, e shall show that for any diffeomorphismw

. 1
from the sufficiently small C -neighbourhood the property of
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tangency of stable and unstable manifolds for basic set takes
place. Thus the theorem will be proved.

Let diffeomorphism « be defined by the formula

wlay)< (gx+8,0y) Ay+8,lxy)),
where X € @zlé/ €d”? and (5; :,0"—-),02/ é‘z ;24—340”'2
(0= ,Ozhoﬂjare smooth and sufficiently C-small. It was menti-

oned above that g maps Z)linto int»dl » A was linear map with
the norm large enough, hence by the lemma 6 for f’j“/‘
( setting &, = ,?1 £, = #7% and so on) one can find a smooth
map - 2" = R”? ywhich is sufficitenty 6¥-close to the
identity and such that its graph -0 f’fo {/‘1 504/].16.0 ;
is invariant under W

Let é‘: :o‘:,e”"—, .Ola e be new coordinates given
by the formulay

(qv) = &l(xy) = ([, g- wlx))
One can obtain ZJ/U,J/ =W {' fqv) =

=(gut 8, (v » Plu)), AV + A>plo) » 8, (4 v+ ptu)) -
- 504}4/ -8, (g U W/”///‘

It is obvious that ' is invariant undercd s because $2=§(5*/
then
o) = /;/a/vf S,(qpu),0) =((3-8,(1Lp)]uyo)
There is a homeomorphism 7 -@l—’ D l, which is sufficiently

. . . R/
close to the identity and such that @+ d‘, (Ly)- 72°7 .
because g is absolutely structurally stable and &/Iy)is C{small.
The point 7/0/ is a flxed point for f J /Z /A) is one-dimen-
tional sink for é? 7/ l() is invariant under ; neighbour-
hood of A

391



R. V. PLYKIN-D. A. KAMAEV-A. Ju. ZIROV

The set Aw =& //t())‘:{&,?x}'iéj, } <2t
is the basic set for« and %, = ¢ (& 0) is its invariant
neighbourhood in IO‘under W,

The set V’(‘/1 = 28N K is smoothly embedded in R ~ disk
which is sufficiently close to W) when &, a.ndé;are ¢’ -smail

enough. Thus we can consder that
W, cint (pe g\ g (4)) = int (§77(ET) i),

because? is small. W, and U, are close to M/\/', and Y respec-
tively and we obtain that

W, < int (@7 (tUp)\ Uy ).
It is easy to see that each segment of the stable manifold

Wi o, w) of the family fibering the disk W, is
also a segment of the stable manifold w {A/m‘,, A“U}/:
-A'(.“} = A_“) .

Consider the map - T, where

Tlxy) = (px, A%, Ay)
for fl,é// € BxR"? we have

(w-Thay) - (6,(xy), S (1))

hence Lipschitz constant < /%-7)  is small because 4,6,
are Clcmall. There is function a, ‘)Z’/"h#), /0 Iz'}’/ €07
such that

N 2 I K, n
gro = {(¥lsy).2y)\lox,y) €27} = N & (7).

It follows from the stable manifold theorem for a point ( see

(41067 ).
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Lo -/7/0/, 50-7/0/} ced" is a fixed

point for &, gr % is the local unstable manifold We; /P,.y,“’}
e can treat that function ’b is sufficiently C’-small,because
it smoothly depends ond in 6'—t0pology and W is C'—close to T.
In such a case choosing C'-close to £ we can obtain that the
set W, - gr ¢NK is smoothly embedded in K = (n-17 =
disk which is C’-close to W,. As in (ii) we can obtain that
the disk 4(Wj)is smoothly embedded in WP, h-w).

Thus, if & is 8lclose to £ then
1) disks W, and l’/vV, are close to each other in C’-topology and
are smoothly embedded,

2) smoothly embedded in R" disks W, and V?/z are Clclose to
each other, hence (n-1)-disks ,(/Wz) and L/M;Z/ are close too,
3) diskp W, is transversal to A/W,Jand their intersection is
the circle § smoothly embedded in RY

Therfore if the diffeomorphism &' is close to £ in Diff (M)
then
1) disks M-;, and lfwj)are transversal,

2) their intersection is smoothly embedded in M circle 5’
which is C,-close to S,

From the preceding remarks it is clear that S’/<C Wu(/“,l/l'ay
the disk a/, being fibered by the smooth familyof segments of
stable manifolds ofpoints of ./\.,N,, alike the (ii) one can find
that W?*[A4.,,A-0) has a point of tangency with W “A,..,Aw
Finally, notice that values I“(/);‘,w)and l(/),“u,} are approximat-
elyequal toMand min(A,[lAll ) respectively and Il AN is large
enough, hence /U//J‘J“})léaﬁ.w/ﬂand the theorem B has been proved,
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