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Topological entropy and Hausdorff dimension 
for area preserving diffeomorphisms of surfaces 

by 
S. E. Newhouse 

In this paper we present two new generic properties of C1 area preserving 
diffeomorphisms of a compact oriented surface. We obtain a lower bound for the 
topological entropy of a generic diffeomorphism, and we show that such a dif-
feomorphism always has closed invariant sets with dense orbits and Hausdorff 
dimension two. 

Before stating our results precisely, let us fix some notation and recall 
some definitions. Let M be a C compact, connected, orientable 2-manifold, 

00 
and let w be a C area form on M. That is, w is a nowhere vanishing 
differential 2-form of class C~. Let Diff1w M denote the space of C dif-
feomorphisms of M which preserve , and give D i f f H l the uniform C''" topology. 

For f in Diff1w M, a point p e M is periodic if fnp « p for some n > 0. 
Let T(p) = inf{n > 0 : fnp = p}. This is the period of p. The periodic point 
p is hyperbolic if all eigenvalues of T^fT^p^ have norm different from one. In 
our case this means that T^fT^p^ has a single eigenvalue of norm bigger than one. 
Call this eigenvalue X(p). Let n > 0 be a positive integer, and let H y P n

f denote 
the set of hyperbolic periodic points of f with period less than or equal to n. 
Define sn(f) = max{ } . log|x(p)| : p e Hyp f}, and set s(f) = sup s (f). 

n>l n 

Let d be a topological metric on M. For e > 0, n > 0, a set E c. M is 
(n,e)-separated if for any x 4 y in E, there is a 0 < j < n such that 
d(fjx,fjy) > e. Let r(n,e,f) be the maximal cardinality of an (n,e)-separated 
set. The number h(f) = lim lim sup r(n,e,f) is the topological entropy of f. It 

e-0) n-~ 
is a rough asymptotic measure of how much f mixes up the points in M. For any 

diffeomorphism, 0 <_ h(f) < °°. 

323 



S. E. NEWHOUSE 

If A c M is a closed f-invariant set, then h(f|A) is defined similarly, 
and it is easy to see that h(f|A) <_h(f). Also, for any integer n, 

h(f N |A) = |n|h(f|A), and if <f> : A + hx 

is a homeomorphism, then h (<()f4> ^ | A ^ ) - h(f |A). For more properties of h we 
refer to [2]. If p is a hyperbolic periodic point of the diffeomorphism f 
with orbit o(p), we let H(p,f) be the set of transverse homoclinic points of 
p. Thus H(p,f) is the set of transverse intersections of WU(o(p),f) and 
WS(o(p),f) where WU(o(p),f) and WS(o(p),f) are the unstable and stable mani­
folds of the orbit o(p). Then the closure H(p,f) of H(p,f) is a closed 
f-invariant set on which f has a dense orbit [4]. 

If E is a closed subset of M and a > 0, e > 0 are positive real 
numbers, let 

H^(E) * inf{ £ (diam t^)" * (Û } is a countable open covering of E each 
of whose elements has diameter less than e]. 

The Hausdorff a-outer measure of E is the number Ha(E) = lim Ha(E). The 
e-K) E 

Hausdorff dimension of E, denoted HD(E), is the number 

inf{a : Ha(E) = 0} = sup{0 : H3(E) « «>} . 

If dim E is the topological dimension of E, then HD(E) > dim E. Also, 
m(E) > 0 implies HD(E) - 2, but not conversely, where m(E) is the Lebesgue measure 

of E. 

A closed f-invariant set A is hyperbolic if there are a continuous splitting 
T̂ M = E S $ E U, a Riemann norm |•|, and a constant 0 < X < 1 such that 
Tf(ES) = E S, Tf(EU) = E U, |Tf|ES| < X , and | Tf ~:L | E U | < X . The hyperbolic set A 

is a hyperbolic basic set if f |A has a dense orbit and there is a compact neigh­
borhood U of A such that fnU - A . For g C 1 near f, there is a 

—oo<n<oo 
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hyperbolic basic set A(g) = gnU for g such that f | A (f) and g|/V(g) 
—oo<n<rco 

are topologlcally equivalent [3]. 
If M is a hyperbolic set for f, then f is called Anosov. 

Theorem. There is a_ residual set B c DiffHl such that if f is in 8, 
then each set H(p ,f ) has Hausdorff dimension two. In addition, if f_ is_ iri 13 
and _f ±s_ not Anosov, then 

(*) Mf) > s(f) 

Recall that a residual set is one which contains a countable intersection of dense 
open sets. Properties true for residual sets are called generic, and a generic dif-
feomorphism is defined to be an element of some residual set. 

Remarks 1. For an Anosov diffeomorphism f, each H(p,f) • M, so the first 
statement of our theorem is trivially true. On the other hand, it is easily seen 
that there are open sets of Anosov diffeomorphisms for which (*) fails. For 
instance, if f is linear, then h(f) = log|x(p)| where f(p) = p. However, 
with a small perturbation, we can increase the expansion at non-fixed periodic 
points to make (*) fail. With a bit more work one can show that (*) fails for an 
open dense set of Anosov diffeomorphisms. To see this, consider the function 4>U 

2 
of Bowen and Ruelle [1]. We may suppose that f is C , so Lebesgue measure 
is the unique equilibruim state for <J)U. Let y be the unique invariant 
measure of maximal entropy for f. Then, -J<j>Udy <_ s(f). As y and m are 
ergodic f-invariant probability measures, they are either equivalent or mutually 
singular. Using Proposition 4.5 of [1] and simple perturbation techniques, one 

2 
can show that C generically, y is singular with respect to m. Then, 

0 = P (<f>U) = h (f) + <j)Udm m m j 

> h (f) + <f>udy 

= h(f) + j(f>udy , 

325 



S. E. NEWHOUSE 

so h(f) < s(f). Since h(f) < s(f) is a Ĉ" open condition for Anosov dif-
feomorphisms, (*) fails for a open dense set. 

2. It would be nice to know if generically each set H(p,f) has 

positive measure or if f|H(p,f) has positive measure theoretic entropy. Also, 
r 

what analogs of our results hold for the C topology, r >_ 2? 
We proceed to the proof of the theorem. 
In view of remark 1 our theorem only has content for non-Anosov diffeomorphisms. 

Let A be the set of Anosov diffeomorphisms on M and let V = Diff̂ M - A. Of 
course, A is open in Diff̂ M and is empty unless M is the two-dimensional 
torus. 

For positive integers n and m, let B^ m be the set of diffeomorphisms 
f in V such that there are a p in H vP nf a n c* a hyperbolic basic set 
A c H(p,f) satisfying h(f|A) > s (f) - —. Analogously, we let 8' be the • / l n m n,m 
set of dif feomorphisms f in V such that Hyp̂ f ̂  0» and, for each p in 
Hyp f, there is a hyperbolic basic set A c H(p,f) so that HD(A) > 2 - —. n m 

We assert that (1) B and Bf are dense open sets in V, 
n,m n,m 1 

The theorem follows from (1) by taking 8 = A u nB ? 
J & I I n.m n.m n,m ' ' 

The main step in the proof of (1) is the next result. 

Proposition. Suppose p is a hyperbolic periodic point of the diffeomorphism 
u s f and W (o(p)) is tangent to W (o(p)) at some point. Given e > 0 and any 

neighborhood W of f in P, there is a g in N such that p is a hyperbolic 
periodic point for g, and 

(a) g has a hyperbolic basic set A in H(p,g) on which 
h(g|A) > J^J log|X(p)| - e 

(b) each ĝ  near g has a hyperbolic basic set A(g^) in H(p(g^),g^) 
such that HD(A(g^)) > 2 - e. 
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Before proving the proposition, let us show how we can use it to prove 

assertion (1). 
Let f 6 P, and let n and m be positive integers. We may perturb f to 
so that the hyperbolic and elliptic periodic points of are dense in M 

by theorems (1.3) and Corollary (3.2) in [5]. Using Takens [10], we may also 
assume VJU(p,f̂ ) u WS(p,f^) c H(p,f^) for each hyperbolic periodic point p 
of f̂ . Choose p € Hyp^(f^) so that "̂ "£~y log|X(p)| > s

n(f^) - • 
Since f̂  has elliptic periodic points, it is in V. If H(p,f^) were 

hyperbolic, it would have interior (since WU(p) u WS(p) c H(p,f^)). But then 
local product structure [9, Theorem (7.4)] and topological transitivity would 
imply that H(p,f^) is open and closed in M. So H(p,f^) would equal H, making 
f̂  Anosov and giving a contradiction. Thus, H(p,f^) is not hyperbolic. Using 
[5], we can find C 1 near f̂  so that p e HyPj^' and WU(o(p)) has a 
tangency with WS(o(p)). Applying statement (a) in the proposition enables us to 
find f̂  C''" near so that f̂  has a hyperbolic basic set A with entropy 
larger than T(p)' log I ̂  (p) I - Also, s

n(') is continuous, so if f̂  is near 
f. and f is near f„, we have a (f) < s (f,) + . But A continues -L J n n 1 4m 
to topologically equivalent hyperbolic sets for perturbations f' of ty Hence, 
for V near ty 

h(f) >77i5-lo8|A(p)| - A 

>sn (f1) - 3/4m 

> S n < f ' > " \ • 

n m 
This proves that B is dense and open in V. Similarly, we can use statement v n,m 
(b) of the proposition to prove that B^ m is dense and open in V. 

It remains to prove the proposition. All of our estimates will be with respect 
to the C norm induced from a fixed finite covering by symplectic coordinate 
charts, r = 1 and 2. The C r norm of a function f will be the maximum of the 
r̂ - order partial derivatives computed in that covering, and we denote it by |f| 

C 
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All of our approximations are local and will be done in local coordinates 

using generating functions. Let us recall the main properties of these functions. 
2 

Suppose (x,y) are coordinates in 1R and f(x,y) - (£(x,y),n(x,y)) is 
an area preserving diffeomorphism with f(0,0) = (0 ,0 ) and nowhere zero. 

dy 
Then we may solve for y as a C function of x and n in the equation 
n = n(x,y), and the mapping (x,n) — > (x,y(x,n)) allows us to use x and n 

2 
as coordinates on IP. . Since f preserves area, the 1-form a = £dn + y dx 

2 
is closed, and we may find a unique C function S(x,n) so that S(o,o) = 0, 
S x = y, Ŝ  = £, and S never vanishes. The function S is called the generating 

2 
function of f. Conversely, given a C function S(x,n) so that S(o,o) = 0 
and S (x,n) is never zero, we may solve for n as a function of x and y in xri 
the equation Sx(x,n) = y, and obtain an area preserving diffeomorphism by 

f(x,y) = (S^(x,n(x,y)), n(x,y)) . 

If g is an area preserving diffeomorphism near f, then its generating func-
— 2 

tion S is C near S, and conversely, The generating function for the identity 
transformation is S(x,n) = xn. 

We now begin the proof of the proposition. Let us assume, at first, for 
notational simplicity,that p is a fixed point of f, so x(p) = 1. u s 1 Suppose W (p,f) is tangent to W (p,f) at Z q . With a preliminary C 
approximation we may make WU(p,f) and WS(p,f) coincide on a small curve, say 
I, around Z q in WU(p,f). The picture is as follows: 

Figure 1 
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Let U be a small neighborhood around ẑ  in M with f "*"U n U • 0 
and assume I small enough to be in U. Introduce local symplectic coordinates 
z = (x,y) about Z Q = (0 ,0 ) in U so that I is contained in (y - 0). Thus 

2 
there is a diffeomorphism <J> : U 1R so that $(Z

Q) - ( 0 , 0 ) , <f>(I) c Kx,y) : 
* -1 y - 0), and <J> (dx A dy) « u). Let a > 0 be such that $ ([-2a,2a]) c I. 

2 
We identify 1R with U via <J> in the sequel. 
Let e > 0* We will produce an area preserving perturbation g of 

f with g(z) = f(z) for z i f *U such that g has a hyperbolic basic set 
A c H(p,g) such that h(g|A) > log|X(p)| - e . 

Intuitively, we obtain A in the following way. Introduce a large number of 
bumps in WU(p,g) over the interval [-a,a] in I without disturbing the fact 
that I c WS(p,g). Letting If denote the piece of WU(p,g) over I, we arrange 
for I' to be the graph of the function x — > A cos(~—) with -a ̂  x £ a, 
N a large positive integer, and A a small positive number. The maximum height 
of I' is A, the minimum is -A, and I' has N intersections with I. This 
gives the next figure 

Figure 2 
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1 2a -1 To do this with g 6 - C close to f we will need 2A(—) < K 6 for some 
1 s 

constant independent of N. Suppose we take A - • ^ - . Since I c w (p,g) 
and I' <= WU(p,g), we will be able to find a rectangle with distance around 
~ units from I whose image under g n for some large n is around ~ units 
from I' as in the next figure 

Figure 3 

The "around" in the preceding statement means we are ignoring constants in­
dependent of N. Then, if is the largest invariant set for g n| D

A» &i w i l 1 

be hyperbolic for g n and Mg^A,} * log N. This gives us A * l] g**A hyper-
bolic for g and h(g|A) - — log N. From the construction, g has a periodic 
point in A which is homoclinically related to p, so Ac H(p,g). Except, for 

-n A K l 6 a 

constants independent of N, we will have |X(p)| - - ^ . Thus, 
K 6a , K 6a -

-n log|x(p)| = log -i log N or log | A (p) | - - - log + . Choosing 
o n o n 

N very large forces n to be large, so we can get 

h(g|A) - i log N > log|X(p)| - e. 

Let us now specify more precisely how we obtain g. 
oo 

Let a(x,y) be a C function from U to 1 so that a(x,y) «1 on a 
neighborhood of I and «(x,y) « 0 off a slightly larger neighborhood contained 
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in U. Given the neighborhood N of f, let 6 > 0 be 
small enough so that any g which is 6 - C1-close to 
f must be in N. Let A be a small constant, and consider the area preserving 
transformation £(x,y) = (x,A cos + y). it carries the line segment 

za 
-a <_ x <_ a, y - 0 onto a curve I' as described earlier. 

rx ^ g N 

The generating function for £ is S(x,n) - xn - A cos(~r-)ds where 
C(x,y) * x and n(x,y) = A cos(—j^) + y. Note that =* 1 throughout the 
region, so (x,n) is a good coordinate system throughout. 

Let 3(x,n) = a(x,y(x,n)) = a(x,n- A cos^~^), and let S^Cx.n) = 8(x,n) (S(x,n) 
- xn) + xn. The reader may check that as AN approaches 0, the function S(x,n) *• xn 

2 
approaches 0 in the C topology. Thus, for AN small, S x x n ^ x » n ^ ^ ^ f o r 

all x ,n. We may find a C"'" function n^(x,y) so that s^x^x>T1i(x>y)) = Y» 
and n^(x,y) approaches n(x,y) in the topology as AN -+ 0. Let 
^(x,y) = (S1 (x,nn(x,y)),n1(x,y)) be the area preserving transformation induced 

i n 1 K^a 
by S^, and let g = ip°f. For some small constant > 0, if we put A = ^ , 
then |g - f| , < 6 and g - f off f ̂"U- as required. 

C 
We now construct the rectangle D̂ . Let w^ o c^P>8^ °e a dosed interval in 

W (p,g) containing p and I in its interior, and let V be a tubular neighbor­
hood of w^oc(P>B)» W e assume that U is contained in V. For a set E and 
a point z in E, let C(z,E) be the connected component of E which contains 
z. Let b e t ne curve in U given by x = -a, 0 <_ y <̂  2A, and let y ^ be 
the curve given by x = a, 0 £ y <_ 2A. Set {ẑ } = y ^ n I' and {z^} « y ^ n I'. 
Since I1 c WU(p,g), parts of backward iterates of y ^ and y ^ will accumulate 

g 
on w

l o c(P>g) °y t n e X-lemma [8]. Also, there are constants K2,K^ > 0 so that 
if gJ(z) e V for 0 ̂  j <_ m, then 

K2|A(p)fm < dist(z, W^oc(p,g)) lK3|A(p)rm , 
and if g J (z) e V for 0 <_ j _< m, then 

K2|X(P) |"m
 1dist(z,C(p,WU(p,g) nV)) 1K3|X(P)| "m. 

For this step it is convenient to assume via a preliminary approximation that 
2 2 1 f is C . Then g is C as well and hence C linearizable on WS(p,g) and 

wU(p»g) near p. 
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For n large the curves y ̂  y ̂  c(g n v) » a n d c(g ^ 2 n V^ 
will enclose a rectangle in U near I. Let and y J be the pieces 
of and In that rectangle as indicated in figure 4. 

Figure 4 

Let n be the smallest positive integer such that C(g nz^,g ny^ n V) and 
C(g""nz2,g""nY2 n V) are C 1 closer to W ^ q c (p,g) than ^ and gny^ and 
n 1 A g are C closer to I' than . There are constants K^, > 0 so that 
KA|x(p)|"n < A < KJx(p)r n. Set D. = R , A. = / ° \ g j V , and A - Kj gjA . 
* D n X -oo<j<oo 0<j<_n 
For N large, the reader may verify, with estimates similar to those in [7] and 
[6], that A is hyperbolic basic set for g. Clearly, A c H(p,g) and, as we 
have indicated, h(g|A) = i log N > log|x(p)| - e. This proves statement (a) of the 
proposition when T(P) - 1. 

When X(p) >1, the proof is analogous except that ZQ will be in WS(p,f) nWU(f^p,f) t 

JO <_ k < T (p)]. The n above may then be chosen of the form n * x(p)n^ + k, and 
~ nl " nl we have the estimate K^|x(p)| <̂  A <_ K,. | X (p) | . We obtain A and g near 

f so that h(g|A) - ± log N = T ( p ) ^ + k log N, and log N - ̂  log|X(p)| 
as N -* 00. 
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We now move on to statement (b) of the proposition. We assume x(p) - 1 
leaving the remaining generalization to the reader. 

Consider the rectangle and the mapping gn. It is clear from figure 3 
that 8 n° A

 n D
A
 nas N components. These are slanted "rectangles" joining the 

top and bottom of as in the next figure. 

Figure 5 

Also, g~n(DA> n DA consists of N rectangular strips stretching across T)^> In 
the standard way, this implies that for k > 0, f * } S^D* consists of N k 

-k<j<0 A 

thin rectangular strips joining the sides of D , and fj gJ D. consists of 
N thin slanted rectangular strips joining the top and bottom of D̂ . Each com­
ponent of g^nDA is a small disk whose diameter is larger than 

-k<j<k 
(K, IA (p) I ~n)k with > 0 independent of N. There are N 2 k such components 
and their diameters approach zero as k 00. 

From this it follows that the Hausdorff dimension a of S ^ ^ A S A T ^ - S ^ I E S 

—oo< j <oo 

a > a. = inf{$ : inf N2k(K, |X(p) | " n ) k $ « 0}. 
1 k>0 b 

Now ax is given by N2(K6 | A(p) f") ̂  = 1 or a, ~ n l Q g , l Q g ^ . 

But for some constant K 7 > 0 independent of N, n log | x(p) | < K 7 + log N, 
2 log N so a > -— • g — • . Thus a-,+2 as N-*», so a 2. Given e > 0, we choose 1 K ? + log N - log K 6 12 l Q g 

Nl U r g e e n ° U g h S° t h a t K 7 + log N - log K, > 2 " G- T h e n > 
/ 1 o 
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HD(A) > 2 - e with A - U gJ( ^ 8°^.). For g near g, each component 
0<j<n -«,<k<oo A 1 

of g | V has diameter larger than (K | X(p) |"n - e, ) k with e. small, -k<j<k Ä o i l ' 
so we can insure that HD(A(g1>) >2 - e. This completes the proof of the proposi­
tion. 
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