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TORAL AUTOMORPHISMS, TOPOLOGICAL ENTROPY 

AND THE FUNDAMENTAL GROUP 

Anthony Manning 

The theme of this article is representing a discrete dynamical 

system in a toral automorphism in order to study the influence of the 

underlying space on the dynamical properties of the system. We study 

a continuous map f:X+X of a compact metric space X and assume that 

X is a finite CW complex so that TT-J (X) with be finitely genera­

ted. 

Automorphisms of the n-dimensional torus T n , particularly the 

hyperbolic and other ergodic ones, are among the most beautiful dyna­

mical systems. So are automorphisms of nilmanifolds. An endomorphism 

of T n is given by an n x n matrix of integers and an endomorphism 

of a nilmanifold by an endomorphism of a finitely generated torsion 

free nilpotent group. 

If we put TT̂  (X) = r we can define a central series 

r = =3 r | ZD Y2

t ZD... inductively by r* + 1 = [ r * , r ] U those of its 

cosets in that are of finite order in the quotient group. Then 

r/r^ is a finitely generated torsion free nilpotent group and 

f^:r+r induces an endomorphism (that we shall also call f ) of 

r/r^ that determines a nilmanifold endomorphism. If r = 1 then 
r "v n 

r/r^ = I where n is the first Betti number of X and is the 

endomorphism of H^(X;Z)/torsion. We shall denote the corresponding 
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endomorphism of T n by T or g . 

The quotient homomorphism TT̂  (X) •> TT̂  (T n) is, since T n is a 

K(TT,I), induced by some map q:X •> T n and the diagram 

X — > T N 

£+ 4-g 

X > T n 

q 
commutes up to homotopy. In fact all this work holds for any path con­

nected compact metric space X with TT̂  (X) finitely generated provi­

ded such a map q exists (compare [6,page 48]). In this thesis [2] 

Franks obtained the remarkable result that, in such a diagram, provi­

ded g is a hyperbolic toral automorphism there is a map j:X+T n , 

homotopic to q , such that 

J n X > T n 

£+ 4-g 

X -^~> T n 

J 
commutes. In fact, when g is a general toral endomorphism it is 

still possible to salvage part of Franks 1 conclusion. gq-qf:X+T n is 

homotopically trivial and so can be lifted to a map X-*Rn . Now 

R n = E s © E 1 © E u where E s , E t , E u are the direct sums of generalised 

eigenspaces corresponding to eigenvalues of g:IRn+Rn of absolute va­

lue < ) = > > K By using only the part of FranKs 1 proof that relates to 

E*1 it is straightforward to modify q to a homotopic map j s.t., 

when l=gj-jf:X+T n is lifted to R n , IXcz E S © E 1 . Moreover this 

can be done without assuming that f has a fixed point which can be 

used as a base point. 

Proposition [9] 
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If X ~^—> T n commutes and j X = T n then jtt(f)=Tn also. 

X —r-> T n 

Proof. 

*f JQCf) t T n choose a periodic point y for g not in 

jft(f). Then j ^ (the g-orbit of y) is a dosed f-invariant subset of 

X disjoint from ft(f), which is impossible. 

Thus f^rH.jfXjR) + H^XjR) being hyperbolic and jX = T n has 

implications for the size of ft(f) and the way it sits in X . If 

jX / T n it is some proper g-invariant subset of T n and such sets 

have been studied by Hirsch |j>] and Franks. For example Franks has 

shown that, except when it contains a lower dimensional torus, such 
2 

an invariant subset connot contain any C arcs [3]. On the other hand 

Hancock has shown how to construct invariant sets containing C^ arcs 

[V]. We wonder whether anything can be deduced about ft(f) in such 

cases. 

Topological Entropy 

Given 6 > 0, we say Y C X is 6-separated if y^,y 2 e Y , 

y] ^ ^2 = ^ ( ^ 1 * ^ 2 ^ - 5" For a Pos;'L'tive integer k we say Y C X is 

(k,6)-separated for f if ,y 2 e Y , y^ ? y 2 =¥ 3^ , 0<i<k 

s.t. d ( f l y 1 , f l y 2 ) > « , D ] « Then Put h(f,6) = lim s u p k ^ ( 1 / K ) log 

(maximal cardinality of a (K,6)-separated set for f) and define the 

topological entropy of f,h(f)=lim 6^ 0 h(f,6). The "Entropy Problem for 

Continuous Maps", which is related to Shubs' Entropy Conjecture Ql 2} , 

can now be stated as follows. What information can be deduced about 

h(f) from f*:H*(X;R) -> H*(X;R) given only that f:X+X is conti­

nuous ? It turns out that several results on this problem can be vie­

wed in the light of the representation of f:X+X in the toral endomor-
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phism g:T n+T n described above. 

Theorem [10] 

h(f) > logA where X = sp(f . :H (X;R) -> H (X;R)) 

Proof. 

We can use the map q:X+T n that gives a homotopy com­

mutative diagram without appealing to the commutativity properties of 

j. Let q:X -* R n be the lift to the universal cover. Choose a loop 

a in X so that, if [6] is its homology class in H 1 ( X ; R ) then 

M nas the required growth rate X as k increases. ja(I) is 

a path joining 0 , say, to some a e Z nc: R n and j f k a(I) is some 
~k 

path whose endpoints differ by the vector g a , which is a vector of 
k 

length at least cX for some c. Although we know very little else 
~ ~k ~ 

about jf a(I) this fact ensures that it contains a set of at least k n 1 cX /e points which are e-separated in R , e = j say. Since j is 
uniformly continuous like j there is a corresponding 6 s.t. by 
choosing one point in the inverse image of each of these e-separated 

~k ~ 
points we obtain a 6-separated set, Z ' , in f a(I) cz: X . If we choose 

~k 

a set of points in a(I) that is mapped bijectively onto Z* by f 

then the image of this set by the projection P^rX+X is a (k,6)-

separated set for f:X-*X (provided we omit one of the points at the 

end of a (I)). In fact the iterates by f of a pair of these points 

will be 6-separated in X exactly when the corresponding points in 

X first become 6-separated there. By this technique we have construc­

ted separated sets with growth rate X which proves the theorem. 

Several people (including R. Bowen, A.B. Katok [8] and M. Shub) 

noticed the following improvement on theorem 1. The growth rate of an 

endomorphism f ̂ : TT , (X)+TT , (X) of a finitely generated group with 
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a given set of generators A is defined as lim s u p ^ M max ^(1/k) 

log (word length using A of f*Y)• This is independent of A and 

it does not matter if we only know up to an inner automorphism 

(conjugation by an element of A , say). 

Theorem 2. 

h(f) > growth rate of f^: 1^ (X)-*^ (X) 

Proof. 

Let a be a loop s.t. f^ [a] grows at the given rate. (Here 

[ J denotes homotopy class in -^(X)). The number of 6-separated 
~k ~ 

points in f a(I) is greater than C times the word length of 
k 

f +|a| for some constant C. depending on X , A and 6 . As before 

this enables us to find (k, 6)-separated sets in a (I) for f:X->-X 

whose cardinality grows fast enough to prove the theorem. 

Misiurewicz and Przytycki's original proof of th€ir theorem which 

follows is reminicent of the above techniques. 
Theorem 3. \j 1] 

Let f:T nvr n be continuous. Then 

h(f) > log sp f^ r:H r(T n;R) + H^ (T n ;IR) for each r . 

Proof. 

If g =f*i is a hyperbolic automorphism of T n then, by Franks 

theorem 3J ~ id:T n+T n (and therefore surjective) s.t. jf = gj. 

Hence h(f) > h(g) which is known to be log sp f #:H^(T n;R) -> H^(T n;R) 

Now suppose that g =f*i is a n endomorphism and not hyperbolic. 

In this case, we find j:T n->T n s.t. jf = gj+1 where l:X+T n has a 

lift l:X+R n with l(X)c= E S @ E t . Sp f^ = g* occurs as |y| for some 

eigenvalue y in H^(T n;R) for some smallest number r . Take an 
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r-dimensional subspace of E n in which volume is expanded by the fac­

tor | vi | . If y is the product of eignevalues in H^ some of which 

are complex this r-space will be rotated as well as expanded. Choose 

a small ball B in this r-space of r-dimensional Lebesgue measure 
~ k i k A»k 

a > 0 . g B has measure | y | a . Choose e > 0 and then in g B 

choose a maximal set Y of e-separated points {y^,...,y N} . 

number N of such points is at least |y| ka/ye r if ye1" is the 

r-volume of a ball of radius 2e because if such balls about the 

points y^ have total measure <|y| ka another point could be chosen 
~-k 

to enlarge the e-separated set. p T g Y is a (k,e)-separated set 

for g:T n+T n, actually contained in p TB . (Here p T denotes the pro­

jection R n v r n ) . Construct Z C T n to contain one point of j"V for 

-k 

each y e p T g Y. Then two points z-j> Z2 ^ ^ n a v e their f-orbits map­

ped by j to the g-orbits of j z ^ j z ^ except for displacements due 

to 1 in the s and t directions. We claim that Z is a (k,6)-

separated set for f:T n+T n and prove this by supposing 

d ( f 1 z 1 , f 1 z 2 ) < 6 for 0<i<k but z 1 ^ z 2 . Then d ( j f l z 1 , j f 1 z 2 ) < e 

for 0<i<k and d(lf 1 . z ^,If 1z 2) < e for 0<i<k (provided that 6 has 

been chosen using the uniform continuity of 1 as well as that of g). 

Thus p u ( j f l z 1 - f 1 z 2 ) = p u ( g 1 j z 1 - g 1 j z 2 ) where the projection 

P u R n + E U can act on these elements of T n because they are close to 

the 0 in T n and we regard such points as belonging to R n . Now 

the right hand side grows steadily to a vector of size > e before 

i = k and yet we are assuming that the left hand side remains small. 

This contradiction shows that Z is (k,6)-separated for f . Now 

that we have found a separated set whose cardinality grows with k 

at the required rate the theorem is proved. 

The same technique will prove a more general theorem. H 1(X;R) 

generates by the cup product a subalgebra H(X) of H*(X) which is 
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9 i H 1 (X;R) u . . . L,H 1 (X;R) (i times). H ( X ; R ) = j * H * ( T N ; R ) where n is 

the first Betti number of X and j : X + T N as above induces an epimor-

phism j.iir^X) - T T ^ T 1 1 ) . 

Theorem 4. 

If f:X+X is continuous then h(f) > log sp f |H(X) . 

Proof. 

sp f* |H(X) appears as |y| for an eignevalue y of 

f* | j* H r(T n;R) for some least r . The eigenvalue y and its ei­

genvector v for g* |H r(T n;R) -> H r(T n;R) correspond to an r-dime -

sional g-invariant suspace V of E u spanned by r eigenvectors of 

g:IRn->-Rn in which r-dimensional Lebesgue measure is increased by g 

by a factor of |y| (or, in the case where some of the relevant ei­

genvalues of g are complex; to an r-dimensional subspace which is 

rotated by g while measure is increased by a factor | y | ) . 

Let a be a singular cycle in X over Z , [a] e H^(X;Z) s.t. 

<j^[aj,v> f p. There is a translation invariant r-form in T n whose 

class in de Rham cohomology is v and we choose a singular r-cocycle 

a) in T n which, for C* simplexes, just integrates this form over 

the simplex. The evaluation of w on jo is not affected by lifting 

each singular simplex from T n to R n and then applying p v:R n+V 

(which forgets components in the direction of other eigenvectors). An 

r-cycle cannot carry any r-dimensional homology in V if its image 

is of dimension < r - 1 . So the union of the simplexes in Pyja has 

dimension r . Thus it contains a non-empty open set in V , [7, pa­

ge 44] and hence also contains (k,e)-separated sets for g for each 

k whose cardinality has growth rate log|y|. These give rise to fi­

nite sets in some simplexes of a in X that, as in the last proof, 
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are (k,)-separated for f which proves theorem 4 . 

Some technical problems with using this last argument for nilma-

nifolds remain in the way of showing that whenever X can be mapped 

to a nilmanifold M found from TT̂  (X) as at the beginning of this 

article then j*H*(M;R) froms a larger part of H*(X;R) in which 

log sp f* still forms a lower bound for the topological entropy of 

any map f . 

Remark : 

It is interesting that we seem in each case to be able to find 

our separated sets in any cycle whose homology class grows at the re­

quired rate. From the point of view of applications it is encouraging 

that when h(f) > some lower bound so is h(f,6) without 6 being 

too small. 
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