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A GENERALIZED RUELLE PERRON-FROBENIUS THEOREM 

AND SOME APPLICATIONS 

Peter Walters 

We show how some problems on uniqueness of equilibrium states 

and existence of invariant measures can be deduced from a theorem 

about Perron-Frobenius operators. 

Let (X,d) be a compact metric space. Let T : X — x be a con

tinuous surjection. We shall assume T satisfies the following 

conditions a ) , b ) , and c ) . 

a) T is positively expansive, ie. 3 6>o such that 

d(Tnx,Tny) _< 6 ^Vn>o implies x = y. An equivalent definition is to 

require the existence of an open cover {A^,...^^.} of X for which 

00 
f\ T nA. is either empty or a one point set for all choices of the 

n=0 1n 

sequence {in} 1 £ in £ k • Cleaxly for each xeX the set T "̂ x 

contains at most k points. 

b) T is a local homeomorphism (ie. V x ^ X ^ an open neighbourhood 

U of x so that TU is open and T:U—*T(U) is a homeomorphism.) 

c) For sufficiently small 6 , d(x,t) = 6 = > d(Tx,Ty) >_ 6 . 

Let eQ be chosen so that 

i) e0 is an expansive constant for T , 
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ii) VxeX the ball B (x) of radius c and centre x is so that 
eo ° 

TB£ (x) is open and T:Be (x)—^TBe (x) is a homeomorphism and 
o eo o 

iii) Condition c) holds whenever 6 _< eQ . 

Examples of transformations satisfying a), b), c). 

1. Subshifts of finite-type. 
r i oo r ,00. 1 

Here one can take the metric d({x̂ J- , iy^j-J55 VXT 
n o n o Js. i J. 

if k is the least for which x^ ^ y^ . 
2. Expanding maps. (Shub [ 9-]). 

Here X is a compact manifold equipped with a Riemannian 
metric and T is differentiable and satisfies the property : 
^ X>1 for which 

||DTv|| > X ||vf vveUT.x 
xexA 

Let C(X) be the Banach space of all real valued continuous 
functions on X , with the supremum norm. We can define for each 
(j)€C(X) a Perron-Frobenius operator X^:C(X)—>C(X) by 
<jL f(x) = E ^ f (y) . £ is linear and positive. The members of 
^ yeT~" x ^ 
a subclass of these are particularly useful. 

Let G(T) = (geC(X) | g>o and E^gCy) = 1 Vxex} . 
y€T x 

If (j) = log g then <£, f (x) = Z g(y) f (y) and we have 
.Log g _, 

y€T x 
^log g UT = id' where UTf = f °T • 

Let M(X) denote the collection of all Borel probability 
measures on X and let M(T) consist of the T-invariant ones. In 
the weak*-topology the convex set M(X) is compact and M(T) is a 
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compact convex subset of M(X) . 3 will denote the a-algebra of 

Borel subsets of X . An interesting subset of M(T) is obtained 

from the following 

Lemma 1. (Ledrappier [ 5 ] ) 

Let g € G ( T ) and we write f> instead of i . If m e M ( : 
log g 

the following are equivalent: 

i) <£*m = m . 
ii) m e M (T) and E (f . _ ) (x) = I g(z) f(z) a.e.m. V feL'd 

p zeT ^Tx 

iii) m € M(T) and hm(T) + m(log g) _> h^ (T) + y(log g) V y e M ( T ) 

(ie. m is an equilibrium state for log g ) 

A measure satisfying these properties is called a g-measure. 

If m is a g-measure we have 

0 = hm(T) + m(log g) . 

(This says that the pressure of log g is 0) . 

Suppose from now on that T also satisfies the following mix: 

condition: 

d) V E > O 3 N>° such that VxeX T~Nx is e-dense in X . 

For < | ) € C ( X ) , e>o and n € Z+ let 

var U,e) = sup | | $ (x) - 4 (y) | d(T1x,T1y) < e) . 
1 o<i<n-l J 

We then have the following result. 

Theorem 2. (Keane [3 ] Walters [ll] ) 
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CO 
Suppose g £ G (T) and £ var (log g, e_) < oo for some e,<e 

n=l n l 1 - o 
T/zerc ^niog gf ^ p(f) Vf 6C (X) . ( :± denotes convergence in 

the supremum norm ) . y t/ze unique q-measure for T . 

Theorem 3. (Bowen [2], Ratner [7], Walters [ll]) 

Let g Z?e as in theorem 2. The measure-preserving trans for

mation (T,y) has a Bernoulli natural extension. 

One can relate ^ to some ^\Qq g by a theorem first proved 
by Ruelle for the full 2-shift. 

Theorem 4. (Ruelle [8], Bowen [2] for the case of subshifts of 
finite type, Walters [ll]) 

00 
Suppose <|> € C (X) and I var ((f),e) < » ^02? sowe e7^e 

n=i n I 0 

Then 3 X>o , v€M ( X ) , h e C ( X ) suc/z tfcat h>o , v (h) =1 , 

£h=Xh, X * v=Xv and X, nf z> h. v (f) VfeC ( X ) . 
f i r 

00 
Also h satisfies h (x) _< exp ( E var (<j),e )) 

h(y) k+1 n 

whenever d(T1x,T1y) _< e1 o<i<k-l . 

Remarks. 

1 . X>o and vGM(X) are uniquely determined by the condition 

«£*v = Xv » 
2. One can define the pressure of T to be a function :C(X)—>R. 
One has the variational principle 

P U ) = sup I h(T) + y(<|>) 
1 y£M(T) L y J 

(Walters [10] ) . We say m is an equilibrium state for (J) if 
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hm(T) m(4>) = PT(cf>) 

Corollary 5 . 

Let cj) be as in theorem 4. The measure y^ , defined by 

(f) = v(h.f) , is the unique equilibrium state for <p . y^ is the 

unique g-measure for g - e^h . The natural extension of (T,y .)' is 
X.hoT * 

a Bernoulli shift. u. is positive on non-empty open sets and 
<P 

voT~n -> y^ in M(X) . 
PT(c()) = log X = lim j log l n 1 . 

n->°° d) 
oo r 

If ¥ € C ( X ) also has £ var °° then 
n=l 

y^=yy <=> <f)-y = foT - f + c for some f £ C (X) and c £R . 

Applications. 

1. Axiom A diffeomorphisms. 

These results are described fully in Bowen[2]. We just state 

here two results which can be deduced using corollary 5 and the 

Bowen-Sinai theory of Markov partitions. 

Theorem 6. 

Let fig be a basic set for an Axiom A diffeomorphism T and 

let <f>€C(fl ) be Holder continuous (ie. | <|> (x)-<J> (y) | £ a d(x,y) 

for some a,8>o) . There is a unique equilibrium state y^ for 

(J) . If T|0 is topologically mixing then y. is Bernoulli. 
s ^ 

Theorem 7. 

If <)>,¥ : fig —*R are both Holder continuous then 

Vicf) = y^ <=> (j)-̂  = uoT-u+c 

for some Holder u:ft — > R and some constant c . 
s 
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2. Invariant measures for expanding maps. 

Here X is a compact manifold with a Riemannian metric and 

T : X — ^ X is differentiable and satisfies || DTv || _> X|v|| for all tan

gent vectors v . Here X is a constant larger than 1 . The metric 

d on X will be the one obtained from J || . T satisfies a) . b) . 

c ) . d ) . (Shub [9]) . 

Let m be the normalized Riemannian measure on X defined by 

|| || . We are seeking an invariant measure equivalent to m . 

D T : T X —KTrp X is linear and we can take its determinant using the 
X X IX 

Riemannian metric and so define T'(x) = det(DxT) . 

Define ( j>€C(X) by $ (x) = log 1̂  
|T' (x) | 

* 1S C k-1 if T is Ck . We will assume T is C2 . 

Lemma 8. 

Let h e L ' f m ) and m(h) = 1 . Then 

h.m€M(T) <=> o&h = h a.e. m. 

(By h.m we mean the measure y defined by y(f) = m(h.f) ) . 

Since ( j>£C ' ( X ) , and since for small e1 

d(x,y ) < e < e 1 => d(Tx,Ty) _> Xd(x,y) , 
oo 

we get E var„ (•,£) < 00 . 

n=l 

Hence we can apply theorem 4 and Corollary 5. Note that o6^m=m 

so that by remark 1 v=m and X=l . So theorem 4 asserts the exis

tence of h € C ( X ) with m(h) = lf h>o °^n=n and «^^f => h.m(f) 

¥f e C ( X ) . By corollary 5 or lemma 8 we know y = h.m 6M(T) . So y 

is an invariant measure equivalent to m . We list other properties 

of y . 

1. mT~n ->y in M ( X ) (Corollary 5 ) . 
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2. (T,y) has a Bernoulli natural extension. (Corollary 5) 

3. h (T) = Jlog | T' (x)| dy(x) 

lim 
n-*oo 

+ y(4))+ y(4)) 

This is because PT((j>) = log X = o so 

0 = h (T) + y(4)) so that h^ (T) = -y(cf>) 

M d o g |T 1 I ) 

4. m e M ( T ) <=> £ 1 = 1. V X 6 X . 

y€T-ix |t' (y) | 

5. Suppose m C M ( T ) . Then m is the measure with maximal entropy 

< = > |T' (x) | € Z+ V x 6 X . 

Most of these results have been obtained by Krzyzenski [ 4 ] . 

3. Mappings of [0;l] . 

Let T:[0,l] + [0,l] be a map satisfying 

i) there is a partition o=a <a.. <. . . <a =1 such that t| . 
o l p ^ai'ai+i> 

is C2 and can be extended to a C 2 function on tai ̂  ai+il for 

each i . 

ii) T maps each [a.,a.,J 1 - 1 onto [0,l] . 
1 p-1 

iii) J X>1 such that |T'(x)| >_ X V x € U (ai'*ai+1) • 
J i=o 
Examples are 

aQ ax a2 a3 a0 al a2 a3 

Each example defines a continuous map of S1 which is not smooth 

at a finite number of points. In our first example we could work as 
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for expanding maps but in the second example conditions a ) , b) and 

c) are not satisfied. So we proceed in the usual way to use a shift 

system. 

Let £ denote the partition into the sets 

[o,a1), [a1,a2)/... , [ap_1,l] . 
it ii ii 
\ A2 Ap 

Lemma 9. 

£ is a generator in the sense that each set of the form 
CO 

fl T A. contains at most one point. 

Let ft = {l,2,...,p} . Define j :[0,l] ft by 
j (x) = (x0,xlfx2, ) if T n x e A x 

j is 1-1 . j T=aj where a is the shift on ft . 

00 
Let Y = [0,1] \ U T~n{a ,a ,...,a } . T_1Y=Y, a"1j(Y)=j(Y) . 

n=o p 

Lemma 10. 

j is a homeomorphism of Y with j(Y^ . 

j 1 extends to a continuous map ir:ft —*[0,l] it a = Ttt . 

Let m denote Lebesgue measure on [0,l]. Define 

V:Y —>R by Y(y) = log 1 
|TF (y) | 

Lift Y to * = yon on j (Y) and this can be extended to <j>ec(ft) 
.-1 

with E var (<b) < 00 . m is concentrated on Y so m°j defines 
n=l 

a measure on j(Y) which defines a measure v on ft 

By definition of $ *t*v=v • By theorem 4 we get 

h>o hGC(ft) with v(h)=l and of£f=>hv ( f ) Vf£C(ft) . 

Also h.v6M(a) . 

y= (h.v)OTr""1 G M ( T ) 
(h.v)oTT-1 = hoj.m on Y so y = £ . m € M ( T ) 
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where £ is continuous on Y and £>o . Hence T has an invariant 

measure equivalent to m . 

Of course (T , y ) is measure-theoretically isomorphic to (a,hv) 

and so has a Bernoulli natural extension. The properties listed for 

expanding maps also hold in this case. See Adler [l] for one of the 

sources of such results. Theorem 4 can be extended so that one can 

handle the case when ç is a countable partition into intervals. 
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