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Zeta functions and statistical mechanics 

D. RUELLE 

(I.H.E.S. 91440 Bures-sur-Yvette. France) 

I. ZETA FUNCTIONS 

Zeta functions are objects of deep significance in mathematics, and 

problems related to them are very difficult and fascinating. 

In this talk, I shall enumerate a certain number of zeta functions 

mention possible connections with statistical mechanics, and then indicate some 

precise results. 

1.1. RiemannTs zeta function [l] 

It is defined by 

C(s) = 
00 

n=l 

1 

n S p prime 
1 

1-p -s 

for Re s > 1 , and has the following properties. 

a) £ extends to a meromorphic function in the entire complex plane 

with only one pole, which is simple and located at s = 1 

b) £ satisfies the functional equation 

ç(s) = 2 TT 
s-1 T(l-s) sin TTS 

2 
cO-s) 

c) £ has "trivial" zeros at z = -2m (for integer m > 0) . Accor­

ding to the Riemann hypothesis, the other zeros ("nontrivial zeros") 

are on the line Re s = 1 
2 . 

1.2. Weil's zeta function [2] 

It counts points in projective algebraic manifolds over finite fields. 
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More precisely let F be a finite field with q elements , F its algebraic 
closure, the n-dimensional projective space on F , and M be a non singu-
lar algebraic manifold in , consisting of the common zeros of a finite fami-
ly of homogeneous polynomials in n+1 variables with coefficients in F . A map 

: P^ P̂  (Frobenius map) is defined by YI Y F 
Y (x 0, ..·. ·s· , xn) = (x q 

o > • • • 
a 
n ) 

and it leaves M invariant. Let Fix( ̂j)01] M) be the set of fixed points of y>m 
restricted to M , and Nm = card Fix( ̂)m| M). Then Weilfs zeta function is defi­
ned by the formal power series 

ç(z) = exp 00 
111=1 

Nm 
m 

zm = 
y:periodic orbit 

of Y 

1 
1-z length of y 

Note that for comparison with Riemannfs zeta function one has to put z = q -s . 

a) ç extends to a rational function of z . More precisely 

ç(z) = 
2dim M 

k=0 
[M*>] (-1) k+1 

where the polynomials P^ have a cohomological intrepretation. 

b) There is a functional equation. 

c) The polynomial P^ has integer coefficients. Its zeros are on the 
circle Iz| = q -k/2 . 

These properties (Weil conjectures) have been proved by Dwork, 

Grothendieck and Deligne [3] • 

I»3. The Artin-Mazur zeta function for diffeomorphisms [4] 

Let M be a differentiable compact manifold. Artin and Mazur have 
shown that for a dense set of diffeomorphisms f of M (with respect to the 
C topology), 
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lim sup 
n -+ 00 

log card Fix f < t 00 

For such diffeomorphisms they defined 
£(z) = exp oo 

n=l 
n 
z n card Fix fn 

a) If f satisfies SmaleTs Axiom A , then C is rational. 
This was proved by Guckenheimer and Manning. 

1.4. Zeta functions for flows 
Smale [5] has suggested to consider the following zeta function for 

differentiate flows on compact differentiable manifolds 
Z(s) = Y:periodic orbit 

00 
k=0 

(1-e -(s+kH(Y) 
) 

where M Y) is the period of Y • In the case df the geodesic flow on a surface 
of constant negative curvature, this reduces to Selberg's zeta function [_6\ . 

SelbergTs zeta function is meromorphic, satisfies a functional equation, and 
its non trivial zeros are on the line Re s = 1 

2 . 
Smale asked whether Z(s) would be meromorphic in the case of Axiom 

A flows. 
It should be noted that Z(s), as defined above, does not transform 

simply under time scaling (multiplication of all &(Y) bY some constant). 
In Selberg's case a fixed choice of the constant negative curvature 

is made, corresponding to a fixed choice of the time scale. It is thus more 
natural to consider in general 

C(s) = Yperiodic (1-e 
-s M Y ) 

) 
-1 

. 
We have then 

C(s) = Z(s+1) 
Z(s) 

In Selberg!s case this will again be meromorphic, satisfy a functional 
equation, and have poles on the line Re s = + 1 2 and corresponding zeros on the 
line Re s = ~ 1 2 . 
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1.5 • The Lee-Yang circle theorem [7] 
Let A be a finite set. If x,yeA, let a = a be real in 

xy yx 
[-1 , + . Write 

P(z) = 
XcA z card X xeX y£X 

a 
xy 

The Lee-Yang circle theorem, very useful in statistical mechanics, states that 
the zeros of P(z) are all on the circle |z| = 1 . 

Mackey (unpublished) has suggested that there may be a relation 
between this result and (c) of 1.2. above. 

In statistical mechanics of continuous spin systems it is important 
(in view of applications to constructive field theory) to know if the Fourier 
Laplace transforms of certain functions have only real zeros. The Riemann hypo­
thesis can also be expressed in this form (see [&] and references quoted there). 

The relation between the Lee-Yang circle theorem and zeta functions 
is at this point only wishful thinking. In what follows we shall indicate more 
substantial relation between statistical mechanics and zeta functions. 

II. ZETA FUNCTIONS OF DIFFEOMORPHISMS AND FLOWS 

As we have indicated, the rationality of the zeta function for an Axiom 
A diffeomorphism has been proved by Guckenheimer [9] , and Manning [l0>] . Their 
methods are quite different, one using the Lefshetz trace formula, and the other 
Markov partitions. 

11.1. The Lefshetz trace formula 
Let x be a fixed point of a dif f eomorphism f : M -> M .We say that 

x is hyperbolic if Dxf : TxM -+ T^K has no eigenvalue of modulus 1 . The 
Lefshetz number of x is then L(x)= ±1 , being the sign of det(l-D f) . 

If the diffeomorphism f has only hyperbolic fixed points 

x eFix f 
L(x) = 

dim M 
k=0 

(-1)* trace (f iĤ MJfc) + Ĥ (M,R)) 
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where is tne action induced by f on the k-th homology group of M 
with real coefficients. This is the Lefschetz trace formula. 

If f satisfies SmaleTs Axiom A and x e Fix fn , then x is 
hyperbolic for fix fn . Therefore 

x eFix f 
L(x,fn) = 

dim M 

k=0 
(-1) k tr (f 

*k 
)n 

and 

exp 00 
n=l 

zn 
n x eFix f 

L(x,fP) 

= exp oo 
n= J 

z n 
n 

dim M 

k=0 
(-Dk t r (f 

*k 
)n 

= exp 
dim M 
k=0 

(-0 k [-tr log (1-zf̂  )] 

= 
dim M 

k=0 
fdetd-zf *k )] 

(-0 k+1 

This shows that if L(x,fn) = 1 for all n , x eFix fn , the zeta 
function is rational. For the general case of Axiom A diffeomorphism we refer 
to [9] . Notice that in the holomorphic case (as opposed to the differentiable 
case) L(x) is always + 1 . In particular the left-hand side of the Lefshetz trace 
formula is just what is needed for the Weil zeta function. The problem there is 
to define cohomology groups and prove a Lefshetz formula. 

Notice also that considerable extensions of the Lefshetz formula have 
been made, in particular by Atiyah-Bott [l l] . 

II.2. Markov partitions 
Bowen [12] following Sinai [l3] has proved the existence of Markov 

partitions for basic sets of diffeomorphisms satisfying the Axiom A of Smale. 
I wonft go here into all the definitions. Let me just say that for an Axiom A 
diffeomorphism f , the closure of the set of periodic points is a finite union 
of "basic sets" invariant under f . The existence of Markov partitions implies 
that for each basic set A , there is a symbolic dynamics. This means that there 
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is a finite set F , a matrix (t 
U (i.j) €F x F 

with entries 0 or 1 and a 

surjective map ^ : çi (-> A where 

G · = · {(C) H l'heZ : 1 
'n Cn+1 

= J for all n } 

such that TTOY= f o *rr where T is the shift (to the left) of the sequence (CR) 

of symbols. 

Let us consider the case where TT is bijective. This happens for 

certain basic sets. We have then 

card Fix fn = card Fix xn 

The zeta function for f is thus the same as the zeta function for 

the shift T . This has been computed by Bowen and Lanford [l4J . We have first 

card Fix xn = tr (tn) 

where t = (t̂ .)« Therefore 

exp 00 
n= 1 

Z 
n 

card Fix f = exp 00 

n=l 

zn 

n 
tr(tn) 

= exp tr oo 

n=l 

n n z t 

n 

= exp tr (-log(l-zt)) 

= 
1 

exp tr log(l-zt) = 
1 

det (1-zt) 

which is indeed rational in z . 

To take into account the fact that in general IT is not bijective, 

Manning [id] introduces several shifts T and shows that 

card Fix f = 
a 
(-1) 

la 
card Fix T n 

a 
with I integer even or odd. From this results immediately that £ is rational. 

One shows that the radius of convergence of the series 

00 
n=l 

zn 
n 

card Fix fn 

is exp[-P(0)] , where P(0) is the topological entropy of f restricted to A. 

In fact e P ^ is a simple pole of £ 
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II.3. Generalized zeta-functions 

Symbolic dynamics described above is reminiscent of the statistical 

mechanics of one-dimensional lattice spin systems. The symbols are the possible 

values of the spin at one point, and tr(tn) is "the partition function for 

a system of length n with periodic boundary conditions, and no interaction". 

The analogy between symbolic dynamics and statistical mechanics has first been 

exploited by Sinai [l5j. Here it suggests to replace tr(tn) by a "partition 

function with interaction". 

If f : A A is any map and >̂ a complex-valued function we are 

led to writing formally 

ç(q>) = exp 00 
n=l 

1 
n x £ Fix fn 

n-l 

k=0 

Y · (f·k ·C). 

Similarly, if (ft) is a flow on X , and A a complex-valued function, we write 

C(A) = 
Y 

[l-exp / f(Y) 
0 

A(f t x ) dt 
-1 

where the product extends over the periodic orbits Y °f tne flow, £(y) is 

the prime period of y , and x 
Y 

a point of y • 

Interesting results are obtained for Axiom A diffeomorphisms and 

flows. We state the main facts [l6J . 

Let f be the restriction to a basic set of an Axiom A diffeomorphism 

and assume that it is topologically mixing. Let A be real Holder continuous. 

Then z -> £(z e^), at first defined for small |z| , extends to a meromorphic 

function in a disk |z|< R(A). This function has no zero in the disk, and only 

one pole, simple and located at exp[-P(A)J . Here P(A) is the "topological 

pressure" of A (see [l7])and e -P(A) < R(A) . 

Let (f*") be the restriction to a basic set of an Axiom A flow. 

Let A be real Holder continuous. Then ç(A-s) converges for sufficiently large 

Re s. It extends to a meromorphic function in a region 

{s : Re s > P(A)} U {s : |s-P(A)| < r(A)} 

where it has no zero and only one pole, located at P(A). Here P(A) is the to-
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pological pressure of A for the flow (ft) and r(A) > 0 . 

The result about diffeomorphisms is proved along the lines of II.2. 

using a Markov partition, Manning's ideas, and replacing the matrix t by the 

transfer matrix £̂ of statistical mechanics. For flows one uses the same 

techniques and Bowen's symbolic dynamics for flows [l8j . 

There are now examples showing that z -> £(ze ) (diffeomorphisms) 

and s -> £(A-s) (flows) cannot always be extended meromorphically to the 

entire complex plane. These examples, due to Gallavotti (unpublished) in par­

ticular give a negative answer to Smale's question of section 1 . 4 . 

II.4. The real analytic case 

In spite of the above counterexamples one can ensure the meromorphy 

of the functions z -* r (ze A ) and s -+ ç (A-s) by imposing suitable real ana-

lyticity conditions to f and A . The idea is to obtain that the transfer 

matrix be a trace class operator on a space of analytic functions, so that 

one can use Grothendieck1 s Fredholm theory (see [19]), and express Ç in terms 

of Fredholm determinants. The following two results are proved in [20] . 

1) Let M be a connected compact real-analytic manifold, and 

f : M M a real analytic map which is expanding (i.e. such that ||Tfu||>0||u|| 

with e > 1 for some Riemann metric on M). Furthermore let if be a complex-

valued real analytic function on M .Then 

z exp oo 
n=l 

zn 

n x eFix fn 

n-1 

k=C 
Y(f k 

x) 

extends to a meromorphic function in the entire complex plane. 

2) Let &(y) be the length of the closed geodesies on a compact 

manifold of constant negative curvature. (The &(y) are also the periods of 

periodic orbits for the geodesic flow on this manifold, this flow is know to 
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satisfy Axiom A). Then the function 

s -> 
Y 

(1-e -s £ (y ) ) 
-1 

extends to a meromorphic function in the entire complex plane. 

This generalizes a result of Selberg mentioned in section 1.4. 
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