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A SHORT PROOF OF THE VARIATIONAL PRINCIPLE

FOR A Z+N ACTION ON A COMPACT SPACE

Michal Misiurewicz

O. Introduction. Ruelle in [12] introduced the notion of pressure

for an action of the group ZN on a compact metric space. It is a
generalization of the notion of topological entropy. The variational
principle (proved in [12] under some strong conditions) is a gene-
ralization of the Dinaburg's theorem ((5,8,7]) on a connection be-
tween the topological and measure entropies. A general proof of the
variational principle was given by Wélters [13] (see also Denker [3D
for an action of z+ and by Elsanousi in [6] for an action of Z+N.
The first part of the proof given below (an inequality
hu(T)+uf < P(T,f) ) is a natural generalization of the proof from
[10]. The second part ( sup (hu(T) + uf) > P(T,£f) ) is quite new (al-
though the idea is close Eo the Ruelle's one).
l. Notations.

Z denotes the set of all non-negative integers. Let us fix

+
a positive integer N .

G = Z+N is a commutative semigroup with respect to addition.
For ne G we denote by n; the i-th coordinate of n (i=1,...,N) .
For n,m€G let nm = (nlml,...,nNmN) . The relation > (n >m iff
ng > my for i=1,...,N) directs G

X is a non-empty compact Hausdorff space.

C(X) 1is the space of all continuous real functions on X with
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the norm || £]| = sup |[£(x)]| .

‘ﬂ((x) is thgespace of all positive Borel regular normed measures
on X . It can be identified with the space of all positive linear
functionals on C(X) having norm 1 (therefore we shall write uf
instead of ff du for f€C(X) ). We consider the weak-> topology
on M(x) (theﬁ MW(X) is compact).

T (n—-T") is an action of G on X , i.e. a homomorphism of
G into the semigroup of all continuous transformations of X into
itself (i.e. TMiXx—ox , TV = plop™ ),

™" ;. c(X)——C(X) (for neG) is the operator induced by "
(i.e. TFUf = for® ),

p¥*0 o (X)— M (X) (for neG) is a restriction of the operator

induced by ™ (i.e. Txxnu = uoT*n ) to M(X) . It is easy to
check that indeed T™*P((X))c YM(X) and that T**" is continuous.

Of course T* and T** are actions of G on C(X) and (X) ,
respectively.

M(X,T) is a space of all T-invariant measures (i.e. these
elements of M (X) which are fixed points of all iy r NE€G ).

# is the set of all neighbourhoods of the diagonal in X X X ,

directed by the inclusion. It is a uniform structure (uniformity) for
X (see [9]).

2. Definitions of pressure and entropy.

We may in the natural way extend Ruelle's definition of pressure

of ZN -action ([12]).

Let neG , Se#’, £eC(X) . We define successively:

A(n) = {meG : my < ny for i=1,...,N} ,
Mn)= card A(n) = Nyeeetng
5 - N ok < %1
ke (n)
£ =7 N
n
kel (n)
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VARIATIONAL PRINCIPLE FOR A Z‘:_ ACTION

0f course 3§ e o, £ eCX) .

A finite subset e of X is called:
(n, §) -separated, if for any x,y€e , Xy , we have (x,y){gn ’
(n,8)-spanning, if for any xe€ X there exists yce¢e such that

(x,y) e

We denote p(f,e) = log ) exp f£(x) . We define further
xee

(1) P (T,f) = sup{p(f_,e) : e is (n,8)-separated}
n,§ n
1
(2) P . (T,f) = lim sup P .. .(T,f)
9 nec A(n) "n,§'"’

Of course, Ps(T,f) > Pe(T,f) for §ce . Therefore it is possible

to define the pressure

(3) P(T,f) = lim P6(T,f) = sup P6(T,f)
Se#” Se##
In the sequel we shall use the measure entropy function H (-.)
i
(for the definition and properties see e.qg. [11]) .
For peM(X,T) the entropy hu(T) may be defined in the same
N

way as in [2] for the action of £Z° . For a Borel finite partition

A of the space X we define

ar = \/ ()" a for nec ,

kel (n)
hu(T,A) = lim _X%ET Hu(An) s (it is easy to show that the limit exists,
neG
cf. [2]).
Finally,

hu(T) = sup{hu(T,A) : A - Borel finite partition} .

3. The variational principle.

We shall prove the following variational principle:

P(T,f) = sup (h (T)+puf) . The proof consists of two parts.
ueM(x,T) H .
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Part I.
hu(T) + uf < P(T,f) for pedH(X,T) .
Proof.
Let peM(X,T) . Let us fix & > 0 and a Borel finite partition

A . Take me G such that
(4) log 2 < &€ X(m)

Let A™ consist of the sets Aprecesag . For any of them there
exXists a compact set biczai such that

&
u(ai\ bi) = s log s

s
Let b, = X \Jﬁ& b; . For the partition B = {bo,bl,...,bs} we have

(5) Hu(Am]B)f.u(bo)-log s <E.
We take
S
e = X xx)\N UJ (b xpbHe#
i,j=1 J
i3

and next 6e¢#" such that 8odce (i.e. Aif (x,y¥),(y,2z)e§ , then
(x,2z)€€ ) and |f(x) - f(y)| <& if (x,y) e
Let us fix ne€G . There exists a maximal (nm,§)-separated
(i.e. being also (nm,§)-spanning) set ecX .
Denote by C = \/ (Tkm)_lB .
kep (n)

Further, denote

a(b) = sup £ (x) for beC , g = } exp a(b) .

X€eb beC
We have
éfnm dp < a(b)-u(b) ,
therefore
- — AT €xpo(b) p(b)
HO(C) + uf < bgcu(b) (a(b) = logu(b)) Bch 8 Spa )’



VARIATIONAL PRINCIPLE FOR A Z’i ACTION

where n(x) = -x log x .

The function 1 is concave, therefore

< gn( Y expa(b), __u(b)

(6) HU(C) + uf bl 3 oxpo (6)

i = log B
e 1is a (nm,§)~spanning set, hence for every béC there exists
a point z(b) € e such that
a(b) = sup{fnm(x) : xX€b , (x,z(b))e 5nm}
But if

(x,2(b)) €8

then for k € A(nm)
(r*x, ™z (b)) € 5 ,
thus, in view of the definition of § ,
| (@®*£) (x)- (1%55) (z(0)) | < €

Hence

(7) fm(z()) > a(b) - g-1(nm)

From the definitions of § and ¢ we obtain for

y€e , k&A(n) : Card {aeB : El (Tkmx,Tkmy)eé} < 2 , thus for
xXe€a

y€Ee Card {becC : 3 (x,y)ednm} < 2>\(n)
X€b -

because

8 € N R L e S
keéA (n)
Hence

(8)  card {beC : z(b) =y} < 2*(™

Hence, from (7) and (8) we get:

ZX(n)‘ ] exp fnm(y) > )} exp a(b)-exp (-£-A(nm)) ,
yee beC
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thus,
(9) Aln)elog 2 + p(f ,e) > log B - £-)(nm)

But “fnm = A(nm)- uf , so from this, from (1), (4),(6) and (9) we

obtain (notice that A(nm) = X(n)+A(m) ) :

(10) x_(rll?n)_ H,(C) + uf < ﬁ%ﬁ)— P, 5 (T/E) + 26

In view of (5), for keA(n) we have
i, (0 T (o ey <k
therefore
H, ™) =w (Y @Y T <oeam)
k€éA (n) kéA (n)
Hence
nm nm .
H, (A ) iHu(C) + H (& |c) <SHC) + & X(n) ,

thus we obtain from (10):

1 nm 1
X (om) HU(A ) + puf < ﬁTﬁﬁTan,G(T'f) + 38 .

Taking 1lim sup with respect to n we get
hu(T,A) + uf < PG(T,f) + 3£ < P(T,f) + 3¢ .
But & and A were arbitrary, hence

hy (T) + uf < P(T,£) .

Part II.

sup (h (T) + pf) > P(T,£)
UEM(XIT) H

Proof.
Let us fix g§e #° . For every né G we choose such an

(n,8)-separated set e, that

(1) p(f ) > P (T,6) = 1



VARIATIONAL PRINCIPLE FOR A Z‘i ACTION

Let us define a measure On v concentrated on e, by a formula

o (ly}) = exp (£ (y) - p(f ,e))) for y€e .

We have
) o, ({yh) =1,
yee
therefore
o €M(x) .
Let
<
1 xxk
U = - T o_ .
n ::(2) ke A (n) n
For some sequence (ni)i=l cofinal with G we have
. 1
(12) lim —=— P (r,f) = P_(T,f)
ive A(Rg) TRy 6T 8"

We choose some cluster point of the sequence (un )?=1 and denote
i

it by u . Of course, .u is also a cluster point of the net (un)neG'
For geC(X) and ke G fixed, the function
3 s M(x)—R ,
given by the formula
dv = vg - v(Txkg) '
is continuous, therefore &u 1is a cluster point of the net

(@un) . We have

neG
louy| < yray—+2° (An) = A@-k) + gl (for n > k) ,
because
Card (A(n) N\ (k + A(n))) = Card ((k + A(n))NA(n)) = A(n) - A(n-k)
But
hr igz)k) =1
thus
du = 0 .
Hence yg = (TXXku)g . But g and k were arbitrary, therefore
peMm(x,T) .

There exists a Borel finite partition A of X such that
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a x acd for aeA . Then for aeAn a x a<:6n , therefore
Card (e na) < 1.
Hence

n = - —_—
Ho (A7) + opfy = yge o (YD) (£,(y) = 1og o, ({yD) = p(£ ,e)

n
Let us fix m,neG , n > 2m . For given jelA(m) let
n,-j =3
. 1771 "N
s(j) = (E( )reee BN )) .
my my
We have:
Al = (Trm+j)-lAmv \/ (Tk)_lA ,
reh(s(3)) keZ
where
= A(n) \ (J¥A(ms (3))) .
But
CardZ = A(n) - A(ms(3)) < A(n) - A(n-2m) ,
thus
_ n
p(fn,en) = Hon(A ) + onfn <
) g (™A™ + 6 £ + (A(n) - A(n-2m))log Card A.
~ réa(s(j)) °n non

Summing the inequalities obtained for Jje Am) we get (notice
that for keA(n) there exists a unique JjeA(m) and a unique

rep(s(j)) such that k = rm + j ) :

k,-1 m
(13) H_ ((T") A7)+ A(m).o_f >
kéA(n) %n nn

> A(m).(p(fn,en) - (X(n) - A(n-2m))+log Card A)

We have also

(14) o f = o ( T TR = (] ™K )£ = am).uf

non " keA(n) k€A(n)

From the definition of entropy it follows that
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ky-1 m, _
(15) H0 ((T7) A7) =H xsek

n
T On

(A7)

From the definition of entropy and from the concavity of the function

-Xx log x it follows that

1 m
(16) H (A™ > —— H (™)
Un = A0 ey TR
The formulas (11) and (13) - (16) give us
1 m 1 1
A7ty By @) FwpE > iy P s (TeE) - gy

n

*((A(n) = A(n-2m)) log Card A + 1)

The partition A can be chosen in such a way that the boun-
daries of elements of A have measure M zero. (see [1l], Chapt.IV,
§5, exerc. 13 d; see also [10]) . Then A" has the same property.
But for a set a with the boundary of measure U zero, the function
MW, (X)—R , given by vw—v(a) , is continuous in the point
Hence the function 7 (X)—R , given by vh—+HV(Am) is also con-
tinuous at the point yu , therefore in view of (12), (17) and the
definition of u , we have

Gy By @™+ uf > Pg(T,6)

Taking the limit with respect to m and using the inequality

hu(T,A) < hu(T) , we obtain
hu(T) + pf > PG(T,f)

But § was arbitrary, hence

sup (h (T) + vE)> pP(T,£f) .
vem (x,t) Vv -
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4. Remark..

If hu(T) + uf =P(T,f) , then u 1is called an equilibrium

state for (T,f) (measure with maximal entropy in the case of f = 0).

The above construction shows that if P_(T,f) = P(T,f) for some

8

Gejyo, then there exists an equilibrium state for (T,f) . In the

case of N =1, £f =0 , this can be reformulated as follows:

If there exists an open cover A such that h(T,A) = h(T) ,

then there exists a measure with maximal entropy.

This is a particular case of the theorem of Denker ([4]) , but

obtained without assuming X finite dimensional.
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