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EFFICIENT COMPUTATION OF ALGEBRAIC CONTINUED FRACTIONS 

by 

R.F. CHURCHHOUSE 

1.- INTRODUCTION 

From time to time problems arise in the Theory of Numbers which call 
for extensive multilength computations as part of their solution. The num
ber of such problems is likely to increase in the future partly at least as 
a result of the relatively recent discoveries by Alan Baker, of which [l] 
might be regarded as typical, which enable us to make statements of the type 
that if a certain Diophantine Equation has any solutions at all then these 
solutions are bounded by a specific, computable, constant. The search for 
solutions can then be restricted to a finite, though possibly very large, 
region in the appropriate space. Before we can attack such problems on a 
computer we therefore need a good general - purpose multi-length arithmetic 
package. 

Some years before I left the Atlas Laboratory we were able to acquire 
a very fine multi-length package written by W.F. Lunnon and during the pe
riod 1967 - 1971 we carried out some extensive computations of algebraic 
continued fractions to a precision equivalent to several hundred places of 
decimals. In the course of this work we were able to assist Baker and 
Davenport [2] in their proof that there are no solutions of a certain set 
of Diophantine Equations and Muir and I [3] were able to solve a problem in-
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volving the remarkable continued fraction associated with the positive root 
of the cubic x - 8 x - 10 = 0 . 

Multi-length computation of continued fractions was also necessary in 
the successful factorisation of F , the seventh Fermat number, by Morrison 
and Brillhart [4] using a method proposed by D.H. Lehmer many years before. 
The essential idea in Lehmer1s method is to find the continued fraction ex
pansion of \/k N where N is the number to be factorised and k is given va
rious integer values. The convergents so found give rise to a set of quadra
tic congruences (mod N) and if a subset of these can be found which have the 
property that the product of their residues is a perfect square we may be 
able to find a factor of N (but the factor may turn out to be 1 ! ) , 

2.- SOME PROPERTIES OF CONTINUED FRACTIONS 

For the sake of completness the essential properties of continued frac
tions are summarised below. 

i) If Q_ is any positive real number let : 

a = fSl and r = ( 0 - a ) o — o — o 
where, as usual, [x] denotes the integral part of x. 
Define also, for n ̂  0 : 

a = [ r ] , r = (r - a „) 1 · n+1 n J n+1 n n+1 

Then we say that _0 has the continued fraction representation : 

e = a ( 1 ) 

~~ ° al + a 2 + a 3 + , , # 

The elements aQ, â , a^i··· are called "the partial quotients". If we trun
cate the expansion (l) after 1,2,3?·· · terms we obtain a series of rational 
approximations to : 

% ^ V l * 1 lz ao ai a2 + 8 2 + 8o e t c 

% = 1 ' 1l = al ' q 2 ~ a i a 2 + 1 
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CONTINUED FRACTIONS 

where, more generally : 

P = a p + p \ n n n-1 n-2 j 
\ (n > 2) 

and q = 1 + ^ o 
n n n-1 n-2 J 

The fractions Pn/(ln
 s o obtained are called "the convergents to 0 "jthey are 

always in their lowest terms and provide the best possible approximations 
to 0 in the sense that : 

| 0 - ^ - 1 < I 0-^| for all Q < q . I- qn Q 

Furthermore, for all n : 

n q 
n 

ii) The continued fraction for J0 terminates if, and only if, _0 is rational. 

iii) The continued fraction for _0 is periodic if, and only if, ̂  is a qua
dratic irrational. 

An unsolved problem of major importance is whether or not the partial 
quotients of the continued fraction of algebraic numbers of the third or higher de
grees are bounded. If this question could be answered a good deal of pro
gress might be made in several branches of the Theory of Numbers. 

Having briefly summarised some of the reasons why extensive computa
tion of the continued fractions of algebraic numbers of the third and higher 
degrees.is important I now turn to the main topic of this paper: how can such con
tinued fractions be computed most efficiently ? In the next two sections I 
shall describe the two commonly used methods of computation, to which I give 
the names : (i) the Direct method, and (ii) the Chain method. In section 5 
I shall then compare the efficiencies of the two methods. 
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3.- THE DIRECT METHOD 

Let 8 be a real algebraic number of degree k satisfying the irreducible 
polynomial : 

k k-1 f(x)Sc.x+c 1 .x + ... + c„x+c=0 (2) k k-1 1 o 
where the ĉ  are integers. We can find the value of 8 on a computer, to 
within an accuracy determined by the word-length, by the use of the Newton-
Raphson or some other appropriate method. Suppose that the approximate va
lue of 9_ so obtained is J9f and that 0̂  is accurate to n places of decimals, 
then : 

I i - I < \ x 1 0" n · 

We now expand as a continued fraction according to the algorithm 
defined in the previous section and so obtain the first m partial quotients: 

e, L + _1 1_ 1 
~~ · o a. + a +... a * 

1 2 m-1 

The crucial question is : how many of these m numbers are in fact partial 
quotients of _0 itself ? 

We cannot give a theoretical answer to this question which is suffi
ciently precise to be of use in dealing with any specific number, _9, so we 
adopt what might be called an experimental approach : we compute the conti
nued fractions of two numbers close to j3' such as : 

6'_ = 9'- € 

where ̂  is a small number ̂  ̂  X 10 It follows that 6_ certainly satisfies : 

9' < 9 < 9» . 

By comparing the partial quotients of Q\ J31 and and accepting only tho
se which are identical in all three expansions we may be sure that all those 
accepted are certainly partial quotients of 
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CONTINUED FRACTIONS 

As an example of this approach we compute the first few partial quo-
1/3 

tients of 2 

To 7 signifiant figures the value is 1.259921. For simplicity we take 
£= 10 ̂  and therefore compute the continued fractions for : 

1 1 1 1 1 1 1 0' = 1.259920 = l + - ! - - L - i - T
L - ^ 7

L - L 

— - 3+ 1+ 5+ 1+ 1+ 4+ 2+ . . . 

0« - 1 259921 - l + — — — — — — — 
— " 1 - 2 5 9921 - l + 3 + 1 + 5 + 1 + 1 + 4 + 1 + _ 

, 1 1 1 1 1 1 1 6» = 1.259922 = 1 + — — — — T~7— ~T~ 
— + 3+ 1+ 5+ 1+ 1+ 4+ 1+ . . . 

We accept only the first 7 terms as correct and so write : 
1/3 = 1 + J__J_J_J_J__i_ 

3+ i+ 5+ 1+ i+ 4+ . . . 

We now return to the question asked above and see if we can find an estimate 
for the number of partial quotients of _0 which will be correct when we use 
the Direct method when we work to an accuracy of n decimal places. Under 
these conditions we have : 

|e - e» | < | x io"n . 

On the other hand we have no reason to believe that |_© — _©f | will be much 
smaller than ̂  X 10 " and, since we wish to be sure that any partial quo
tients we accept really are correct we must assume that : 

| e - e. | = | x i o _ n . O ) 

We compute the continued fraction for 0̂  and form the convergents : 

! ° f a 
% ' q i ' ' q

s ' 

Now, from the theory of continued fractions : 

\*-Pf\<± (4) r q 
r 
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and so, comparing (3) and (4), we see that we can have no confidence in the 
validity of Pr/qr

 a s a convergent to 8 if : 

q2 > 2 X 10 n . (5) r 
Note that this result is independent of k, the degree of the polynomial 
satisfied by Q_ . 

4.- THE CHAIN METHOD 

We again suppose that _9 is a real algebraic number of degree k satis
fying the irreducible polynomial (2) given above. By any convenient me
thod we find the integer part of _0 and we write 

o e t 

where > 1 ; we substitute this expression for 0_in (2) and so obtain an 
equation of the k-th degree satisfied by ̂  : 

f.(x)=c, x + c, „x +... + C = 0 . (b) 1 k k-1 o 
(1) The c are integers and it is easy to see that, in fact : 1 

(1) f ( a o } 

c = 1 

k-m m! 

where f^m^ denotes the m-th derivative. 

Similarly we find the integer part of so that : 

-1 = al + F" —2 

where ̂  > 1 and by substituting for ̂  in (6) we obtain the k-th degree 
equation satisfied by _6 : 

- , x (2) k (2) k-1 (2) , . f (x = c, x + c x + ... + c =0 (7) 2 ~~ k k-1 o 
and so on. 

This process can be continued so long as we can accurately represent 
in the computer all of the integers which occur as coefficients in the chain 

28 



CONTINUED FRACTIONS 

of polynomials f(x), f^(x), f^ix),... As an example consider again the 
1/3 

continued fraction for 2 . We begin with its defining cubic : 
3 x - 2=0 , then a = 1 o 

and so the second cubic in the chain is : 

x 3 - 3 x 2 - 3 x - 1 = 0, so that a± = 3 

and the third cubic in the chain is : 

1 0 x 3 - 6 x 2 - 6 x - l = 0 , a 2=l 

and so on. If we suppose that our computer can accurately represent all in-
, 6 

tegers of absolute value *̂  10 we find that we obtain 13 terms of the conti
nued fraction before the method fails because of overflow. The terms are : 

1/3 _L 1 1 1 1 1 1 1 1 1 1 1_ 
2 ~ + 3+ 1+ 5 + 1+ 1+ 4+ 1+ 1+ 8+ 1+ 14+ 1+ . . . 

a considerable improvement on the 7 terms obtained by the Direct method on 
a machine of comparable precision. 

In using the Chain method we have not had to make any approximations so 
that every partial quotient obtained is certainly a partial quotient of 6 

itself. We therefore need only estimate the number of polynomials in the 
chain we can compute before we must expect one of the coefficients to be 
too large to be represented accurately in the computer. 

After m partial quotients have been obtained by the Chain method we 
will have formed the k-th degree polynomial for the number 0 where : 

—m 
ft 1 1 1 1 
— o a.+ a + ... a „ + o 1 2 m-1 -m 

If p /q , p./qH , p /q are the corresponding convergents the re-o o 1 1 m-l m-l 
lationship beween 0 and 0 can be expressed as : — —m 

P 9 + P o 0 = m " 1 7" — (8) — q ^ W + q m-1 —m m-2 
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and if we now substitute this expression for 9 into the polynomial (2) which 
defines it we obtain the polynomial for 9 i n the form : 

—m 
k r k _ r - i \ - 2 a (p .x+p 0) (q .x+q 0) =0 (9) f (x) n ^ r m-1 m-2 m-1 m-2 m r=0 

The leading coefficient of this polynomial is : 
k ^ r k-r ^ a p . q . r m-1 m-1 r=0 

or : 
* ( S a (J2-L) ) (10) 
m " 1 r=0 r qm-l 

N O W \ a x r = a (x -9) Y ( x - 9 ( r ) ) _ r k r=0 r=l 

where 9^ r^ (r= 1 , 2 , . . . ,k - 1 ) are the algebraic conjugates of 9 hence 
k P A r P i k""1 P ( \ 
s . ( - a = l ) = a, ( - s = i - . e ) n ( J t i - e ( r ) ) . ( I D 
r=0 r qm-l k qm-l r-1 qm-l 

As q -* 0 0 the factor in the product in (ll) approaches the constant value : m-1 
k-1 . 

n (9 - Q(r)). 
r=l 

On the other hand, from the theory of continued fractions, the factor : 

! a z l . e 
V - i 

_ 2 

approaches zero at a speed proportional to q̂  ̂  and it therefore follows 

that : 
q

k ( S a ) = 0(q R' 2) (12) 
V l r=0 r qm-l m " 1 

Analysis of the other coefficients of the polynomial (9)is more diffi-
k- 2 cult, except for the constant term which can be proved to be 0(q ) but m-2 

there is no reason to believe that any of the coefficients will be very dif
ferent in absolute value from the estimate given by ( 12 ) . On this assump
tion, which has been borne out by extensive calculations, it follows that 
the chain of polynomials will continue to be correctly computed on a machine 
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of n decimal digits integer precision for m steps where : 

C i = 10"- ( 1 3 ) 

m-1 . 

5. COMPARAISON OF THE EFFECTIVENESS OF THE TWO METHODS 

We now have all the information necessary to prove : 
THEOREM.- Let D(n,k) and C(n,k) the number of partial quotients of the con
tinued fraction of an algebraic number of degree k that are computable on  
a machine of precision n decimal places by the Direct and Chain methods res
pectively. Then as n ~* 00 : 

C(n,2)/D(n,2) -> 00 

C(n,3)/D(n,3) > 1 

C(n,4)/D(n,4) 4 1 

C(n,k)/D(n,k) -» 0 for k > 5-

Proof.- From (12) 
C(n,k) = r where q = 0(lO n / ( k" 2 )) r 

From (5) 
n/2 D(n,k) = s where q = 0(10 ' ) s 

and the theorem follows at once when k = 2,3?4 and when k ̂  5 by comparison 
of the exponents. „ ̂  

Q.E.D 
The case k = 3 is particulary interesting. We see that C(n,3) = r 

where q = 0(lOn) and D(n,3) = s where q = 0(lOn//2). It is tempting to r s 
/ 2v . . 

conjecture that q^ = O(q^) and this is true if the partial quotients of a 
cubic irrational do not possess some remarkable properties. It seems unli
kely that cubic irrationals do in general possess such properties and so we 
put forwards the 
Conj ecture. - C(n,3)/D(n,3) ~* 2 as n -» 00 . 
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