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AN INTRODUCTION TO BOOLEAN FUNCTION COMPLEXITY 
by 

Michael S. Paterson 
(University of Warwick, Coventry, U. K.) 

Abstract. 
The "complexity" of a finite Boolean function may be defined with 

respect to its computation by networks of logical elements in a variety 
of ways. The three complexities of "circuit size", "formula size" and 
"depth" are considered, and some of the principal results concerning their 
relationships and estimations are presented, with outlined proofs for some 
of the simpler theorems. This survey is ruthlessly restricted to networks 
in which all two-argument logical functions may be used. A rich corpus 
of theory related to logical networks under a variety of restrictions may 
be found in the literature, but is apt to be confusing in a first 
introduction. 
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1. Introduction. 
My purpose in composing this brief account is to introduce the general 

mathematical reader to some of the results and problems concerned with the 
complexity analysis of Boolean functions. In the interests of conciseness 
and coherence of presentation I shall attempt to cover just a few restricted 
areas which I have found to be of particular theoretical interest. 

The study of Boolean function complexity draws its importance from 
several branches of computer science. The original and most obvious 
motivation is that many of the tasks for which digital electronic equipment 
must be designed can be usefully represented as the computation of Boolean 
functions. As examples, I have in mind sorting networks, unary-to-binary 
converters, multiplication units and address decoders. A second catchment 
area lies in the recently active field of algebraic algorithmic complexity. 
Attractively structured problems such as matrix multiplication, polynomial 
evaluation and convolution product have their simplest incarnation over the 
two-element Boolean domain. The aim is to reach a complete understanding 
of the complexity of such basic algorithms. Finally I should mention 
"machine-based" complexity where we are concerned with time or space bounds 
on the behaviour of Taring machines, random-access machines or other 
abstractions of digital computers. For example, a Turing machine accepting 
or rejecting an input string may be so simulated by a Boolean network 
computing a function that lower bounds on the complexity of such a function 
yield corresponding bounds on the running time of the Turing machine [20,23]. 
A proof that P ̂  NP , see [ 8 ], is in principle feasible by such an 
approach. 

2. Definitions. 
Let B̂  be the set of n-argument Boolean functions [f: {0, l}n {0,1}} . 

(The correspondence with the familiar Boolean domain [false , true] is 
2 n 

that 1 represents true .) We note that |B | = 2 , so, for example, 
JB 2 | = 16 . To introduce our notations and terminology for these 16 basic 
functions we list them in Table 1. To obviate explicit function tables, 
definitions in terms of GF(2) , the two-element field, are provided. 
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Symbol for f Name for f f(x,y) 

\ / 
\ constants ( 

J I 1 

*i 1 . .. / 
\ projections < 

n2 J I y 

5 — 1+x 
\ — l+y 
A y AND conjunct ion x.y 
A , NATO nand 1+x.y 
V y OR disjunction x+y+x.y 
V y NOR nor (1+x). (l+y) 
-» implication 1+x+x.y 
<- 1+y+x.y 
- - x.(l+y) 
- — y.(l+x) 
^ , ® not-equivalence x+y 
= equivalence, bi-implication 1+x+y 

The 16 functions of B 2 with GF(2) equivalents. 

Table 1. 

Functions in B n are to be computed by acyclic circuits over the  
basis B̂  • These may be represented as finite directed acyclic graphs 
•with n input nodes and one output node, each input node corresponding 
with one of the arguments and each other node being associated with some 
element of B̂  . The indegree of the input nodes is zero and each other 
node has an ordered pair of incoming arcs. An association of binary 
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values to the inputs naturally induces binary values on all other nodes 
(by applying the appropriate basis function at each to the values of 
its predecessors) and hence the circuit defines a function of B n 

computed at its output node. A small example is given in Figure 2. 

x1 x2 
x3 
= 
^ 
v 
-

Figure 2 

An alternative formulation -which is in many respects equivalent is 
as a straight-line program, a fixed sequence of computation steps at each 
step of 'which a basic function is applied to two arguments -which may be 
either results of previous steps or input argument values. There are in 
general many such sequences represented by a single acyclic circuit. One 
that yields Figure 2 is given below. 

Vl := X l ^ X 2 
V2 == Vl A *3 
v3 := X l W 2 

output := vj - v
2 
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Various parameters of circuits may be used as a basis for complexity 
measures. The most immediate is the circuit size, c , which counts the 
number of internal nodes or logical gates, and corresponds also to 
the number of steps in a program. If each gate in a circuit requires the 
same fixed execution time then the total time in a parallel computation 
by the circuit will be limited by the depth, d , of the circuit, the 
maximum number of gates on a path from an input to the output node. In 
the example, c = k and d = 3 . 

A mathematician might prefer to represent a Boolean function as a 
well-formed linear expression over the input variables with function 
symbols corresponding to elements of B̂  • This is equivalent to an 
acyclic circuit where the logical gates have fanout (outdegree) at most 
one. Note that the input nodes may have arbitrary fanout; but it is 
convenient in diagrams to replicate inputs so that the circuit can be 
drawn as a tree in closer correspondence with the structure of the linear 
formula. The size of a formula is just the circuit size, the number of 
internal nodes. A formula of size 6 which "computes" the same function 
as in Figure 2 is represented in Figure 3. 

[x̂  v ((x1 = x2) A x̂ )] - [( X l = x2) A x̂ ] 
Xl x2 

*3 *1 X2 

xl ^ V ^ C ^ *5 

Figure 3 
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Each of the three measures we have described induces a corresponding 
complexity measure over B n in a natural way. For any f in B^ 

circuit size = c(f) = min{c(a) ja is a circuit for f} 
formula size = i(f) = min{c(a:) | a is a formula for f} 

depth = d(f) = min{d(a) |a is a circuit for f} 

Since in the example considered, the function g(x^x2,x^) can be shown 
to have an equivalent representation as x^Ax^Ax^ , we have 
c(g) = 1(g) = d(g) = 2 . 

In this paper we shall consider only measures defined with respect 
to the full basis B̂  . There is however a considerable literature 
concerned with other bases containing sometimes functions of more than 
two arguments or maybe consisting of a particular subset of B̂  appropriate 
to some technology or application. A useful survey and bibliography for 
these results can be found in [22]. 

3. Relationships Among Complexity Measures. 
Fortunately the three different measures we have defined are not 

entirely independent. In this section we summarize the known inter
relationships. Two of these are immediate. 

Lemma 1. For all f in B ,  n 7 

c(f) < 1(f) < 2 d ( f ) . 

Proof. For the first inequality it is enough to recall that a formula 
is a restricted form of circuit. The second follows from the observation 
that for any acyclic circuit an equivalent formula with the same depth 
can be constructed by repeatedly duplicating nodes of the circuit until 
the unit fanout restriction is satisfied. Furthermore any binary tree 
with depth d has at most 2 -1 internal nodes. • 
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These inequalities are the best possible of their type since for 
(n) 

any n consider the function CONJ in B̂  defined by 
( \ 2 P 

CONJ^n;(xr ...,xn) = A x
± 

i =1 
•where p = \_log nj • (All logarithms in this paper are to base 2 . 
The notation l_xj denotes the greatest integer not more than x .) 
It is evident that for CONĴ n^ 

c = i = 2
d-l = 2P-1 . 

For inequalities in the reverse directions we have no such complete 
results. For I and d , a technique of Spira [27] shows 

d < a log t where a = 2/log(3/2) £-3.̂ 2 

(We use f < g to mean lim sup f/g < 1 .) Spira misstates his coefficient 
as 2 log 3 • A small refinement improves this coefficient to about 
2.1+65 . Thus d and log I are asymptotically within a constant multiple 
of each other. A recent result of Paterson and Valiant [16] relates c 
and d by 

c > jj- d log d 

For each of the above results a construction is given for a circuit of 
relatively small depth equivalent to a given formula or circuit. 

k. Global Bounds. 
Although determining the complexity of particular functions seems 

usually rather difficult, there are surprisingly precise results on the 
asymptotic complexities of "most" functions. If we write c(S) for 
max{c(f) j feS] and similarly for d and t , then uniform constructions 
for all n yield 

c(Bn) < 2n/n , l(Bn) < 2n/logn , d(Bn) < n+1 . 

The first two constructions are due to Lupanov [11,12]. The third result, 
by McColl and Paterson [13] improves only a little on a simple construction 
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by Spira [28]. A remarkable feature of the results for c and I is 
that they are matched asymptotically by lower bounds for "almost all" 
functions. Counting arguments due to Shannon [26] and Riordan and 
Shannon [21] respectively can be used to show that for all n , there is 
a subset B* c B with IB*| ~ |B | such that for all f in B* n 11 1 n1 1 n 1 n 

c(f) > 2n/n , £(f) > 2n/log n 
Using Lemma 1, we have also 

d(f) > n-log log n +0(1) . 

To illustrate the form of such counting arguments we outline a proof 
of the first inequality. It is sufficient to prove the following result. 

Lemma 2. For any e > 0 , the number of functions of B̂  such that 
c(f) < (l-e)2n/n is o(22n) . 

Proof. We first estimate the number of circuits with n inputs and 
m gates where the gates are labelled with integers 1,. ..,m . A circuit 
is specified when for each gate the associated function and the origins 
of its two arguments are given. An upper bound is therefore 

(n+m)^m • l6 m 

It avails us little to reduce the constant 16 . However we are interested 
only in minimal size circuits for some function and tnis consideration 
simplifies our task. Firstly there will be just one gate with fan out 0 , 
the output gate. Secondly, no two gates will compute the same function 
of the inputs, for if otherwise then one of them could be eliminated 
reducing the circuit size. Each minimal circuit appears exactly ml times 
in this enumeration since two different labellings must indeed give 
different labelled circuits. Farther each circuit is minimal for precisely 
one function. The number of distinct functions computed by circuits of 
size at most M is therefore no more than 

M / ̂  x2m 
S • i6m . 
m =0 
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With M < (l-e) • 2n/n , this quantity is bounded above asymptotically 
by 

2(l-e)2n 

•which accounts for a vanishingly small fraction of B . • 

Pippenger surveys and generalizes some of the classical results of 
this section in [19]. 

5. Lower Bounds for Particular Functions. 
One of the most frustrating yet tantalizing aspects of Boolean 

function complexity is revealed in this section. As we have seen above, 
nearly all functions have circuit complexity which grows exponentially 
with the number of arguments. It would be satisfying to be able to present 
here a simple, explicitly given, function with exponential complexity. 
The only functions with such complexity known to date involve some kind 
of diagonalization in their definitions or incorporate the totality of 
Boolean functions over a slightly smaller set of arguments. Ehrenfeucht 
[2 ], and Stockmeyer and Meyer [30] give examples of such functions. 

If we restrict ourselves to "natural" functions which avoid all taint 
of diagonalization the present predicament is extreme. The only lower 
bounds known for such functions are linear in the number of arguments. 
In particular, lower bounds asymptotic to 2n have been proved for some 
broad families of functions in B by Schnorr [2̂ ]. More recently 

n 1 
Paul has shown bounds asymptotic to 2^ n [171 a&d- n i s result has been 
generalized to a wider class by Stockmeyer [29] • The latter proves this 
lower bound for the very simple congruence functions for all 
m > 2 , defined by 

C^n)(xn, ...,x ) = 1 if Ex. =0 (mod m) 

= 0 otherwise, 

and matches this for with the same asymptotic upper boundl The 
methods of Paul and Stockmeyer are too complicated to follow here, but 
the flavour of a 2n lower bound proof can be given in the simple example 
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of T . The threshhold functions T ^ are defined by 

T̂ (x.,, ...,x ) = 1 if Lx. >m 
m v r 7 ny i — 

= 0 otherwise. 

Theorem 1. 

c(T^n^) > 2n-3 for n> 2 . 

Proof. For n = 2 , the result is obvious. Suppose n > 2 and the 
result is true for all smaller values. Consider a minimal circuit for 

with m gates, and select a gate g at maximal distance from the 
output node. The arguments to this gate must be (distinct) input nodes, 
x̂  , x. say. If x̂  and x̂  both have fanout 1 , the dependence of 
the output on x. , x. is only through the value of g . This is absurd 
since for certain values of the other arguments the circuit must distinguish 
among three possible values for x. +x. , namely 0 , 1 , 2 . We may 
therefore suppose that x̂  has fanout at least two and is connected to 
two distinct gates g and h . If we fix the value of input x̂  to 0 
then g and h compute functions of only one argument. These are 
trivial enough to be absorbed into the functions at the succeeding nodes, 
eliminating g and h . The resulting circuit has m-2 gates and 
certainly computes T^1"^ from the remaining arguments. By induction 
we have 

m-2 > 2(n-l)-3 , i.e., m > 2n-3 . • 

Other (lower) linear bounds are given by Harper, Hsieh and Savage 
[ k ]. These and related results are surveyed by Savage in [22 ]. 

Any non-linear lower bound for the circuit size of an explicitly 
given function would constitute an important advance from our present 
expertise. To prove P ̂  NP by this route would require a non-polynomial 
lower bound for some suitable function. Some slight progress has been 
made for the formula size measure and this will be outlined in the next 
sections. There are as yet no non-trivial lower bounds on depth other 
than those derived directly for corresponding formula size results using 
the relation d > log i . 
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6. Lower Bounds on Formula Size. 
An important theorem here is due to Neciporuk [15]« Suppose that 

the arguments to a function f in B n are partitioned into blocks 
Rp . . If for some i the arguments in all the blocks R̂  , 
j ̂  i , are fixed to 0 or 1 in some way, the result is a restriction 
of f , a function f1 depending only on the variables in R̂  . Let 
m̂  be the number of different such restrictions f1 for all possible 
fixations of the other variables. Now the theorem can be stated simply 
as follows. 

Theorem 2 (Neciporuk). There exists a > 0 such that for all f , 
P 

i(f) > a. E log m. 
i =1 1 

where the !s are as defined above. • 

To explore the maximum possible lower bounds derivable from this 
theorem we note that if R. contains r variables then there are on the 

l 
2 r 

one hand at most 2 possible functions on R̂  , and on the other at 
most 2 n~ r fixations of the remaining variables. Hence 

r 
m1 < min{22 , 2 n" r} 

and the optimum bound, which requires r to be about log n , is of order 2 /.. n /log n . 
The variety of applications of Neciporuk̂  theorem is illustrated by 

the following examples. The full bound of a-n /log n for some a > 0 
is provable for Neciporuk' s original functions [15 ] and for functions 
defined by Paul [17]. In both cases the examples involve some notion of 
"indirect addressing", for instance Paul uses functions of the form 

f(~'Il' ' ~) = Zy 

where x and the ŷ  1 s are binary vectors of length s , and where z 
is a binary vector of length k = 2 s . To compute the value of the 
function, the vector x is regarded as a binary index to select the 
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vector yx -which is used similarly to select one binary digit of z . 
Neciporuk's example can be slightly modified and both upper and lower 
bounds of order n /log n proved for the result. 

More algebraic in nature are the examples of determinant over GF(2) 
by KLoss [ 9] and the "stable marriage problem" (exact matching) by 
Harper and Savage [ 5 ]. The lower bounds proved in these cases are 

5/2 
only a-n 1 . Finally we have unpublished results from two entirely 
different areas. There is a context-free language over a binary alphabet 
so that the n-ary function defined by the strings in the language of 
length n has formula size of order at least n /log n . The topological 
predicate of connectedness on a square binary array yields a function 
with formula size at least a-n-log n . 

We close this section by mentioning two similar theorems giving 
non-linear lower bounds on formula size. The first is due to Hodes and 
Specker [ 7 ] and has been applied by Hodes to geometric predicates such 
as convexity and connectedness [ 6 ]. The second is a result of Fischer, 
Meyer and Paterson, a weaker version of which appears in [3 ]. Both 
theorems can be roughly expressed as follows. 
"Theorem" (X). For all f in B n either £(f) is X-large or there is 
an X-restriction of f to m variables which is X-linear. • 

When X = Hodes - Specker, an X-restriction is made by setting the 
remaining variables to 0 and an X-linear function is of the form 

g(x1, ...,xm) = b Q 0 (bx A A x±) 0 (b A 0 x±) 
i i 

where b Q , b-̂  , b^ are Boolean constants and overline denotes negation. 
When X = Fischer - Meyer -Paterson, an X-restriction is made by 

setting equal numbers of variables to 0 and 1 , and an X-linear function 
has the form 

g(Xl,...,xm) = b Q © 0 ( b i A x i ) 
i 

for some constants b̂ ,...,b Cr 7 m 
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In both cases X-large is defined in terms of n and m (the number 
of variables of the restriction). The largest bounds provable with the 
first theorem are less than n log* n where 

•2\ 
/ m 

* 2' I 
log n = least m such that 2 J > n 

The merit of the second theorem lies in its capacity to prove bounds up 
to n log n / log log n . We shall return to these theorems in the next 
section where their specializations to symmetric functions are more 
succinctly expressible. 
7. Symmetric Functions. 

A symmetric function is one which is invariant under permutations 
of its arguments, or equivalently, a function f(x̂ ,. ..,x ) is symmetric 
if and only if there is a function g such that 

f(x1, ...,xn) = g ( ? X i ) 

There are precisely 2n+^~ symmetric functions in since Z> x̂  can 
take n+1 different values. We denote the set of symmetric functions in 
B n *y sn . 

A much lower range of complexities is involved here. 

Theorem 3» c ( S
n ^ i s l i n e a r n > ^ Sn^ i s b o u n ( i e d- ̂  a polynomial 

in n , and (i(Sn) is O(log n) . 

Proof. Each bound results from a two-stage construction. In the first 
stage a circuit is designed to compute the binary representation of the 
sum £ . This set of flog (n+1) 1 = p functions can be computed 
either with a circuit of size 0(n) or in depth O(log n) , by a recursive 
splitting process in which representations for the two halves of the 
argument set are computed and then added together. The addition of two 
p-digit binary numbers can be performed by a circuit of size 0(p) in a 
straightforward way. For the depth bound a signed-digit representation [ 1 ] 

195 



M. S. PATERSON 

can be used so that an addition requires depth only O(log p) . A binary 
representation is not used until the final result. 

The second stage has only to compute the required function from the 
p results of the first stage. The results given in Section k show that 
this stage requires either only about 2P/p = O(n/log n) gates or only 
depth p+1 . The upper bound on formula size follows from that for 
depth. • 

Detailed constructions for the first stage are provided by Muller 
and Preparata [1^]. A polynomial upper bound for ^(s

n) is proved by 
Krapchenko [10] . The best bound on formula size published to date is 
0(n^,^^,,#) and due to Pippenger [18] . 

The results of Schnorr [2^,25] show that for each n > 2 all 
except eight functions have size complexity at least 2n-3 . The eight 
remaining functions have complexity n-1 or 1 . Stockmeyer shows in 
[29] that at least half of Sn has complexity about 2 — n • He also 
states that c( s

n) < 6n . 
Directing our attention again to formula size we find that Neciporuk* s 

theorem is relatively impotent for symmetric functions since for a block 
r+1 

of size r the number of restrictions is limited to min{2 , n-r+1} 
so that only linear lower bounds are derivable. 

When the theorem of Hodes and Specker is restricted to symmetric 
functions it can be restated more dramatically. 
Theorem For some (slowly growing) function t(n) with t -• « as 
n 00 y for all f in Sn 

either l(f) > n-t(n) or Z(f) < 2n . 

Proof. The only symmetric functions which escape the conditions sufficien 
for a non-linear lower bound are functions of the form 

(b QAAx i) 0 (bx A V xi) © (b2 A 0 x±) ©b^ . 

For all n , each of these 16 functions has a formula of size at most 
2n-l . • 
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The only limitation therefore to the power of the Hodes - Specker 
theorem for symmetric functions is the lowness of the bound. A rather 
better bound is attainable for many symmetric functions using the 
Fischer-Meyer - Paterson result. The corresponding simplification to 
S is as follows, n 
Theorem 5» For some a > 0 , all sufficiently large n and for all f 
in Sn we have, for all k 

either i (f) > a • n • log k / log log k 
or f is a function only of ® x̂  in the range 

k < Z) x. < n-k . • " i 1 -

Whereas in the previous theorem a function escaped the lower bound only 
if it was constant or alternating except possibly in the "end zones" of 
size one of the sum function, in this second result the "end zones" are 
of size k . To produce a bound of order n • log n / log log n we need 
to ensure that k > n€ for some e > 0 . 

For the families of threshhold functions T^n^ and congruence ( \ 
functions C£ ' defined in Section 5 we may establish the following 
results as corollaries of Theorems 5 and 6. 
(i) For all k > 2 , £(T^)/n -•oo as n -* co . 

(ii.) For all e > 0 , there is a constant a > 0 such that 
I (T^) > a • n • log n / log log n for nG < k < n-nG , 

and 
f (c£n)) > a • n • log n / log log n for 2 < k < n-nG . 

The functions ' are of special interest again since one can construct 
formulae of order n . log n for these, to approach the proven lower bound 
rather closely. 
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8. Conclusion and Open Problems. 
A multitude of problems of practical and theoretical interest can 

be expressed in terms of the complexity of Boolean functions. In recent 
years a substantial body of new results in this area has been attained. 
There remain however embarrassingly large gaps in our knowledge and 
proof techniques. This can best be appreciated in considering the 
following set of simply stateable open problems. 
1. Prove a non-linear lower bound on the circuit size of some explicitly 

given Boolean functions. 
2. Prove a quadratic lower bound on the formula size of explicit 

functions. 
3. Improve the general inequality c > a-d-log d . 
k. Prove an asymptotic depth bound not derivable from a corresponding 

bound on formula size. 
5. Show ^(Sn) > â n-log n for some a > 0 . 
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