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Cartan's constructions, the homology of K(п,n)'s, 

and some later developments 

John C. Moore# 

In order to explain partially the role played by H. Cartan's calculation 

of the homology of }i(-n,n)ls in some of the subsequent development of 

homotopy theory and homological algebra it seems worthwhile to recall 

some things about the state of homotopy theory in 1950 and early 1951. 

For the purposes of this article, space will mean topopological 

space having the homotopy type of a CW complex and a compactly gener­

ated topology. At the time being considered, homotopy groups had been 

around for almost two decades, the Hurewicz isomorphism theorem was 

fairly well understood, as was the Hopf classification theorem for the 

maps of an n-dimensional space into the n-sphere. The Hopf construction 

had been studied by several people, and at least its early consequences 

were familiar to most people interested in homotopy theory. However, 

though the Freudenthal suspension theorem was well known, knowledge 

about the homotopy groups of spheres and other spaces was rudimentary. 

Indeed the (n+2)'nd homotopy group of the n-sphere had only recently 

been c omputed ([19]). 

The study of spaces with a single non-vanishing homotopy group 

was introduced by Eilenberg and Mac Lane and spaces of this type had 

* This research was partially supported by NSF Grant MPS75-09445. 
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been named for these authors ([6]). Such a space was and is called a 

K (TT, n) if its single non-vanishing homotopy group is the group TT and 

is in the dimension n. Since higher homotopy groups are abelian, TT 

must be abelian if n > 1. An explicit simplicial set called K(ir,n) had 

been introduced by Eilenberg and Mac Lane, and it was known that this 

simplicial set had the same homology groups as the singular complex 

of any space of type , n). Indeed it was known that the singular com­

plex of any space had a minimal subcomplex, that this minimal subcomplex 

was unique up to isomorphism, and had the same homology groups as the 

original complex. Further it was known that the minimal subcomplex 

of the singular complex of any space K(ir,n) was isomorphic with the 

standard K(TT,n). Nowadays one also knows about the geometric realiza­

tion of a simplicial set ([10]), and the standard space K(*rr,n) is the 

geometric realization of the simplicial set of the same name. For TT 

abelian this space has canonically the structure of an abelian topological 

group. At the time spaces X(*n"> n) were constructed by attaching cells 

to bouquets of spheres in the manner of J. H. C. Whitehead, and such 

spaces were known to have properties of the standard K(TT, n) up to 

homotopy canonically. 

In 1950/51 the spaces X(ff,n) were thought to be important building 

blocks for other spaces, but there was little understanding as to how 

this might take place, and their role vis a vis cohomology operations 

was not appreciated. This was in part because one still thought of 
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fibrations (other than fibre bundles) as being somewhat exotic, and indeed 

did not have a good definition of such a notion. Further, though spectral 

sequences had been introduced by Leray and had proved useful in studying 

some problems, there were no spectral sequences for singular theory 

and the algebraic apparatus which existed was understood by only a few 

people. Nevertheless, computations about the homology of KC^nJ's 

were believed to be important and computations in degrees less than 

about n + 10 for the case TT cyclic had been made by Eilenberg and 

Mac Lane. The laboriousness of these computations led one to believe 

that obtaining much further information might be of the same order of 

difficulty as computing homotopy groups of spheres. 

At this time the situation began to change with great rapidity. 

Serre's thesis appeared giving a simple and useful definition of fibration 

and proving that a singular spectral sequence existed for these fibrations. 

Moreover it illustrated the power of the techniques introduced by showing 

that the homotopy groups of spheres are all finite except for the groups 
n Zn 

TT (̂S ) and Tf^n j (S ), n > 0 ([17]), and it showed that for every prime 

p an element of order p appeared in the homotopy groups of spheres 

and that the first element which so appeared was stable and in stable 

degree 2p-3. In addition shortly thereafter, the fact that all spaces 

could be constructed up to homotopy type using towers of fibrations with 

K(TT,n)'s was discovered ([5], [16], [20], and later [14]), and many calcu­

lations were made using singular spectral sequences of fibrations. These 
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gave much new information about both the homotopy groups of spheres 

and the homology of K(TT,n)'s. 

Next the homology of KOn"*11)'8 was calculated functorially in degrees 

less than n+6 by Eilenberg and Mac Lane, the relationship between the 

cohomology of J{(ir,n)'s and cohomology operations was understood, and 

the cohomology modulo 2 of these spaces was calculated by Serre ([6], [18]). 

Thus it was understood that the problem of obtaining further homological 

knowledge about Eilenberg-Mac Lane spaces was of paramount importance 

for the advance of homotopy theory, and that this knowledge was more 

readily obtainable than information concerning the homotopy groups of 

spheres. 

At this stage there was a giant step forward. It was the complete 

calculation of the homology of K^* 1 1 ) ' 8 by H. Cartan ([1],[3]). In 

carrying out this work Cartain introduced the notion of construction, 

which may be viewed as an algebraic idea paralleling the geometry of 

fib rations. 

Now turn to homological algebra. A few years earlier than the 

time considered above, the work of Eilenberg-Mac Lane and others on 

the homology of groups, problems related to the Kunneth theorem in 

algebraic topology, and other algebraic work led H. Cartan and S. Eilen­

berg to formally found the subject of homological algebra. Some years 

later differential homological algebra emerged as a variant of homological 

algebra often useful in studying the homological properties of fibrations. 
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Its methods and applications stem from Cartan's constructions, explicit 

properties of the "bar" and "W" constructions of Eilenberg-Mac Lane, 

the notion of resolution of Cartan-Eilenberg, and algebraic versions of 

the Serre spectral sequence ([7], [4], [8], [1 5], and [9]). 

The applications of Cartan's calculation of the homology of K("n",n)'s 

have been numerous. He himself used this work to give a new derivation 

of the Adem relations for mod 2 Steenrod operations and to give an 

independent derivation of the relations on odd primary Steenrod operations. 

Further he proved his own cup product formula for Steenrod operations 

in such a general manner that it provided the basic information necessary 

for Milnor's proof of the fact that the Steenrod algebra has a natural 

diagonal which gives it the structure of a Hopf algebra ([l] ,[ l l]) . This 

information is of course necessary for Milnor's description of the 

Steenrod algebra and its dual. 

The remainder of this article will be devoted primarily to describing 

some part of Cartan's methods and computations together with a few 

related facts. It will conclude with an appendix making a calculation 

with a special type of Hopf algebra, and then showing how quickly Cartan's 

work leads via Newton's formulas to a description of the Steenrod algebra 

as a Hopf algebra. 

In concluding this introduction I would like to say that the privilege 

of coming to know H. Cartan and his work a little has been one of the 

great pleasures of my life. I was honored to participate in the conference 
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in his honor held at Orsay in June 1975. The contents of this article 

differ in some respects from the talk which I gave on that occasion. I hope 

the changes are in the interest of clarity. 

Conventions. In the body of this article it will be assumed that R 

is a commutative ring fixed as ground ring. Graded modules will be 

assumed to be positively graded. Familiarity with the basic elementary 

properties of the category of differential graded modules will be taken 

for granted. Algebra will mean supplemented differential graded algebra. 

Thus every algebra A comes equipped with a morphism of algebras 

e(A): A —> R. Familiarity with properties of morphisms between 

(differential graded) modules over such algebras including the notion of 

homotopy will also be assumed (cf. [9], [15]). If A is an algebra, then 

A will denote the algebra obtained from A by setting the differential 

of A equal to zero (i.e. forgetting the differential), and if M is an A 
# # module M will denote the A module obtained by setting the differential 

equal to zero. 

In addition to the preceding, sometimes familiarity with properties 

of (supplemental differential graded) coalgebras and comodules over 

such coalgebras will also be presupposed even though these were not 

studied at the time of Cartan's work on K(7r,n)'s ([9], [15]). The reader 

familiar only with older conventions (cf. [4], [7], [17]) should be able to 

follow the major part of the discussion. 
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§1 . Constructions. 

The standard example of an algebra is the (normalized) singular 

chains of a topological group with coefficients in R. Note that if TT is 

a discrete group, the algebra of singular chains of TT with coefficients 

in R is just the group algebra R(*rr). 

The standard example of a module over an algebra is the singular 

chains of a space on which a group acts, the module being left or right 

according as the group acts on the left or right of the space. Here 

module will mean left module unless otherwise stated. 

If A is an algebra, recall that an extended A-module is one of 

the form A<g) X where X is a differential graded R-module. 

Definition. An A-module M is split # projective if M is a direct 

summand of an extended A module. 

One thinks that an extended A-module is the analogue of the product 

of a group and a space, while a split # projective A-module is the analogue 

of the total space of a principal fibre bundle. 

Theorem. Suppose that A is an algebra, and that 

1) M is a split # projective A-module, 

2) f: M'—> M" is a morphism of A-modules which viewed over 

R is a homotopy equivalence which neglecting differentials is a split 

epimorphism, and 

3) g: M—>M" is a morphism of A modules. 

Under these conditions there exists a 
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morphism of A-modules g: M—>M.' such that f*g = g, and ĝ  is unique 

up to homotopy (over A). 

A slight variant of the preceding for the case M " = R was proved 

by Cartan ([3], exp. 2) and is the basis of the most elementary properties 

of his constructions. 

Definitions. An augmented A-module M is an A-module M together 

with a morphism of A-modules e(M): M — > R . An augmented A-module 

M is acyclic if viewed over R, the morphism e(M) is a homotopy 

equivalence. 

Theorem. If M ' is a split # projective augmented A-module and M " 

is an acyclic augmented A-module, then there is a morphism of augmented 

A-modules f: M'—>M" and f is unique up to homotopy. 

This theorem is an immediate corollary of the preceding one. 

If M is an A-module, let M = R<g)^M = M/I(A)M where I (A) is 

the augmentation ideal of A. The module M is called the base of M 

and there is a morphism of A-modules TT(M): M—>-M such that if 

f: M — > N is a morphism of A-modules and I(A)N=0 (i.e. A acts 

trivially on N) , then there is a unique morphism of A-modules f': M — > N 

such that f'Tr(M) = f. If g: M'—>M" is a morphism of A-modules, let 

g: M ' — > M " be the morphism such that Tr(M")g = g i r (M / ) . Observe that 

if g,h: M ' — > M " are homotopic, then so are g, h: M ' — > M " . The full 
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subcategory of the category of A-modules generated by the A-modules on 

which A acts trivially is just the category of differential graded R-modules. 

Observe that if M is an augmented A-module, then e(M): M —>K 
TT(M) — e(M) _ is the composite M > M *->R. 

Theorem. If M is a # projective augmented acyclic A-module then 

there is a morphism of A-modules ^: M —> M ® M such that the diagram 

M > M ® M 

|TT(M) I e(M)<g> M 

M—^-> M = R® M 

is commutative and this morphism is unique up to homotopy. 

Notice that A operates naturally on M® M on the left. Further 

in the notation employed the identity morphism of an object and the object 

itself are denoted by the symbol. 

The theorem follows at once from the first theorem of this section 

noting that viewed over R, e(M)® M is a homotopy equivalence. 

Now &:M—>*M®M, and ^ together with e(M) furnish M with 

the structure of a coalgebra up to homotopy. The preceding theorem 

says that up to homotopy M has a unique right M comodule structure. 

Combining the results of this paragraph one has that if A is an 

algebra, and if there exists an A-module M satisfying the condition of 

the preceding theorem, it is unique up to homotopy, its base has the 

structure of a coalgebra uniquely up to homotopy, and it has the structure 
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of a right comodule over its base uniquely up to homotopy. 

Suppose that X is an augmented differential graded R-module, 

then the extended module A®X is an augmented A-module with augmen­

tation 

e(A)®e(X): A<g>X —> R<g>R . 

Definition. A construction consists of 

1) an algebra, 

2) an augmented A-module M , and 

—# # 
3) a morphism of augmented R-modules 2: M — > M such that 

# —# 
1) TT(M) 2 is the identity of M , and 

# — # # 

2) the natural morphism A <g»M — > M induced by 2 is 

an isomorphism of augmented A modules. 

Frequently one speaks of a construction ( A , N , M ) . In this notation 

N is the base of the construction, i.e. N = M and it is understood that 

M = A ®N . 

Definition. A construction ( A , N , M ) satisfies the condition (B) if 

1 ) e o ( N ) o : N o ^ R ^ 

2) d(M) . :N , Z(M) for q > 0, and 
7q+l q+1 ;q 

d(M) e(M) 

3) N} >M Q > R —> 0 

is exact. 

Notice that in the preceding an element x€ N is considered to be 
q 
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the element l®x of M . 
q 

Theorem. If A is an algebra, there exists a construction (A,N,M) 

satisfying the condition (B), and if (A,N',M') is a construction there is 

a unique morphism of A-modules f: M' — s u c h that f(N') cz N. 

In the preceding theorem of Cartan ([3], exp. 3) once again neglecting 

differentials N has been identified with l<g>N sitting inside M. Clearly 

this theorem guarantees the uniqueness of a construction satisfying the 

condition (B). In fact the base of this construction for the algebra A is 

just the well-known "bar construction" B(A) of Eilenberg and Mac Lane 

([6], [7]). Observe also that the total module of this construction is a 

split # projective acyclic A-module. 

When Eilenberg and Mac Lane introduced the bar construction 

there was no algebraic way of viewing it as the base of a "universal bundle" 

module for the algebra A. This had to wait for Cartan. The freedom of 

being able to use the base of any acyclic construction with initial algebra 

A for computational purposes was of basic importance in the calculation 

of the homology of K(Tr,n)'s, and was the foundation of much of the later 

study of algebras and modules of the type considered here. 

Suppose that C is a coalgebra, A an algebra and j a twisting 

morphism from C to A ([9], [15]), then the twisted tensor product 

A<g> C gives rise to a construction (A,C,A® C). Though many construc-T T 

tions arise in this way, it is not the case that all of those needed for 

efficient computation can be so obtained. 
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§2. Some examples of constructions and some relations with geometry. 

Let n be a strictly positive integer, E(x, 2n-l) the exterior algebra 

with one generator x of degree 2n-l, and S'(y,2n) the coalgebra which 

is connected free an R-module and has basis for primitive elements y 

in degree 2n. If j : S'(y,2n) >E(x, 2n-l) is the twisting morphism 

such that x(y) - x and j is zero in degrees other than 2n, then 

E(x, 2n-l)(g> S'(y,2n) is a construction with initial algebra E(x, 2n-l) T 

and final coalgebra S'(y,2n). This construction satisfies the condition 

(B), and it is essentially the only small construction which satisfies the 

condition (B). 

With n as above, let S(x, 2n) be the free commutative algebra 

with one generator x of degree 2n, and E(y,2n+1) the exterior coalgebra 

with one primitive basic element y of degree 2n+l . If j : E(y,2n+1) > 

S(x, 2n) is the twisting morphism such that x(y) = x, then 

S(x,2n)(g> E(y,2n+1) is an acyclic construction w ith initial algebra S(x, 2n) T 

and final coalgebra E(y,2n+1). It is much smaller than the construction 

satisfying the condition (B) with initial algebra S(x, 2n) (also called the 

polynomial algebra with one generator x of degree 2n). 

If X is an R-module (graded), then there is an algebra S(X) with 

zero differential and a morphism of R-modules B(X): X—>S(X) such 

that if A is any strictly commutative algebra and f: X — > A any morphism 

of (differential graded) R-modules such that e(A)f = 0 (i.e. f(X]cZ(A] fl 

Ker (e(A)) ), then there is a unique morphism of algebras f : S(X) — > A 
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such that f 0(X) = f. The algebra S(X) is called the free strictly com­

mutative algebra gene rated by X ([9]). If X = (x, 2n) the free module 

with one basis element x in degree 2n, then S(x, 2n) is as in the pre­

ceding paragraph. If X = (x, 2n - 1), then S(X) = E(x, 2n-l) the exterior 

algebra with one generator x of degree 2n-l. 

If X is a strictly positive projective R-module, there is a strictly 

commutative coalgebra S'(X) and a morphism of R-modules 

a(X): S'(X) > X such that if C is any strictly commutative coalgebra 

and g: C >*X a morphism of R-modules, then there is a unique mor­

phism of coalgebra g: C > S'(X) such that cf(X) g = g. The coalgebra 

S'(X) is connected. If X is of finite type and X is the dual of X, 

it is the coalgebra which is the dual of the algebra S(X ) which is its 

dual algebra ([9]). 

Suppose X is a projective R-module, Y is its suspension and 

T: S'(Y) >-S(X) is the twisting morphism which is the composite 

s'^aGQ* Y _ s _ * x f i x i » . S ( x ) . 

In this case S(X)<g> S'(Y) is an acyclic construction with initial algebra T 

S(X) and final coalgebra S'(Y). The constructions of both the first and 

second paragraphs of this section are special cases of this construction. 

If X is as above, there is a unique morphism S(X) —>S(X®X) = 

S(X)<g>S(X) induced by the diagonal of the module X, and S(X) together 

with this morphism is an abelian Hopf algebra. If Y is as above there 

is a unique morphism S'(Y<g>Y) = S' (Y) <g> S'(Y) —>S'(Y) induced by the 
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codiagonal (addition) of the module Y, and S'(Y) together with this 

morphism is an abelian Hopf algebra. These Hopf algebra structures 

extend in a natural way to a Hopf algebra structure on S(X)(g> S'(Y) which 
T 

neglecting the differential is just the tensor product structure. If R 

should happen to be a field of characteristic zero the Hopf algebras S(Y) 

and S'(Y) are isomorphic. For any R, if Y is of finite type then the 

Hopf algebra S(Y ) and S'(Y) are the duals of each other. 

Suppose Y = (y,2n), then S'(Y).= 0 for j ^ 0 mod 2n, S'(Y) 0. 

is free with basis [y.(y)}'> (y) = Y, 7Q(Y) = a n d a multiplication 

table for the multiplication of S'(Y) is given by y. (y)y.(y)= (i,j)y. _ .̂(y) 

where (i, j) denotes the appropriate binomial coefficient. The image of 

y (y) under the diagonal is 2^ + j - r y^(y)®Tj (y)* * n E(x, 2m-l)<g> S'(y,2n), 

d ^ j + l (y>) = x<8)ŷ  (y), when r(y) = x. 
r 

Let A be the algebra S(x, 2n) modulo the ideal generated by x 

where r is an integer strictly greater than two. Let x:E(y,2n+l)—>A 

be the twisting morphism such that j(y) = x. Now A® E(y,2n+1) has 
T 

naturally the structure of an algebra, and its homology is an exterior 
r-1 

algebra with one generator, the homology class of x ®y. Let 
j ' : S/(z,2rn+2) >A<g) E(y,2n+1) be the twisting morphism such that 

T 
T(z) = x r _ 1 <g>y, and let M = (A <g> E(y, 2n+l)) <g> , S' (z, 2rn+2). Now 

T T 

(A, E(y, 2n+1) <g>S' (z, 2rn+2), M) is an acyclic construction with initial 

algebra A, final coalgebra E (y, 2n+l) <g>S' (z, 2rn+2), and there is no 

acyclic construction having the same initial algebra and final coalgebra 
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obtained by taking a twisting morphism from the final coalgebra to the 

initial algebra. 

Now before turning to more explicit facts concerning the computa­

tion of the homology of K^nJ's a few facts concerning the relation of 

constructions to topology will be considered briefly. Suppose that 

F 1 >E *""> B is a fibration sequence with fibre F, contractible total 

space E and base B. In this case one may suppose without loss that 

the fibre F is a topological group G and that the fibration is principal. 

Taking A to be the singular chain of G , one wants to know that the 

base of an acyclic construction with fibre A is equivalent to the chain 

of B. The first result in this direction was the result of Eilenberg and 

Mac Lane ([6], [7]) to the effect that the "bar construction" is homotopy 

equivalent with the "W construction. " This result though formulated 

without the general idea of a construction, and without the intervention 

of either the bundle module or the bundle space of the problem never­

theless showed that if G = K(ir,n), then the base of Cartan's construction 

satisfying the condition (B) is homotopy equivalent with the chains of 

K(iT,n+l). The elementary results obtained from iteration were also 

derived in the same work. 

A second method of dealing with the problem is to show that if 

(A,N,M) is any construction, then there is up to homotopy a unique 

morphism of A-modules f: M ^C,(E). This morphism is compatible 

with the filtrations used to define the Serre spectral sequences abutting 
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to H ,(M) and H o(E), and hence in the case that construction is acyclic 

a homotopy equivalence N—>C^(B) is obtained using a spectral com­

parison theorem ([3], exp. 3,12,13). This method can be modified using 

a little differential homological, as has been done by Eilenberg and 

Moore ([4]) to deal with the case where the bundle space is not acyclic. 

A third method due to E. H. Brown is to show that if G —>E —>B 

is a principal fibration, then there is a twisting morphism j:C^(B)—>Ct(G) 

such that C ,(G)<g> C, (B) is in an appropriate sense equivalent with C (E). 

§3. H((TT,1) and algebras with divided powers . 

Let TT be a free group with 1-generator x, and let ji S'(y,l) = 

E(y, 1) >R(TT) be the twisting morphism such that j(y) = x - 1 . Now 

R(TT)® E(y,l) is an acyclic construction with initial algebra R(TT) and 
T 

final coalgebra E(y, 1). Further the differential of the total module of 

this construction is compatible with the tensor product multiplicative 

structure, and one may say that it has final or base Hopf algebra E(y, 1). 

The total module may be given the structure of a Hopf algebra by setting 

Af1 <S>y) = (! <8>y)®(x<8>l) + (1 <g>l)<8>(l <g>y). Note &(x) = x<g)x, e(x) = 1, 

and that the diagonal of the Hopf algebra R(ir) G E(y, 1) is not commutative, 
T 

in particular it is not the tensor product diagonal. One could of course 

use the opposite of the diagonal given above. 

Let TT" be a cyclic group of order n > 1 with 1-generator x and 

let x 7 /:E(y,l) >R(TT") be the twisting morphism such that r / / (y )=x- l . 
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The construction R(TT") <g> „E(y, 1) is in a natural way a quotient of the 
T 

one of the preceding paragraph. It is not acyclic. Indeed its homology 

is an exterior algebra with one generator degree one. This may be taken 
n 1 i 

to be the homology class of the cycle SJ_Q x ®y- Let 7^: S'(z,2) > 
n 1 j 

R(TT")® „E(y,l) be the twisting morphism such that T i ( z ) = S - _ N ^ ®Y* 

Now one has an acyclic construction (RfTr"), N, M), where 

M = (R(7r")<g> „E(y, 1))<8> S'(z,2), and N = E(y,l)®_ S'(z,2) with 
_ T T l T l 
7j(z) = ny. Though M and N are algebras with multiplication the tensor 

product of the indicated multiplications, M does not admit a diagonal 

which makes it a Hopf algebra and the diagonal of N is not the tensor 

product one. Indeed letting x,y,z denote the appropriate elements of 

M and y, z the corresponding elements of N, a morphism M—>M<g>N 

satisfying the conditions of section 2 is given by y —>y <g> 1 + 1 <g>y, and 
n 2 i 

z —>z®l + 1 <g>z + S._Q (n-l-j)x y®y. Thus an appropriate diagonal for 

N is given by y —>y<g> 1 + 1 <g>y, and z —>z® 1 + 1 ® z + n^ n^ * ^ y ®y • 

This diagonal makes N into a Hopf algebra with non-commutative diagonal 

of n(n-l) ^0 in R. The diagonal is homotopy commutative. 

Suppose that IT is a free abelian group and fx .} . T is a basis 
J J € J 

for TT . Let Y be the free R-module concentrated in degree one with 
basis {y. } , and let j : S'(Y) = E(Y) —^R(TT) be the twisting morphism 

J J€J 
such that r(y.) = x ~ Now R(Tr)<g> S'(Y) is an acyclic construction, and 

J J T 
if one sets A(y.) = y.<8>x. + (<g>y. for j € J, the total module is a Hopf 

J J J J 
algebra. It is the tensor product indexed on J of copies of the Hopf 
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algebra of the first paragraph of this section. 

Suppose that 1 —>TT' —>TT —>TT"—> 1 is an exact sequence of abelian 

groups with TT as just above. Let j " : S'(Y) —>R{TT") be the composite 

S'(Y) R(ir) >R(ir"). 

Now R(TT")® „ S'(Y) is a construction whose total module is a Hopf algebra. 
T 

Its homology is an exterior algebra on generators of degree one. It is in 

fact Tor^'^ ^ (R,R). Suppose that {xj } ^ is a basis for IT'. For i e I, 

x! - 1 = 2 . T X- • (x-~ *) where X- . e R(TT) and X. . = 0 for all but a 

finite number of indices j . The cycles f 7). ^ X. .V.}. T of 

R(TT")® /,S'(Y) (where X- . i s t n e image of X- . i n Rfir") ) are such T 1> J J 
that these images form a basis of the homology of degree one. Let Z be 

the free R-module concentrated in degree two with basis fz. "|. , and 
L l Ji € I 

let j : S'(Z) —>R(TT" )® „S'(Y) be the twisting morphism such that 1 T 

Ti ( Z - ) = S . T X- -Y- a n c ^ which is zero in degrees other than two. Now 

one has an acyclic construction (Rfir" )N, M), where 

M = (R(TT")<8> „ S'(Y))<g> S'(Z), N = S'(Y)<g>_ S'(Z) where Ti is the composite 

S'(Z) >R(TT")<8> „S'(Y) >S'(Y). 
T 

This construction is multiplicative with multiplication the tensor product 

of the indicated multiplications . For (i, j) 6 I X J choose 

u. . e (R(TT")<S> // S'(Y)), c M, so that d u. . = \. . - e (\. .) and u. . = 0 

if X- • ~ 0. An appropriate morphism M *>M<g)N is given by 
1 * J 

v. —>y. ® l + l<S>v. for i^J, and z u. —> z.®l+l®z.+ 7). Tu. .(8>y, for 
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i e l . Letting u. . be the images of u. . in N, a diagonal for N is 

given by —> z ^® 1 + 1 ®z.^ + f°r i€l* 

If IT" is a coproduct of cyclic groups, and IT —>TT" is well chosen 

so that the basis of ir maps according to a cyclic decomposition of ir", 

the construction of the preceding paragraph reduces to a tensor product 

of those for cyclic groups considered earlier. 

Now it is time to turn to the consideration of algebras with divided 

powers. Indeed some of the preceding considerations are incomplete 

without this notion for diagonals have been given by saying what they do to 

generators as algebras with divided powers. 

Definition. An algebra A with divided powers is a strictly commutative 

algebra A together with for each positive integer n, functions 

y.( ): A 0 . where j runs through the positive integers such that 

J 2n 2nj 

1) y0(x) = 1 for x e A 2 n , 

2) jl y.(x) = x J for x e A , 

3) y (x+y) = £ , . „ _ . y ,(x)y„(y) for x.yeA , 
J l"t"l — J l 1 £» n 

4) y.(rx) = r Jy.(x) for r 6 R, xeA. , 
5) y (x)y (x) = (i,j)y (x) for XGA , 

1 j l+j c n 

6) y.(y.(x)) = (j.j-l)fej ,j -1) • • • ((i-l)j,j-l)y..(x) for X £ A 
7) y.(x'x") = 0 for x 'eA ,,x"gA „ , n'+ n" = 2n ' j n n 

n', n" odd and j > 2, and 

8) d y (x) = (dx) y (x) for xeA . 
J+A j ^ n 
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Suppose that A is a commutative algebra, then the multiplication of 

A induces a morphism of algebras A® A — > A . Thus if B( ) denotes 

the functor which assigns to each algebra A its classifying coalgebra 

(i.e. the base of the construction with initial algebra A which satisfies 

the condition (B) ), there is a natural morphism B(A.<g> A) —>B(A) in the 

case where A is commutative. Composing this with the natural mor­

phism of coalgebras B(A)® B(A) — > B ( A ® A), one has that B(A) is a 

Hopf algebra with commutative multiplication ([7], [9] ). One of the basic 

technical results of Cartan used in his computation of the homology of 

K(*rr,n)'s is to the effect that if A is a strictly commutative algebra, 

then the algebra B(A) is an algebra with divided powers ([3], exp. 7). 

A slight extension of Cartan's result says that B(A) is a Hopf algebra 

with divided powers. 

Suppose that X is a differential graded module which is projective 

as a graded module, and such that X^ = 0. Let A be the algebra such 

that its augmentation ideal has zero multiplication and is isomorphic 

with the desuspension of X as a differential graded module. There is a 

natural morphism of differential graded modules X—^B(A). Using 

Cartan's theorem let i: X—> be the morphism of differential 

graded modules induced by the above where is the algebra with 

divided powers generated by the image of X in B(A). One can show that 

if A " is an algebra with divided powers and f: X — > A " is a morphism of 

differential graded modules, then there is a unique morphism of algebras 
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with divided powers f : T(X)—^A" such that fi = f, i.e. T(X) is the 

algebra with divided powers generated by X. For a more general X" (X^ = 0), 

the algebra r(X") I S defined by representing X" as the quotient of an X as 

above, and then dividing T(X) by the appropriate ideal with divided powers. 

Another result of Cartan is to the effect that if A' and A" are 

algebras with divided powers, then A' ® A" has divided powers, i.e. the 

category of algebras with divided powers has finite coproducts ([3], exp. 7). 

Given this fact, if X is as above then r(X)<g>r(X) = r(X<g>X) is an 

algebra with divided powers, and the diagonal of X induces a morphism 

of algebras with divided powers T(X)—^r(X)<g>r(X) making T(X) into 

a Hopf algebra with strictly commutative diagonal. If one divided the 

augmentation ideal of r(X) by the ideal with divided powers generated 

by the square of the augmentation ideal of T(X) one obtains X. Thus 

there is a natural morphism of differential graded modules T(X) —>X , 

and this induces a morphism of coalgebras T(X) —>*S'(X). One verifies 

easily that this morphism is in fact an isomorphism of Hopf algebras, 

the multiplication in S'(X) being induced by the codiagonal or addition 

of X as explained in Section 2. If one desires, one may use the functor 

S'( ) to define algebras with divided powers. 

Suppose X" is a graded R-module, X^ = 0, d(X") = 0. Choose 

an exact sequence 0—> X'—>X—> X"—>0 with X positive, X^= 0, 

X n projective for all n, and d(X) = 0. Let Y be the suspension of X7 and 

let T :S ' (Y) —^r(X) be the twisting morphism which is the composite 

S'(Y) —>Y —>X ; —>X—>T(X). 
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It is not difficult to verify that r(X") is the image of T(X) in 

H„(r(X)® S'(Y)). T 

In addition to introducing the notion of divided powers, and proving 

the results cited above, Cartan proved the existence of divided powers 

in some constructions of a more general type than those satisfying the 

condition (B). He also observed that if A is a commutative algebra 

over a field of characteristic zero, then divided powers are defined by 

setting y.(x) = j~T~ x^ f ° r x € -A-2 a n c ^ J a P o s ^ i v e integer. 

Divided powers are known to exist in another situation. Unpublished 

work of Mac Lane shows that if A is the algebra of chains of a commuta­

tive ring complex, then divided powers exist in A ([7]). They are 

obtained by appropriately iterating the 11 i product" of Eilenberg-Mac Lane. 

These results imply that if A is the chains of K(iT,n), then A has 

divided powers, and the canonical morphisms from B(A) to the chains 

of K(Tr,n+l) is a morphism of Hopf algebras with divided powers. 

§4. The suspension, multiplicative constructions, and the transpotence. 

Suppose that (A,N,M) is an acyclic construction. If H^(A) denotes 

the reduced homology of A, there is a morphism of degree one 

a ^ H ^ A ) >HJN) 

called the suspension of the acyclic construction ([3], exp. 6). It may be 

defined in the following way: There is up to homotopy a unique morphism 
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of A-modules i: A—>M such that e(M)i = e(A). If x€A , d x = 0 , 

e(x) = 0, then there exists y 6 M^^ such that dy = i(x); y = Tr(M)y is 

a (q+1) cycle of N and its homology class depends only on the homology 

class, there results a function o^: H^(A) —>H^^(N). Verifying that this 

is a morphism of R-modules, the q'th component of the suspension is 

defined. 

It was observed earlier that the homology of the base of an acyclic 

construction with initial algebra A depends only on A and not the 

choice of acyclic construction. Similarly the suspension depends only 

on A and not the choice of acyclic construction. Further it behaves 

functorially with respect to change of algebras. In addition it annihilates 

decomposable elements of the ideal (A) and its image is contained 

in the primitive submodule of H JN). When the acyclic construction 

corresponds to a topological situation as in Section 2 , the suspension 

corresponds to the usual one in singular theory ([17] ) . 

For any algebra A, let Q(A) denote the quotient of the augmenta­

tion ideal by its square. If A = R(TT), TT abelian, a classical calculation 

shows Q(A) = R®TT. A short look at the acyclic construction of Section 3 

shows that Q-: R®TT >Hj(ir, 1; R) is an isomorphism, where for any 

R module G, H^(7r,n;G) denotes the homology of K(TT, n) with coeffi­

cients in G . The preceding goes back to the origins of the homology 

of groups. 

Given two constructions (A'jN',!^'), (A", N", M"), one easily 
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defines their tensor product. It is a construction (A,N,M), where 

A = A'® A", N = N; <g> N", and M = M'<g>M" ( [3 ] , exp. 4 ) . 

Definition. A multiplicative construction is a construction (A, N, M) 

together with the structure of an algebra on M and also on N such that 
# # # A ® N —>M is an isomorphism of algebras. 

One could give a more inclusive definition of multiplicative con­

struction, but the original one ( [3 ] , exp. 4 ) is sufficient for the purposes 

considered here even though it demands that the algebra of the total 

modules be split when the differential is neglected. It is easy to verify 

that the tensor product of multiplicative construction is multiplicative. 

Another result of Cartan is to the effect that if A is a commutative 

algebra, the construction (A, B(A), M(A)) satisfying the condition (B) is 

a multiplicative construction. It has already been noted that in this case 

he also proved that B(A) is an algebra with divided powers. All of the 

constructions considered in Section 3 are multiplicative constructions in 

a natural way. Notice also that if (A,N,M) is a multiplicative construc­

tion of commutative algebras, there is a natural morphism of the tensor 

product with itself back to the original construction. Indeed the category 

of multiplicative constructions of commutative algebras is a pointed category 

with coproducts, the finite coproducts being tensor products. 

The remainder of this section will be devoted to describing some 

of the properties of the "transpotence" of Cartan ( [3 ] , exps. 6 , 7 , 8 ) . 

Hence it will be assumed that p«l = 0 in the ground ring R. For A a 
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commutative algebra and q a positive integer let (A ) denote the 
P ^ 

subset of the cycles of A such that an element a is in this subset if 

(a - e(a))P = 0. 

Proposition. If (A,N,M) is a multiplicative construction of commuta­

tive algebras which is acyclic, then there is a function 

• ' p t V - ^ Z p q + z W 

for each positive integer q such that 

1 ] i f a € p ( A 2 q ) ' X £ M 2 q + l ' d X = a ' S ( a ) > y € M 2 p q + 2 ' a " d 

1 

dy = (a - e(a)) x, then the image of y in ^ is a representative 

cycle for 0(a), 

2) if a 6 (A0 ), a = be, e(b) = 0, and eP= 0, then W)(a) = 0, 
p 2q r 

3) if p is odd, then ^ is additive, 
4) if p = 2, a', a" € (A0 ), then 

p 2 q 
0(a' + a") = 0(a') + 0(a") + a (a') CT (a"). 

This proposition is a summary of the technical considerations 

leading to the definition of the transpotence ([3], exp. 6). 

Given the preceding proposition, one would like that 0 was defined 

on all of the cycles of A of even degree, and that it passed to homology. 

One would then have the transpotence. If A is a connected algebra with 

divided powers, then if aeA^, a = e(a), and if a is an element of 
p 

strictly positive degree , then a = 0 for if the degree of a is odd 
2 p a = 0, and if even a = p ! y (a) = 0. 

P 
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Definition. A transpotence algebra is a strictly commutative algebra 

A such that 

1) if a € A^ (a - e(a))P = 0, for q a positive integer, 

and 2) if b e A^ there exists e e A^ „ such that de=(db)P~H> 
2q+l' 2pq+2 

for q a positive integer. 

Observe that this notion is only defined over a ground ring of char­

acteristic p, and that condition 2 is trivial for algebras satisfying condi­

tion 1 and having zero differential. 

Proposition. If C is a connected algebra which is strictly commutative 
p 

and such that if c € C^, q > 0, c = 0, and if there exists an acyclic 

multiplicative construction (A,C,M) with A commutative and such that 

a€A , q > 0, aP= 0, then C is a transpotence algebra. 
q 

Though the proof of the preceding proposition is essentially trivial 

it nevertheless guarantees that if A is a commutative algebra concentrated 

in degree 0, then B(A) is a transpotence algebra. If A is a commuta­

tive algebra, so is B(A). Hence one may define B^(A) = B(A), and 

B n + ^(A) = B(Bn(A)) by induction. The preceding also guarantees that 

for any commutative algebra A, B n(A) is a transpotence algebra for 

n > 2. Note that all of this is only in view of what has preceded. Finally 

observe that the preceding also guarantees that the bases of any of the 

acyclic constructions of Section 3 are transpotence algebras when of 

course the ground ring is of characteristic p. 
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Combining the preceding with the first proposition of this section, 

one has that for q a positive integer, (A,N,M) a multiplicative con­

struction of commutative algebras which is acyclic and A a transpotence 

algebra, there is a function 

V " 2 q ( A ) - ^ H 2 p q + 2 ( N ) 

obtained from ^ by passing to quotients, this function is additive if p is 

odd, it always annihilates decomposables, and has the property that if 

r e R, a G H ? (A), <p (ra) = rP(p (a). This is Cartan's transpotence. 
q P P <Pp Observe that one may consider the composite H^(A) -^-^H^ ^(N) > 

QfH^N))^^^ and that this is always additive even for p = 2. 

§5. The Hopf algebras H^(Tr,n;k) for k a field . 

First suppose that the ground ring R is a field of characteristic 

zero which will now be called k. One may as well suppose that k = Q 

for if not H^(ir,n;k) = H^(TT, n; QJ^^k. The computation of HJir,n;k) 

for k the field of rational numbers is basically due to Eilenberg and 

Mac Lane ( [6 ] , II) who expressed the result in a slightly different form 

since at the time it was not usual to express things in terms of Hopf 

algebras at the time. 

Theorem. The n-fold suspension 

a**: ir®k >H (Tr,n;k) 
n 

extends to an isomorphism of Hopf algebras 
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r(ir®k,n) >H#(ir,n;k) 

for TT an abelian group, k a field of characteristic zero, and n > 0. 

For n = 1, and TT a cyclic group the result follows from the calcu­

lations of Section 3. Hence by the Kunneth theorem, it follows for n = 1 

and TT finitely generated. Taking colimits the case n=l is proved. 

Suppose X is a graded vector space over k, X Q = 0, and X the 

suspension of X. Recall (Section 2) that the natural twisting morphism 

S'(sX) T > S(X) gives rise to a construction S(X)<g> S'(sX) which is 
T 

acyclic. Further this construction is a multiplicative construction of 

commutative algebras. Indeed of primitively generated commutative 

Hopf algebras. Further since k is a field of characteristic zero, the 

Hopf algebras S(Y), S'(Y), and P(Y) coincide for any graded vector 

space Y, YQ= 0. 

Suppose the theorem is true for some integer n > 0. Choose a 

morphism of Hopf algebras f: T(^® k, n) —> CJK (TT, n)) which on passage 

to homology is the given isomorphism. Now k, n)<g> r(7r<g>k, n+1) is 
T 

a multiplicative acyclic construction of abelian Hopf algebras, where j 
is as in the preceding paragraph, and this construction maps naturally 
to the construction C (K (TT, n)) <g> r("n"®k,n+l) which is acyclic. Hence v i j 
the theorem is proved by induction. 

It now remains to make the desired calculation for k a field of 

finite characteristic, and for this it suffices to suppose that k is a prime 

field. Thus suppose that k is the field with p-elements. For TT an 
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abelian group let TT denote the subgroup of elements of order p of TT 

and TT^ denote TT modulo the subgroup generated by p'th powers of 

elements of TT. 

It has already been observed in a slightly different form that 

or: TT̂  >Hj(7r,i;k) is an isomorphism. Notice also that if A is the 

algebra k(m-), then TT C (A.) (Section 4) and so the transpotence 
P P 0 

ff\ : TT (TT. 1; k) is defined. Further the transpotence is linear for 
^p p 2 
p odd. 

Notice that there is a natural morphism TT —>TT which is the 
P P 

composite of reduction mod p with the inclusion TTC TT . For TT cyclic 

of order p\ this is an isomorphism if j = 1 and is trivial for j > 1. 

Denote this morphism by fl^. Also denote by 0^: ^n+\ (N) ^H^flN) 

the Bockstein morphism of any differential graded k module which is 

given as the reduction mod p of one flat over 1L. 

Proposition. If xe TT, then )3p<pp(x) = (7 j3 x , 

and 1) if p is odd, then <Pp(x) l s primitive, and 

2) if p = 2, then the image of <pp(x) under the diagonal 

is (p (x)<8>l + l<g>(0 (x) + a 8 (x)<g>cr8 (x). 
P P P P 

The result of Cartan can be checked easily for the case TT cyclic 

using the construction for k(-n-) for this case of Section 3. It suffices to 

check it in this case. 
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Proposition. If n, q > 0, then 

V H 2q ( T r ' n ; k ) ~~ > H 2pq + 2
( 7 T ' n + 1 ; k ) 

CT : H 2 p q ^ ' n ; k ) " ^ H 2 p q + l ( T r ' n + 1 ; k ) ' 

and 1) if xeH (ir,n;k); S <p (X ) = çjy (X), 
2q P^P 'p 

2) for p odd, (p (x) is primitive, 
P 

and 3) for p = 2, a(<a (X)) = <p (x ) <g> 1 + 1 ®<p (x ) + <j(x)<8><y (x ) 
P P P 

The proof of this proposition may be found in the Cartan seminar 

([3], exp. 6,7,8). 

Suppose that w is a word written in terms of the letters <j, (p ,̂ ŷ . 

The height of w is the number letters equal to Q or y^. The degree of w 

is defined inductively by the degree of the empty word in 0, 

degree (aw) = 1 + degree w, 

degree (y w) = p -degree w, 
P 

and degree (cp̂ w) = 2 + p degree w. 

Now consider only words w such that 

1) the last letter is <p or Q, 
P 

2) the number of a's to the right of a <p or y is even. 
P P 

There are two such words of height 1, Q and (n . To j corresponds 
P 

Q: IT —>H, (ir, 1; k), and to <p corresponds <p : TT—>-H? (IT, 1 ; k). Extend p i p p p £ 

this so that to every word w satisfying 1) and 2) there corresponds a 

function to H^(TT,n;k) where n > 0 is the height of w, the domain is IT 
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if the last letter is nr. and the domain is TT if the last letter is rn , 
P 

and the image is contained in H^(Tr,n;k) where q is the degree w. 

If o"w is such a word, then the function for aw is the composite of that 

for w followed by the suspension, if y^w is such a word, then the 
function for y w is the composite of that for w followed by the divided 

P 

power y , and the function for <PpW is the composite of (p̂  with the 

function for w. The condition 2) assures that these are defined. 

A Cartan word w is a word w is the letters or, <0 > V satisfying 

the conditions 1) and 2) above and such that the first letter is Q or rn . 
P 

To a Cartan word w of height n > 0 and degree q, corresponds a 

function TT >H (iT,n;k) if the last letter is (j or a function 
p q 

TT —>H (ir,n:k) if the last letter is <n . For p an odd prime these 
P q ^P 

functions are linear, and their images are primitive elements. For 

p = 2, the functions are linear and have their image contained in the prim­

itive elements if the first letter is or. 

For w a Cartan word, let [w] denote the graded vector space 

such that [w]. = 0 if j ^ degree w, [w]. = TT̂  for j = degree w and 

the last letter of w being or, [w]^ = T̂T for j = degree w and <p̂  the 

last letter of w. There is given a graded function w: [w] —>H((7r,n;k) 

where n > 0 is the degree of w. It is linear for p odd or the first 

letter of w equal to 0"» and under these conditions its image is primitive. 

Suppose that p is an odd prime. For n > 0, let C(7r,n) be the 

coproduct of the vector spaces [w] where w ranges over the Cartan 
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words of height n. Note C(TT,1). = 0 for j ^ 0 , l , C(TT,1)=TT , 
J P 

C(ir, 1) = ir. 
P 

There is given a morphism of graded vector spaces C(ir,n) > 

H,(Tr,n;k) explained above on the components [w] of C(ir,n). The image 

of this morphism is contained in the primitive elements of H^(Tr,n;k) 

which is a Hopf algebra with divided powers. Thus there is a morphism 

of Hopf algebras a(Tr,n): T(C (Tr,n)) >H (Tr,n;k). This is in fact a mor-

phism of functors defined on the category of abelian groups. 

Theorem. For p an odd prime, and n > 0 the morphism 

Of(ir,n): r(C(ir,n)) >*H (7r,n;k) is an isomorphism. 

The preceding theorem is Cartan's calculation of H^(iT,n;k) for 

k the field with p-elements and TT an abelian group. It is proved by 

induction on n. For n = 1, and TT a cyclic group, it follows by looking 

at the construction given for k(*rr) in Section 3. Applying the Kunneth 

theorem it is then true for n = 1 and TT finitely generated. Since both 

functors preserve filtering colimits, the theorem follows for n = 1. 

It remains to prove the inductive step. 

Suppose X is a graded vector space, X^= 0. Choose a morphism 

f: Q(r(X)) >I(T(X)) such that the composite Q(r(X))->I(r(X))—>Q(I(r(X))) 

is the identity. Since the composite X—>I(T(X)) —->Q(r(X)) is a mono-

morphism, one may also suppose that f extends X—>I(T(X)). Let 

T: Sx(sQ(r(X)) >T(X) be the twisting morphism which is obtained by 
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composing f with the canonical morphism of degree -1, S'(sQ(r(X)) > 

Q(r(X)). Now r(X)<g> S'(sQ(r(X))) is a multiplicative construction. It is T 

not however acyclic, its homology is an exterior algebra E(Y) where 

Q(r(X))-. — Y7 . , and Y. = 0 for i # 1 mod 2p. Choose a morphism 

Y >r(X)<g> S7(sQ(r(X)) such that if E(Y)—>r(X)<8> S'(8Q(r(X))) is the 
T T 

resulting morphism of algebras, then one obtains an isomorphism of 
homology. Let T l : S ' ( s Y ) *r(X)<8> S /(sQ(r(X)) be the resulting 

1 T 

twisting morphism. If one composes this with the projection to S'sQ(r(X))), 

one obtains the trivial twisting morphism. Now (r(X), S'(sQr(X) ®Y), M) 

is an acyclic construction of commutative algebras, where 

M=(r(X)<g> S'(sQ(r(X))))<8> S'(sY). If one takes X = C (TT, n), it is easy 
T T l 

to verify that sQr(X) 0sY is C(ir,n+1). 

Suppose that the theorem is proved for some n > 0. Since 

C^(K(Tr,n)) is a Hopf algebra with divided powers, one may choose a 

morphism of algebras with divided powers h: p(C (*rr,n)) > Ĉ JK (TT, n)) 

which is a(iT,n) on the homology level, and up to homotopy if differential 

graded k-modules is a morphism of Hopf algebras. Combining this with 

what has preceded, it follows easily that <y(ir, n+1): r(C (ir,n+l)) > 

H^(Tr,n+l;k) is an isomorphism, and the theorem is proved. 

The situation for p = 2 is slightly more complicated than that for 

p odd, when considered in the terms used here. Suppose p = 2. For 

n > 0, let C'(Tr,n) be the coproduct of the vector spaces [w] where w 

ranges over words of height n and first letter (j . There is a natural 
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linear map C'(TT,n) —^Ht(-rr,n) whose image is contained in the primitive 

elements. This extends to a morphism of Hopf algebras 

HC'Kn)) a ( T r ' n )>HjTr,n;k). Let HJTT, n;k) —> D(TT, n) be the cokernel 

of c/(Tr,n) as a morphism of Hopf algebras. For w a word of height n 

and first letter cp ,̂ the composite [w] —>D(*rr,n) is linear and has its 

image contained in the primitive elements. Thus if C'^T^n) is the 

coproduct of the vector spaces [w] where w ranges over words of 

height n and first letter (p ,̂ there is a natural morphism of Hopf algebras 

with divided powers r(C"(IT, n)) —> D (ir,n). One may verify inductively 

that cy^TTjn) is a monomorphism, and that r(C"(Tr,n))—^D(ir,n) is an 

isomorphism. Thus there results a short exact sequence of abelian Hopf 

algebras with divided powers 

k^r(C"(f ,n» c *> , n) > H ^ ( i r > n ; k ) a " fr, n}> n ) ) _ ^ k 

functorial on abelian groups TT . This sequence is split as a sequence of 

algebras, but not as a sequence of coalgebras. The coalgebra extension 

may be characterized using properties of (p^. The underlying coalgebra 

of H (TT,n;k) is injective commutative, but not strictly commutative for 

n > 1. In this case Cartan characterized the algebras H^(Tr,n;k) by intro­

ducing divided powers defined in odd degrees in characteristic 2 ([3]). 

In addition to the work described above, Cartan also characterized 

the integral homology of K(ir,n)Is. These groups are of such a nature 

that they can only be described succintly in very special cases, e.g. TT 

free abelian and n = 1 or 2. If one chooses the ground ring to be a ring 
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like the integers localized at a prime, the situation is a little simpler, 

but still not very manageable on an invariant level (e.g. [13] ). 

Appendix. Some remarks concerning the Steenrod algebra. 

For a prime p, the Steenrod algebra G (p) is the algebra of 

stable cohomology operation with coefficients in the field k with p-elements. 

Multiplication in G (p) corresponds to composition of cohomology oper­

ations. 

Using his calculation of H (Tr,n;k), Cartan proved the existence 

of the Steenrod operations, and gave an explicit basis for G (p) where 

each basis element is an iterate of Steenrod operations and the standard 

Bockstein (which is a Steenrod operation for p = 2) ([3], exp. 14,15,16). 

This showed even without knowing the relations on Steenrod operations 

that the algebra G (p) is generated by the Steenrod operations and the 

Bockstein as an algebra. Cartan also derived the relations on the Steenrod 

operations using his calculations ([2]). 

In addition to preceding Cartan derived his cup product formula 

for the Steenrod operation together with some surrounding facts about 

stable cohomology operations ([3], exp. 16 bis), which led to the fact 

that G (p) is a Hopf algebra ([11]). In particular once it is known that 

G*(p) is a Hopf algebra, then for an odd prime t\(^) = S^ + j - n ^ 1 ® ^ 

where £>n is the standard Steenrod n-th power which is an element of 

degree 2n(p-l), and - 1. The Bockstein is of course primitive. For 

207 



J.C. MOORE 

p = 2, the diagonal is given by A (Sq11) = S. . Sq ®Sq^ . These formulas 
i+j=n 

determine the diagonal of G (p) since they specify it on algebra generators. 

They are just a form of Cartan's cup product formula. 

The aim of this section is to obtain further information about G (p) 

using what has been stated above, a few Hopf algebra techniques, and one 

of Cartan's methods ([2]). 

Definitions. Suppose that A is a connected Hopf algebra over R a set 

of elements (a.). of A is comultiplicative if 

1) a Q = l , 

2) degree a.= j degree â  and either the characteristic of 

R is 2 or degree â  is even, 

3) A ( A ) = S- • a - ®a-> where A l s t n e diagonal of A. 

r l+j-r 1 j 

If (a) = ( a - ) j g ^+ * s a comultiplicative set of elements of A, the 

left Newton elements of (a) are the elements ( ^ n ( a ) ) n > I defined recur­

sively by 

1) £x(a) = a l f 

and 2) U l ( a , = S ^ 1 ( - l ) J + \ n + 1 . j ( a ) a . + ( - l , n + 2 (n + l ) a n + i : 

the right Newton elements of (a) are the elements (r (a)) . defined —& n "n> 1 

recursively by 

1) r 1(a) = a 1, 

and 2) r n + 1 ( a , = E ? = 1 (-1 a. r ^ _ . (a) + (-1 ) n + 2 (n +l) a ^ . 

Notice that if the multiplication in A is commutative, the left and 
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right Newton elements coincide and the recursion formulas which define 

them are just Newton's formulas. 

Proposition. If A is a connected Hopf algebra over R and (a) ~ ( A - ) • > Q 

is a comultiplicative set of elements of A, then the left and right Newton 

elements of (a) are primitive. 

The proof of this proposition is completely straightforward, some­

what tedious, and follows exactly the lines used in studying Hopf algebras 

of the type HJBU ) ([4] ). 

Given a fixed prime p, let a (n) = 2* 1 When the prime p is 
P J = 0 

clear from the context, the subscript p will be omitted. 

In any algebra A over a field of characteristic p ^ 0, let £(x) 

be the p'th power of x for x an element of A. 

Theorem. If p is an odd prime, (0) - (^) is a comultiplicative set 

of elements of Q, (p), , 6 ) generater CL (p ) or an algebra, and 
n > 1 

1) jfc.(tP) = 0 for j > 2, 

2) * % ( P ) - 0 unless i = a(j) for some j , 

and 3) ( r

a ( i ) №)> 6 \ f r

a ( j ) ^ ' 6 ' ^ i j > 0 i s a b a s i s f o r t h e 

primitive elements of fl (p). 

Proof. Cartan showed that in order to determine whether an element 

of the Steenrod algebra is zero or not it suffices to check it on finite 

products of 1 and 2 dimensional classes in an algebra of the form 

H (IT, 1; k) where k is the field with p elements and IT is a finite 
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dimensional vector space over k. Since an element x of Q (p) is 

primitive if and only if it acts as a derivation on cohomology algebras 

of spaces, in order to see if a primitive element is zero or not it suffices 
'f x 

to test it on i and § i where ieH (k, 1; k) is the fundamental class. 

An element of fl (p) takes primitive elements in the cohomology of an 

H-space with coefficients in k into primitive elements. A basis for the 

primitive elements of H (k, 1; k) is (i , £ o Thus a primitive 

element of Q, (p) is zero unless its degree is 1, or of one of the forms 

2a(j)(p-l) or Zot (j) (p-1) + 1, and for these degrees the vector space of 

primitive elements has dimension at most 1. Now one makes an elementary 

inductive calculation showing Aj^) (6 i) = 0 for j > 2. r

a ( j ) ^ ^ = 

£ (6 i )> t r

a(j) W> 6 J W = I O" l >' a n d t h e t h e o r e m follows. 
i * 

Theorem. (Sq) = (Sq ) is a comultiplicative set of elements of Ct (2) 

which generates Q (2) as an algebra, and 

1) Jt̂ Sq) = 0 for j >2 

2) r̂  (Sq) = 0 unless i = OT (j) for some j , 
and 3) (r .. v (Sq)). _ is a basis for the primitive elements of cm) i > 0 

* 
a (2). 

The proof is as the proof of the preceding theorems. These theorems 

characterize the Steenrod algebras Q (p) , and one may obtain Milnor's 

description of the dual Hopf algebras Q (p ) algebraically from the data 

they furnish. 
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