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Société Mathématique de France 
Astérisque 32-33 (1976) 

On Charac ter i s t i c Classes in the 

framework of Gelfand-Fuks Cohomology 

by Raoul Bott 

1. Introduction. 

It is a great privilege to address this colloquium in honour of H. Cartan. Every 

mathematician of my generation, be he a topologist or geometer or for that matter 

an algebraist or analyst, has been profoundly influenced by H. Cartan's research 

exposition and general point of view. In my own case , my first introduction to topology 

in 1949, were the lectures of Steenrod on fiberbundles on the one hand, and the Cartan 

Harvard Lectures of the year before on which K. Reidemeister lectured at the I. A. S. , 

to a small private seminar (I believe only E. Specker and I were the audience), on the 

other. Of course in Professor Reidemeister* s rather rambling and philosophical 

presentation some of the famed French lucidity was lost and that may account for the 

fact that, in spite of my great admiration for the French school, I have never been quite 

able to imitate it in my own work. 

Nevertheless, the ideas I learned then (largely thanks to much remedial tutoring 

by my friend Specker), and later, through the years , from the famed Cartan Seminar, 

are still the foundation of my knowledge; and I would therefore like, on this occasion, 

above all else to thank Henri Cartan in the name of my whole generation for the selfless 

way in which he has always worked to make mathematics, on all levels, accessible and 

intelligible to all of us. He has truly been our teacher. 

F o r my topic here I have chosen to speak on a subject which has fascinated me for 

the past three years or so and which is especially appropriate here also, because it 
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complements the work of Chern-Weil and H. Cartan on characteristic c lasses in a 

manner which I think would have pleased E . Cartan. I am referring to the work of 

Gelfand-Fuks on the cohomology of the Lie-algebra LM of vector fields on a C°° 

manifold M . 

Recall that these "infinitesimal motions" X on M correspond to homogeneous 

linear first order C°° differential operators on M . In view of the fact that quite 

generally, the commutator of an operator of order n and one of order m is 

of order n + m - 1 , it follows that under the law 

[ X , Y ] = X o Y - Yo X 

these vector fields form a Lie algebra over ]R ; that is, a vector space over JR 

endowed with a skew symmetric bilinear multiplication X, Y -» [ X, Y ] , subject to the 

Jacobi identity 

2 [ X , [ Y , Z ] ] = 0 

where the sum extends over cyclic permutations of the variables. 

Now this Lie algebra LM is of course the basic tool in all aspects of modern 

differential geometry. However, traditionally the emphasis has been on the structure 

00 

of LM as a C (M) - module . Thus, for instance, the famous DeRham complex 

O(M) = 2 f 2 q ( M ) 

consists of the complex of C°(M) - alternating C°(M) - multilinear maps form 

LM x . . . x LM to C°°(M) , 
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and the exterior derivative 

d : flq(M) ^>nq+1(M) 

00 

is miraculous and unique in so far as it preserves the C (M) linearity. 

Finally, I think most of us also attributed the finite dimensionality of the DeRham 

cohomology 

H^ D (M) = K e r d / I m d 

00 

to this same C (M) - linearity. 

Now Gelfand and Fuks had the simple but inspired idea to replace this linearity 

00 

condition by continuity in the C topology: Precisely then, they define a complex 

( 1 . 1 ) A(M) = e A q (M) 

where A^(M) consists of the multi - 1R - linear maps 
CO : v L M x ••• x LMy > JR 

q 

00 

which are continuous in the C topology on LM , endow A(M) with a differential 

operator d , given by 

dcofrj , — , x q + 1 ) 

(1. 2) = 
K J 

( -1) 
i+i+1 

60 ( [ x . , x . ] , x r...,yM,y . . ,x q + 1 ) ( 

and ask for the cohomology of the resulting differential complex. 

115 



R. BOTT 

I will write GF(M) for its cohomology 

GF(M) = HA(M) = K e r d / t m d in ( 1 . 1 ) , 

but before discussing it any further, a word about ( 1 . 1 ) is in order. This formula is 

best first understood in the context of Lie groups. Given such an object, that is , a 

group in the category of C°° Manifolds , we may naturally single out the subcomplex 

Og = Inv G • 0 ( G ) 

of forms on G invariant under left translation. As the DeRham d commutes with 

translations, Qg comes equipped with a differential operator, so that H(£}g) is a 

well defined object, and we further have a natural map 

H(Og) >H(QG) = H D R ( G ) . 

Now here g really stands for the Lie algebra of Left invariant vector-fields on G , 

and the d of Qg is then easily seen to be given by the formula (1. 1) if the X., € g , 

co € 0 ^ ( g ) . Of course finally ( 1 . 1 ) defines cohomology for any abstract Lie algebra. 

In short then, the Gelfand-Fuks complex deals with "the continuous subcomplex 

of the cochain complex of the abstract Lie algebra LM ". 

Now LM is clearly in some sense the Lie algebra of the group Diff M of 

Diffeomorphisms of M , hence in some sense A(M) bears the same relation to 

Diff(M) as Q(g) bears to G . If one thinks along these lines the continuity assumption 

also turns out to be essential and natural. Indeed for a L i e group G , the complex 0 ( g ) 

can easily be characterized by a universal property: To wit: the element co € CI (g) 
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CO 

assigns to every C map 

f : M > G , 

the element co(f) = f*co in Q q ( M ) , and this function clearly has the following two 

properties: 

a . ) Functoriality. F o r a commuting diagram of C°° maps as below, 

Mf — - — > G 

h / 

/ i 

M 

we have co ( f ) = h* co ( f ) . 

b . ) Invariance. Given the diagram 

f 1 

M — - — > G g — > G 

where denotes left translation by g , then 

coU o f) = co(f) . 

e 
Conversely given a function f h-> co (f) subject to a . ) and b . ) there is a 

unique co € 0 ( g ) such that 

co(f) = f*co 

(Indeed just choose 1 : G > G to be the identity and set co = co( l ) . ) 

Now if we apply this procedure to Diff(M) , where we declare a map 

W > Diff(M) 
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to be C° if and only if the transpose map 

W X M — = > M 

given by 

f^w, m) = f(w)(m) 

00 

is C , then one sees without trouble that every such map, 

f : W > Diff(M) 

induces a homomorphism 

f : A ( M ) > 0 ( W ) 

i 

which is natural and invariant, and as I said before, for this f just to exist, the 

continuity assumption is already essential. 

But all this is really a little beside the point - I remark on it as much to show 

off some familiarity with arrows as to justify the concept - once asked, the problem to 

compute H*{A(M)} is clearly interesting and in a series of papers Gelfand and Fuks 

proceeded to investigate it. Among the results they proved the following: 

THEOREM (Gelfand-Fuks). Hie ring GF q (M) is of finite dimension for each 

q if M is compact, and in particular, for the c irc le S* , 

GFiS1) = E(co) ® IR[y ] 

is the tensor product of an exterior algebra with a 3-dimensional generator ¿0 and a  

polynomial ring IR[ y 3 with a 2-dimensional generator. 
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Furthermore, they gave the following explicit representatives for co and 

y : Let be represented as w}fZ so that vector-fields f can be identified 
ox 

with functions f of period 1 • With this understood 

f1 f g' 
M(f,g) = / det dx 

J f gM 

0 

f g h 

CO(f,g,h) = det f g r h' 

r g - h- o 

where the 0 in the second formula denotes evaluation at 0 . Of course, any other 

point would do just as well, and in fact one could also integrate this expression for to . 

On the other hand \x can never be represented by a formula that does not involve the 

behavior of f and g on all of . 
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2. The local complex. 

I do not have time here to describe how Gelfand and Fuks arrived at their 

results. Rather let me explore only the first step in their computation, for as it 

turned out later, it furnishes the addendum to the theory of characteristic classes I 

alluded to earl ier . 

The first step in question is based on the remark that 0 € A(M) has a natural 

support in M , so that it makes sense to speak of the subcomplex A (M) of elements 

whose support lies in K , and therefore in particular of the minimal subcomplexes 

A (M) with support at a point p € M . To study A (M) choose a coordinate system 
P P 

X p • • • , x^ centered at p , so that every X € L(M) is locally given by 

X = V a 1 - * , 
^ dx 1 

i 

i oo 

where the a are C functions near p . 

F r o m the most elementary properties of distributions it then follows that all 

the 1-forms of A^(M) are generated by the finite partial derivatives of the 6 - function 

applied to the components of X . Hence A^(M) is really independent of M , and 

therefore a purely local and universal complex which we will often simply denote by A^ : 

A = A (M) for any M 3 p . 
P P 

Gelfand and Fuks take the position that A^ is again the continuous analogue 

of CI a . Indeed if o denotes the Lie algebra of formal vector-fields 
° n 

X = 2 a. - 5 -
i Sx i 
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where the a., a re formal power series in the x's , and if we topologise <*n 

OL I I 

in the usual power series topology, - x is small if | a \ is large - then it is 

obvious that 

A p = O c ( o n ) , 

is the complex of continuous alternating forms on . 

Well, in any case , to get on with an explicit computation of H* A^ = H* (o^) 

we proceed as follows: 

In terms of our local coordinates x* at p , define 1 -forms 

Ìn ÇA* = oJ(ûn) 
CK p С П 

, i = I , - - - , n , 

a = «*va2,---, « y 

by: 

< « - < - > | в , а £ - ' | р . 
Here the of s a r e k-tuples of non negative integers and | oc | = 2 a. . 

Our earl ier statement then translates to the assertion that 

( 2 . 1 ) Hie 0^ span A* and hence generate all of A^ . 

Note that of course the 0's are symmetric in their lower indices so that 8*^ s ®21 ' 6 t C * 

The sign has been chosen so that the lower indices correspond to Lie - derivatives 

i ò ò 
of 0 in the direction — , • • • , • That is , we have 

* <*1 ' ' * A 
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X ( ъ j ) e* e 1 

J 

( ъ в ( в в 9 etc, 

where X is still given by ( ) and so commutes with d . 

Now because the ("̂ |J commute with one another, the ^("^l) a l s ° commute. 

Hence the map 

ъ (S)... (g) a > z ( eft 

••• JE ( a 
ôx 

CL 
n 
\ 

factors through the symmetric, or polynomial, ring IR , • • • , generated 

by the —: over IR , and it follows that under X , the complex A 1 is naturally an 

ax p 
IR module. 

Lax1] 
F r o m this point of view (2.1) can therefore be stated in the form: 
Under X the 1-forms A 1 constitute a free module with n generators 

6*, • • • , 9 n over the polynomial ring IR M ' 
A 

1 
p 

IR Ъх. 
i 

(в1,--, e 2 ) 

It follows now that structure equations of are completely determined once 

they a r e written down for 8 1 , and hence by the following, easily verified, 

PROPOSITION 2.1. 

i i i 1 

(2.2) d6 + 6. A & = 0 , 

^ We use the usual convention that repeated indices are summed. 
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To see how the formula (2. 2) determines all other structure equations, 

one need only apply X {^^j 6 t C * 9 t 0 b ° t h s i d e s o f 2 ^ a n d r e c a 1 1 t h a t ^ a c t s b y 

derivations. Explicitly one obtains: 

( 2 . 3 ) del +
 e j k A ^ + e j A 4 = 0 

<2-4> deL+ 8juA ̂  + e!k

 A 4 + ̂ A i+ <} A it-0 

in the first two cases . 

Clearly now (2.3) bears a considerable similarity to the structure equations 

i 2 
of GL(n, R ) and to bring this out further let us define the 2-forms R . € by 

(2.5) R ! S da! + e! A e k . 
J J k j 

Then (2.3) takes the form 

( 2 . 6 ) RJ - " fljj, A e k 

while the structure equations of GL(n,lR) of course were R* =0 . In fact these forms 

behave just as the curvature tensor of a "torsion free connection" does, and as we will 

see later the R | do play a role of the universal or formal curvature forms of a 

manifold. Here let us just as an exercise in the calculus of A^(M) derive the 

classical curvature identities: 

i 2 
P R O P O S I T I O N 2. 2. The forms R^ € A p have the following properties: 

(2.7) R 1 A 9 s = 0 , d R 1 = R! A ^ - A R k  

which correspond to the two Bianchi Identities in Torsion free Geometry. 

123 



R. BOTT 

Proof: By ( 2 . 6 ) 

R ! A a1 = - e!, A e k
 A d = o 

because o!̂  is symmetric in its lower indices. 

To obtain the second identity consider the equation ( 2 . 4 ) and multiply it 

A, 

with 0 summing over the repeated index I . On obtains 

( 2 . 8 ) de*, A el
 + 9* A 9* A el

 + el , A £ ^ e ¿ + e1
 A e[ A el = o 

where the second form of ( 2 . 4 ) has cancelled out by the symmetry of 9. , . in j , k, 

JIM, 

and I . But (2. 8) simply restates (2. 7) in the equivalent form 

- d R 5 c + ^ A R i - R j i A e i = ° • 

On the cohomological side (2. 6) and (2. 7) imply that the subalgebra 

W : 
9 

j 
R 

i 

generated by the indicated forms in A^ is, first of all, finite dimensional and secondly 

closed under d . Indeed by ( 2 . 6 ) any monomial in the R's of length > n vanishes, 

while ( 2 . 7 ) together with ( 2 . 5 ) expresses d of the 0's and R's in terms of the 

8 T s and R's . Actually this subcomplex already carr i e s all the cohomology of A^ . 

THEOREM : (Gelfand-Fuks) The inclusion 

W c A (U) 
P 

induces an isomorphism in cohomology. 

The proof of this theorem is nontrivial, and involves some nice elementary 

invariance theory, to eliminate the forms 0^ with | a | > 2 ; but here I have time 
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only to describe the final outcome. 

th 

F o r this purpose let us define the i Chern polynomial as a function on 

GL(n, IR) by the formula: 
( 2 . 9 ) S t ^ c f A ) = d e t ( l + t A ) . 

It is then clear that each c^ is a polynomial in the entries A* of A , 

for example 

( 2 . 1 0 ) i 
Cj (A) = A J 

c 2 (A) = ( - A J A J + ( A J ) 2 ) / 2 

c (A) = det A n 

Now as the R ! are two-forms and so commute we can evaluate these 

polynomials c. on the R ! ' S to obtain forms 

( 2 . 1 1 ) c . ( R ) € A 2 1 . 
1 P 

We call these the Chern classes in A^ and in terms of them the Pontrjagin 

4i 
forms P j ( R ) € Ap are defined simply by 

(2 .12 ) p . ( R ) = c 2 . ( R ) . 

Of course in the literature one often encounters these forms with factors of ( " ^ ^ " j ^ > 

but this is not to the point here, where they a r e , for the moment, only elements of 

4i 
W c Ap . In any case in terms of these c . ( R ) one can reduce W further to a complex 

WU defined as follows, n 
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Consider the polynomial ring IR [ c^, • • • , c n ] with (weight of ) = 2i , 

and let IR [ c^, • • • , ] be the quotient of IR [ - • • , c ] by the ideal of elements 

with weight > 2n . Here of course the weight w of a monomial c^ • • • c ^ in 

a • 1 + a • 2 + • • • + a • n . 
1 2 n 

With this understood one sets 

WU = I R [ c 1 , - - - , c ] ® E t h , , - - - , h ) n 1' ' n 1' ' n 

where E (h^, • • • , h^) denotes an exterior algebra with generators ĥ  in dimensions 

2i - 1 . Finally a differential operator d is introduced in WU^ by setting 

(2 .13 ) d(c. <8> 1) = 0 

d(h. ® l) = 1 ® c. . 
I I 

The cohomology of A p is now made rather explicit by: 

PROPOSITION 2. 3. The map 1 ® c. -» c^R) has an extension to a map of  

complexes 

WU > W c A 
n p 

and any such extension induces an isomorphism 

(2 .14 ) H* (WU n ) — - — > H* ( A p ) » H* ( a n ) 

As an example, consider the case of n = 1 . Then W l ^ c W can be taken 

to be 

c i =
 Ri » h i -

 el ' 
for we clearly have dh = . In this case H(WU 1 ) is generated by 1 , and 
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c in dim 3 . Thus: 

( 2 . 1 5 ) H*A (IR 1 ) ^T0. p (IR m dim 3 . 

The computations of course become more complicated in higher dimensional 

cases but were carried out by Vey [ 11 ] who produced an explicit base for H*A^(lRn) 

in terms of the monomials in the h's and c's of WU . 
n 

So much then for our brief excursion into the A . We have learned first of all, 
P 

that this "subcomplex of minimal support" has structure equations which are easy to 

write down, and which a r e very analogous to the equations one meets in differential 

geometry. Secondly we have seen that its cohomology is finite dimensional and computable. 

Now in the computation of H* A(M) , the cohomology of A^(M) plays a 

fundamental role, which I will have not time to explore here. Let me just give those of 

you familiar with some topology the barest outlines of the final outcome. 

Already Gelfand-Fuks observed that every manifold M carr i e s a bundle EM , 

which is associated to its principal frame-bundle and whose fibers E^M , have cohomolog-

isomorphic to that of A^(M) : 

H*(E M) H*A ( M ) . 
P P 

TTius E is in a sense a geometric realization of the family of complexes 

Ap(M) , p € M , and in terms of E , the final result on H* AM is given by the 

following theorem which was conjectured independently two years ago by Fuks and myself 

and for which two independent proofs have recently been given by Haefliger and Segal. 
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THEOREM (Haefliger, Segal). Let TE denote the space of continuous  

sections of E . Then 

(2. 16) H* (AM) H* (rE) . 

This beautiful result is, of course, nevertheless a negative one, as it reduces 

the mysterious H* (AM) to the complicated but still rather well understood H* (rE) . 

Observe that (2 .16 ) implies, in particular, that 

H*(AIR n) = H* (rE) = H*(E ) = H*(A IR n) 
P P 

the second equality being true because E is contractible to E^ over p . Finally 

let us check ( 2 . 1 6 ) for the c irc le , where Gelfand and Fuks made their computations. In 
3 

this case E ^ is the three sphere S , which conforms with (2 .15 ) . Further as the 

tangent bundle of S* is trivial, we have 

E = S 3 X S 1 

1 3 1 3 
whence TE = Map (S , S ) , the space of maps from S to S . Now this function 

space has well known homology, to wit: 

( 2 .17 ) H * M a p ( s \ s 3 ) = I R [ y ] ® E(co) 

is a polynomial ring with generator \i in dimension 2, tensored with an exterior algebra 

with generator co in dimension 3. 
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3. On the Relations with Characteristic classes. 

I have already remarked on the fact that the basic structure equations of A^(M) 

bear a great similarity to the structure equations of torsion free geometry, and I would 

now like to explain this déjà vu phenomenon. 

F o r this purpose let us think of M as the homogeneous space 

M = Diff(M)/Diff(M;p) 

where Diff(M;p) denotes the subgroup keeping p fixed. Now the group Diff(M;p) 

has a natural filtration by the subgroups 

Diff(M ; p) => Diff(M ; p 2 ) => Diff(M ; p 3 ) => • • • 

keeping p fixed to higher and higher order. Thus 

Diff(M;p k) 

here denotes those diffeomorphisms whose Taylor expansion at p differ from the identity 

by terms of order k or higher. Dividing successively by these subgroups and setting 

J k ( M ) = Diff(M)/Diff(M;p K + i ) 

one obtains a tower of finite dimensional manifolds over M 

( 3 . 1 ) M < J ^ M ) < J 2 (M) < . 

on all of which Diff(M) acts naturally, and it therefore makes sense to speak of the 

Diff(M) invariant forms on J k (M) . 
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The manifolds J k (M) are of course the higher frame bundles or jet bundles 

over M , and well known to all geometers, and I claim on these spaces the complex 

Ap(M) can be naturally identified with the complex of Diff(M) invariant forms. 

Precisely, one has a natural isomorphism : 

( 3 . 2 ) V M ) ^ l m » I n V D i £ f ( M ) °VM>-
F r o m this point of view, our forms 0*, 0*, 0!,, e t c . , now appear successively 

J J k 

in J j ( M ) , ^ ( M ) , e t c . , and although the d0X are of course invariant already in 

J 1 (M) , they a r e not decomposable there. Thus the formula 

( 3 . 3 ) dB1 + 0* A & = 0 

only becomes valid in J 2 ( M ) > e t c * 

In short then, the complex A^(M) provides one with a complete description 

of the "Tautological" forms on the J^(M) . These of course were known to the geometers 

all along since E . Cartan I expect, and now in retrospect I recall having learned about 

them from Kobayashi years ago at the Tucson seminar on Diff. Geometry [ 8 ] . However 

he never pursued the cohomology of this complex, and its significance in the framework 

of characterist ic c lasses . 

Before I explain that significance note that (3. 2) corresponds to the well known 

formula for the invariant forms on a homogeneous space G/H of a Lie group 

( 3 . 4 ) I n v G a ( G / H ) a I n v H 0 ( g / h ) , 

in our infinite dimensional case. Indeed in this situation, the Lie algebra of Diff(M;p ) 
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clearly corresponds to the vector fields vanishing to order k at p , so that finally 

as k -» » , 

( 3 . 5 ) I n v _ O J M = QQ . 

Lr 0 0 n 

In any case the isomorphism (3. 2) is natural and therefore immediately 

furnishes us with some sort of characteristic ring in lim H*0(J ,M) which I simply 

k k 

denote by H*(JœM) . 

Now observe that in our tower J ̂ (M), J 2 ( M ) , e t c . , are all of the same 

homotopy type. Indeed the fibers of all these projections are all contractible groups. 

Hence our natural map 

(3. 6) H*(o n) > H*(J M) 
n °° 

11 
H*(J 1M) 

is not quite as far removed from where we want it - that is in H*(M) - as might at 

first appear. 

In fact at this stage only the following small modification is needed to come up with 

genuine characteristic classes. 

Let us choose coordinates x \ x 2 , • • • , x 1 1 centered at p , and in terms of these 

define the groups 

Diff Q (M;p k ) 

as the subgroups of those f € Diff(M) whose jet at p takes the form 

j (f) x 1 = a! x** + terms of order > (k+1) 
P J -
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with || a* || in the group 0(n) . 

Then for k > 2 , we have the exact sequence 

0 > Diff(M; p k ) > DiffQ(M; p k ) > O(n) > 0 

which gives r i se to a corresponding fibering 

J k ( M ) - ^ — > J k ( M ) / 0 ( n ) 

l r 

where the right hand term is Diff(M)/ DiffQ(M ;p ) . 

This construction now induces a natural arrow 

(3. 7) H * ( a n ; c y > H * { J J A / O ( n ) } 

where the left hand side denotes the usual relative Lie algebra cohomology with the 

subalgebra of formal orthogonal vector fields, and the R. H. S. is short for 

lim H * 0 { j , M / 0 ( n ) } . 
k-oo 

On the other hand J k ( M ) / 0 ( n ) has the homotopy type of M for every k , so that 

(3. 7) real is really an arrow 

( 3 . 8 ) H^V 'V > H * ( M ) . 

Thus from this point of view the natural characterist ic c lasses of an n - manifold , 

are given by H*(Q ; O ) . 
c n n 

The computations of Gelfand-Fuks can now be modified without too much trouble 

and one then finds the following result (see [ 3 ] ) . 

Proposition. H*(o , O ) = H*(WO ) where WO is the complex  c n n n n 
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E O i p h y - - - ) <8> I R U ^ - - - , c n ] 

with 

d(l <8> h t ) = 1 <8> cl 

d(l ® h 3 ) = 1 <8> c 3 , etc. 

In particular in dim < n , H * ( O Q , O q ) is isomorphic to the ring generated by 

the c ^ , 4i < n , and, up to a constant factor, these of course correspond to the well 

known Pontrjagin classes of M 

c 2 . (M) = p.(M) . 

On the other hand, just as in WU there a r e other classes in H(a , 0 ) of 9 J n n* n 

much higher dimension, which therefore seem spurious in the present context. 

Nevertheless, as I will explain in a moment, these phantom classes come into 

their own once we extend our point of view from manifolds to Foliations. 

But first a final remark on how and why the formulas (3. 3) were reminiscent 

of curvature formulas; which will also explain why the c 2 . represent the usual 

Pontrjagin classes - say of a Riemann structure on M . The point is, of course, that a 

Riemann structure on M corresponds to a section s of J^(M)/0^ ovpr M , and 

the corresponding Levi-Civita connection then defines an O n - equivariant section 

J ^ M ) — — > J 2 (M) , 

under which the RJ pull back to the curvature of the Riemann structure which the 
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C 9 . ( R ! ) , being 0(n) basic, correspond to the Pontrjagin classes on M . Once this 

relation is made, one can link up the computation of H * ( Q

n î ° n ) w i t n t n e u s u a l 

machinery of connections and curvature, as well as the Weil algebra of g X(n) . In 

fact, the W of the previous section is clearly a truncated form of that Weil algebra. 

All in all the last proposition therefore is a refined version of the classical results. 
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4. The Characteristic c lasses of Foliations. 

Let me briefly expalin now how the higher classes of WO n serve as 

potential characteristic c lasses of foliations. Roughly speaking the idea is that one 

may think of a manifold M , as a special case of a foliation - i. e . , we think of M 

as foliated by points. 

Thus extended the constructions of the last section are seen to define a natural 

arrow 

( 4 . 1 ) H*(0 n ,O(n)) * ( ? ) > H*{M(3)} 

to the cohomology of the manifold on which the foliation 3 of codimension n is 

defined. As now dim (M) is unrestricted, the total cohomology of the L . H. S. comes 

into play. 

To see how such an arrow comes about, recall that a foliation 5 on M of 

codimension n can be defined as a subbundle E of the tangent bundle of M which 

is locally the kernel of submersions of M to lR n : 

Hius near each p € M , 

(4. 2) E a ker d f 

where f : V > lR n , p € V , is a smooth map whose differential is onto at each point. 

With this understood define J k ( 3 0 to be the space of k-jets of submersions f , from 

M to IR n , with target 0 € IR n , and which are compatible with 3 in the sense 

that E„ is Ker df . 

135 



R. BOTT 

In the case of the trivial foliation, (E = 0) , 1^(3) is then easily seen to be 

a local description of our old J^(M) and in this framework it is not difficult to 

generalize (3.6) to ( 4 . 1 ) . Furthermore under cp(3) the Pontrjagin classes of 

H*(a n , O n ) go over into the Pontrjagin classes of the normal bundle T M / E of 3?. 

Thus in particular the truncation of W therefore implies the vanishing condition for 

the characterist ic c lasses of such a normal bundle which I noted some years ago. (At 

the same time ( 4 . 1 ) also brings us the secondary classes , occasioned by this vanishing 

phenomenon.) 
3 

Thus for n = 1 , the class h , c , € H (o ; 0 ) corresponds to the Godbillon, ' l i n n 

Vey c lass , which of course started this whole development. The general setting ( 4 . 1 ) 

for its generalization was noted later by many of us: Bernstein,Rosenfeld in the U. S. S. R . , 

and by Malgrange, and Bott-Haefliger in the West. Of course there are also other points 

of view which explain these phenomena. In particular the work of Chern-Simons, 

Cheeger deals with secondary classes quite generally, and Kamber and Tondeur have 

their own approach to all manner of foliated bundles and their characterist ic classes. 

Unfortunately however, the most difficult question concerning these c lasses 

remains unsolved. We do not know whether all the classes of H*(o ; O ) can be 
n n 

distinguished by actual foliations. 

Now the master par excellence for constructing foliations is Thurston, but even 

he has only been able to detect a few of them. On the other hand of course he has 

detected these with a vengeance. Indeed, he can forge a foliation 3 on which the 
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class h j C ^ 1 1 € ^ n + * ( ° n > O n ) takes on any preassigned real value! 

But this really leads us to another topic, beyond the scope of these remarks; 

all I wanted to do here, apart from saluting Henri Cartan, is to show how a natural 

question, such as Gelfand-Fuks asked themselves, has borne fruit in many interesting 

directions and has taught us to rethink old phenomena in new ways. 
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