Astérisque

S. Newhouse
 Mauricio Matos Peixoto

There is a simple arc joining any two Morse-Smale flows
Astérisque, tome 31 (1976), p. 15-41
http://www.numdam.org/item?id=AST_1976__31__15_0
© Société mathématique de France, 1976, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Société Mathématique de France
 Astérisque 31 (1976)

there is a simple arc joining any two morse-smale flows

by

S. Newhouse and M. M. Peixoto

THERE IS A SIMPLE ARC JOINING ANY TWO MORSE-SMALE FLOWS
by

S. Newhouse and M. M. Peixoto*

1. Introduction

Let $M=M^{n}, n \geq 1$, be a compact differentiable manifold without boundary and $\mathfrak{x}=\mathfrak{x}(M)$ be the Banach space of all C^{r}-flows (i.e., vector fields or ordinary differential equations) on M, endowed with the c^{r} todology, $r \geq 2$.

This naper is about the bifurcation theory of flows and in order to clarify its meaning and scope we begin with some general considerations.

Bifurcation theory is the study of maps of a finite dimensional manifold Λ (parameter space) into \mathfrak{x}. Of very special interest is the study of the intersection of the image of Λ with the set, $\Sigma \subset x$, of all structurally stable flows on M. The first to adopt this point of view was J. Sotomayor [19] who considered the case where $n=2$ and Λ is an interval. He qives a fairly good description of how, generically, an arc in x is situated with respect to Σ. Although many of the concepts of this work can be extended to dimension $n>2[21]$, it is clear that there one has to settle for much less. For one thing Σ is no longer dense in x and won't be so simply described. It is then natural to substitute for Σ the best known open subset of Σ, namely the subset, Δ, of all Morse-Smale flows on M. In [11] this point of view was adopted and a delicate analysis is

[^0]given of how, generically, an arc starting at a point $X \in \Delta$ meets the boundary $\partial \Delta$ for the first time; again the situation is far from simple. The main goal of the present paper is (Theorem B) to show that aiven any two flows $X, Y \in \Delta$ there is a simple arc in X connecting them. Simple means that the arc contains at most finitely many points outside of Δ and, roughly speaking, for these the singularities and corresponding intersections of stable and unstable manifolds deviate in the least possible way from the structurally stable situation. These exceptional (bifurcation) points will belong to a codimension one submanifold $\Sigma_{1} \subset \mathfrak{X}$, a natural extension of a set introduced in [19, 20]. The simple arc we get is stable in the sense that any nearby arc exhibits the same type of behavior.

Our theorem then means that one can always go from X to Y with a minimum of topological degeneracy, and this in a stable way. Of course the broken line segment $X O Y$, where 0 is the zero flow, has only the point 0 outside Δ but this arc is not stable and 0 is the epitome of topological degeneracy.

On a somewhat philosophical vein our theorem fits well within Thom's framework of the theory of morphogenesis [24], whose fundamental problem is to study how a "form" is transformed into another.

Simple arcs give a nice, differentiable way of describing some operations with flows which have been used in the literature. For instance, the arguments of [14] give a constructive proof of the existence of a simple arc connecting any two gradient like flows on S^{2}, the exceptional points exhibiting no saddle connections. The recent work of G. Fleitas [4] implies
that our theorem for gradient like flows on M^{3} is essentially equivalent to an old theorem by Singer [15] about "moves" on Heegard diagrams. Also, as G. Fleitas pointed out to us, the proof of the h-cobordism theorem in [9] contains as a special case the construction of a simple arc between any two gradient flows on $s^{n}, n \geq 6$.

We now say a few words about the proof of the theorem. A naive argument to disprove it would run as follows. Let M be the two torus, and $X, Y \in \Delta$, be non vanishing flows such that the rotation number of X is 1 and that of Y is 2. Then along any arc from X to Y the rotation number varies continuously and it is easily verified that every flow with irrational rotation number corresponds to a bifurcation point. This argument is correct as long as the arc stays on a region of \mathfrak{x} where the rotation number is defined; i.e. on a region of non-vanishing flows. What it actually shows is that there is no such arc theorem for diffeomorphisms of s^{1}. Thus one sees that the bifurcation theory of diffeomorphisms is much more rigid than that of flows. To prove our theorem we start getting rid of the closed orbits through the successive introduction of a saddle node on each closed orbit. One then enters the realm of gradient-like flows, passes to a flow which is locally a gradient, and then to a gradient flow using the methods of [17]. The proof ends by showing, via transversality, that most arcs within the gradient flows are simple. Incidentally, the above mentioned introduction of saddle nodes gives an immediate way to get the Morse inequalitites for Morse-Smale flows from the classical Morse inequalities [16].
2. Definitions and statements of results

Let $x \in M$ and f be a local c^{2} diffeomorphism of a neighborhood U of x into M such that $f(x)=x$. One says that x is a hyperbolic fixed point of f if each eigenvalue of the derivative $T_{x} f$ has absolute value different from one; x is a quasi-hyperbolic fixed point of f if (1) 1 is an eigenvalue of $T_{x} f$ with multiplicity one, and (2) if $v \neq 0$ is an eigenvector of $T_{x} f$ corresponding to the eigenvalue 1 , then the second derivative of f at x on $v, T_{x}^{2} f(v, v)$, is not in the sum of the eigenspaces of $T_{x} f$ corresponding to the eigenvalues of $T_{x} f$ different from 1. Here $T_{x}^{2} f(v, v)$ is taken relative to some coordinate system near x. The non-degeneracy condition (2) does not depend on the coordinate system chosen (see [21]).

Let $X \in X^{r}(M)$, and let ϕ^{t} be the 1-parameter group corresponding to X (i.e., $\left.\frac{d \phi^{t}(x)}{d t}\right|_{t=0}=X(x)$). Thus ϕ^{t} is a diffeomorphism of M for each real t and ϕ^{0} is the identity. A critical point x of X is called hyperbolic (quasi-hyperbolic) if it is a hyperbolic (quasihyperbolic) fixed point of ϕ^{t} for $t \neq 0$. A quasi-hyperbolic critical point is also called a saddle node. Let \boldsymbol{r} be a closed orbit (periodic solution) of X and let H be a small piece of hypersurface through $x \in \gamma$ transverse to γ. There is an induced diffeomorphism θ (called the Poincaré transformation) from a neighborhood of x in H into H defined by $0(z)=\phi^{t(z)}(z)$ where $t(z)=\inf \left\{t: \phi^{t}(z) \in H, t>0\right\}$. The orbit is called hyperbolic (quasi-hyperbolic) if x is a hyperbolic (quasihyperbolic) fixed point of θ. These qualities for γ do not depend on the
choice of x in γ or H. The orbit of a point $x \in M$ will be denoted $o(x)$.
It is known [5], [6] that any hyperbolic (quasi-hyperbolic) critical point p has a smooth stable manifold $W^{S}(p)=\left\{y \in M: \quad \phi^{t}(y) \rightarrow p\right.$ as $t \rightarrow \infty\}$ and a smooth unstable manifold $W^{u}(p)=\left\{y \in M: \quad \phi^{t}(y) \rightarrow p\right.$ as $t \rightarrow-\infty\}$. In the quasi-hyperbolic case, $W^{S}(p)$ has a smooth boundary $W^{S S}(p)$ consisting of those points y for which $\phi^{t}(y)$ approaches p exponentially as $t \rightarrow \infty$, and $W^{U}(p)$ has a smooth boundary $W^{U U}(p)$ consisting of the points y for which $\phi^{t}(y)$ approaches p exponentially as $t \rightarrow-\infty$. Similarly, a hyperbolic (quasi-hyperbolic) closed orbit has stable and unstable manifolds obtained by iteration through ϕ^{t} of the corresponding manifolds for the fixed point of the Poincare transformation.

A point $x \in M$ is an ω-limit point of X if there are $y \in M$ and a sequence $t_{i} \rightarrow \infty$ such that $\phi^{t_{i}}(y) \rightarrow x$. The point x is an α-limit point of X if it is an ω-limit point of $-X$. The limit set of X, denoted $L(X)$, is the closure of the union of the set of $\alpha-1$ imit points and the set of ω-limit points of X. An element $X \in X^{r}(M)$ is called a Morse-Smale flow if
(1) $L(X)$ consists of a finite number of hyperbolic critical points and a finite number of hyperbalic closed orbits.
(2) the stable and unstable manifolds of the orbits in $L(X)$ meet transversely.

These flows have been studied in [16] and [12.] where more references may be found. A Morse-Smale flow without closed orbits (i.e. whose limit set consists only of hyperbolic critical points) is called gradient-like. For a positive integer $j>0$, let \mathbb{R}^{j} be the Euclidean space
of dimension j. Take coordinates $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{s}\right)$ for $\mathbb{R}^{n} \times \mathbb{R}^{s-1} \times \mathbb{R}^{1}$, and let $\pi: \mathbb{R}^{n} \times \mathbb{R}^{s-1} \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ be the natural projection onto the last factor; i.e., $\pi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{s}\right)=y_{s}$. Let H and P be submanifolds of a manifold M with $\operatorname{dim} N=n, \operatorname{dim} P=p, \operatorname{dim} M=m=n+s$, and suppose that $y \in N \cap P$. Let $p_{1}=\operatorname{dim} T_{y} N \cap T_{y} P$.

We say y is a quasi-transversal intersection of N and P if
(1) $\operatorname{dim}\left(T_{y} N+T_{y} P\right)=m-1$ and
(2) if $n+p \geq m$, then there are coordinates $\phi: U \subset M \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{s-1} \times \mathbb{R}^{1}$ near y in M and $\psi: V \in P \rightarrow \mathbb{R}^{P_{1}} \times \mathbb{R}^{p-P_{1}}$ near y in P such that
(a) $\phi(y)=(0,0,0), \phi(N \cap U) \subset \mathbb{R}^{n} \times\{0\} \times\{0\}, \psi(y)=(0,0)$
(b) $\left.T_{y^{\psi}}{ }^{-1} \mathbb{R}^{\mathrm{P}_{1}} \times\{0\}\right)=T_{y} N \cap T_{y}{ }^{P}$
(c) $(0,0)$ in $\mathbb{R}^{P_{1}} \times\{0\}$ is a non-degenerate critical point of the map $\pi \psi^{-1} \|_{\mathbb{R}^{p}}^{p_{1}} \times\{0\}$.
In other words, the submanifold $\psi^{-1}\left(\mathbb{R}{ }^{P_{1}} \times\{0\}\right)$ of P tangent to $T_{y} N \cap T_{y} P$ at y has first order contact with N at y. The motivation for this definition is as follows. Suppose $N=N_{0}$ and $P=P_{0}$ occur in generic 1-parameter families of manifolds N_{t} and P_{t} with N_{0} and P_{0} meeting quasi-transversely at y. If N_{t} and P_{t} are perturbed to families \tilde{N}_{t} and \tilde{P}_{t}, then there is a t_{0} near 0 such that $\tilde{N}_{t_{0}}$ and $\tilde{P}_{t_{0}}$ meet quasi-transversely near y, and the qualitative behavior of $\mathbb{N}_{t} \cap \mathbb{P}_{t}$ for t near t_{0} is the same as that of $N_{t} \cap P_{t}$ for t near 0 . For example, a sphere and a plane in \mathbb{R}^{3} which are tangent at a point meet quasi-transversely there and can be imbedded in one parameter families as indicated. Similarly, two curves in \mathbb{R}^{3} which intersect
non-tangentially at a point are quasi-transversal there.
Suppose p and q are different hyperbolic critical points of $X \in \mathfrak{X}^{r}(M)$, and let $\lambda_{1}, \ldots, \lambda_{\alpha}$ be the eigenvalues of $T_{q}{ }^{1}{ }^{1} W^{u}(q)$ with $1<\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \ldots \leq\left|\lambda_{\alpha}\right|$, and $\mu_{1}, \ldots, \mu_{\beta}$ be the eigenvalues of $T_{p^{\phi}} \mid W^{s}(p)$ with $1>\left|\mu_{1}\right| \geq\left|\mu_{2}\right| \geq \ldots \geq\left|\mu_{\beta}\right|$. Let J_{q} and K_{q} denote the eigenspaces of $T_{q}{ }^{1}{ }^{1} W^{U}(q)$ corresponding to λ_{1} and $\left\{\lambda_{2}, \cdots, \lambda_{\alpha}\right\}$, and let J_{p} and K_{p} denote the eigenspaces of $T_{p}{ }^{1} \mid W^{s}(p)$ corresponding to μ_{1} and $\left\{\mu_{2}, \ldots, \mu_{\beta}\right\}$. Write $u=\operatorname{dim} W^{u}(q), s=\operatorname{dim} W^{s}(p)$, and assume $0<U<\operatorname{dim} M, 0<s<\operatorname{dim} M$. We say that $W^{U}(p)$ and $W^{s}(q)$ have an orbit $O(x)$ of type one intersections if the following conditions are satisfied:
(1) λ_{1} is real, $1<\lambda_{1}<\left|\lambda_{2}\right| \leq \ldots \leq\left|\lambda_{\alpha}\right|$, and $\operatorname{dim} J_{q}=1$
(2) μ_{1} is real, $1>\mu_{1}>\left|\mu_{2}\right| \geq \ldots \geq\left|\mu_{\beta}\right|$, and $\operatorname{dim} J_{p}=1$
(3) there is a smooth hypersurface H transverse to $O(x)$ at x such that
(a) $W^{U}(p) \cap H$ and $W^{S}(q) \cap H$ have a quasi-transversal intersection at x .
(b) $\lim _{t \rightarrow \infty}\left(T_{x}{ }^{t}\right)\left(T_{x}\left(W^{u}(p) \cap H\right)\right)=K_{q}$ and $\lim _{t \rightarrow-\infty}\left(T_{x} \phi^{t}\right)\left(T_{x}\left(W^{S}(q) \cap H\right)\right)=K_{p}$ where the limits are taken with respect to metrics in the appropriate Grassmann bundles.
(4) if $W_{1}^{u}(q)$ is the unique ϕ^{t} invariant ($\left.u-1\right)$-dimensional submanifold of $W^{U}(q)$ tangent to K_{q}, and $W_{p}^{S}(p)$ is the unique ϕ^{t}-invariant ($s-1$)-dimensional submanifold of
$W^{S}(p)$ tangent to $K_{p}[6]$, then $W_{p}^{U}(q)$ is transverse to all the stable manifolds of critical points different from q, and $W_{1}^{S}(p)$ is transverse to all the unstable manifolds of critical points different from p.

Type one intersections were considered in [11]. We next define three subsets Q_{1}, Q_{2}, Q_{3} of $x^{r}(M)$, which will include the bifurcation points on simple arcs. 0_{1} is the set of X such that
(1) $L(X)$ consists of a finite number of critical points and closed orbits, all hyperbolic except one critical point, p, which is quasi-hyperbolic.
(2) the stable and unstable manifolds of orbits in $L(X)$ meet transversely and $\left(W^{U}(p)-\{p\}\right) \cap\left(W^{s}(p)-\{p\}\right)$ is a single orbit.
0_{2} is the set of x such that
(1) $L(x)$ consists of a finite number of hyperbolic critical points and one quasi-hyperbolic critical point p,
(2) the stable and unstable manifolds of $L(X)$ meet transversely, and $W^{U}(p) \cap W^{S}(p)=\{p\}$.
0_{3} is the set of x such that
(1) $L(X)$ is a finite set of hyperbolic critical points
(2) there are points p and q such that $W^{u}(p)$ and $W^{s}(q)$ have an orbit $O(x)$ of type one intersections, and the intersections of stable and unstable manifolds not in $O(x)$ are transverse.

Let $\Sigma_{1}=0_{1} \cup O_{2} \cup 0_{3}$. An element x in Σ_{1} will be called a flow of type one.

PROPOSITION 1 - For $r \geq 2$, the set $\Sigma_{1} \subset x^{r}(M)$ of flows of type one is an embedded submanifold of $x^{r}(M)$
of codimension one. Moreover, each $X \in \Sigma_{1}$ has a neighborhood U in $x^{r}(M)$ such that $U-\Sigma_{1} \in \Delta$.

This proposition is a generalization of a result due to Sotomayor for $\operatorname{dim} M=2$ [20]. While more general results of this kind are true, the proposition will suffice for our considerations here.

Let $\Phi^{k, r}=C^{k}\left(I, x^{r}(M)\right)$ be the set of C^{k} mappings of the unit interval $I=[0,1]$ into the Banach space $X^{r}(M)$ with the uniform C^{k} topology, $k \geq 1, r \geq 2$. For $\xi \in \Phi^{k, r}$, we write $\xi_{t}=\xi(t)$.
$\Phi^{k, r}$ may be simply described as follows. Let π : $T M \rightarrow M$ denote the natural projection, and let $\Phi=\{\eta: I \times M \rightarrow T M \mid \pi \eta(t, x)=x$ for all $t \in I, x \in M\}$. If $\phi: U \times V \rightarrow I \times M$ is a local coordinate chart in $I \times M$ with $U \subset I, V \subset \mathbb{R}^{m}$, then relative to ϕ, any $n \in \Phi$ is expressed as a mapping $n_{1}: U \times V \rightarrow \mathbb{R}^{m}$. We call such an η_{1} a local expression for n. Let $\left(t, x_{1}, \ldots, x_{m}\right)$ be the local coordinates in $U \times V$, let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{j}\right), \beta=\left(\beta_{1} \ldots, \beta_{m-j}\right)$ be j and $(m-j)$ - tuples of nonnegative integers, and let γ be a non-neqative integer. Set $|\alpha|=\alpha_{1}+\cdots+\alpha_{j},|\beta|=\beta_{1}+\cdots+\beta_{m-j}$. Let $\Phi_{1}^{k, r}$ be the set of all n in Φ such that for any local expression n_{1} of n, each partial derivative $\frac{\partial^{|\alpha|+|\beta|+\gamma} n_{1}}{\partial X^{\alpha} \partial t^{\gamma} \partial X^{\beta}}$ exists and is continuous for $\gamma \leq k$ and $|\alpha|+|\beta|=r$. Here $\partial X^{\alpha}=\partial X_{1}^{\alpha} 1 \ldots \partial X_{j}^{\alpha}, \partial X^{\beta}=\partial X_{j+1}^{\beta} 1 \ldots \partial X_{m}^{\beta}{ }^{m-j}$ and $0 \leqslant \mathrm{j} \leqslant \mathrm{m}$.

Give $\Phi_{1}^{k, r}$ the topology of uniform convergence of the indicated
partial derivatives. One may check by induction on $k+r$ that the evaluation map ev: $\Phi^{k, r} \rightarrow \Phi_{1}^{k, r}$ defined by $e v(n)(t, x)=\eta(t)(x)$ is a homeomorphism. As a consequence, we see that $\Phi^{\infty, \infty}$ is dense in $\Phi^{k, r}$ for all $0 \leq k, r$.

A curve $\xi \in \Phi^{k, r}$ will be called simple if it has the following properties
(1) ξ_{0} and ξ_{1} are in Δ
(2) for $t \in I, \xi_{t}$ fails to be in Δ if and only if it lies in Σ_{1}
(3) ξ is transverse to Σ_{1}.

REMARKS: 1) Since Σ_{1} is embedded in $x^{r}(M)$, if ξ is a simple curve, then $\xi_{t} \notin \Delta$ for at most finitely many t 's.
2) Using Proposition 1 and the fact that Δ is open in $x^{r}(M)$, one easily sees that the set of simple curves is open in $\Phi^{k, r}$.

For $r \geq 3$, let $\mathcal{S}^{r}=C^{r}(M, \mathbb{R})$ denote the space of c^{r} realvalued functions on M with the uniform C^{r} topology, and let G^{r-1} denote the space of C^{r-1} riemannian metrics with its uniform c^{r-1} topology as an open subset of the space of covariant symmetric 2 -tensor fields on M.

Recall that given $g \in G^{r-1}$ and $f \in \mathcal{J}^{r}$, one defines the gradient flow grad $_{g} f$ determined by g and f by the equation

$$
g_{x}\left(\operatorname{grad}_{g} f(x), v\right)=-d f_{x}(v) \text { for } x \in M, v \in T_{x} M
$$

A function $f \in \mathcal{S}^{r}$ is called a Morse function if it has only nondegenerate critical points.

Given a Riemannian metric g and a smooth one parameter family of functions F_{t}, there is an induced arc of flows given by

$$
\xi_{t}=\operatorname{grad}_{g} F_{t}
$$

Similarly, for a fixed Morse function f and a smooth one parameter family of metrics G_{t}, there is an induced curve of flows given by

$$
\xi_{t}=\operatorname{grad}_{G_{t}} f
$$

Our main results are the following.

Give $C^{k}\left(I, \Im^{r}\right)$ and $C^{k}\left(I, G^{r-1}\right)$ their uniform C^{k}-topologies.

THEOREM A - Fix $r \geq 3, k \geq 1$.
(1) Given any C^{∞}-Riemannian metric g on $T M$, there is an open dense set $U_{1} \subset C^{k}\left(I, \mathcal{J}^{r}\right)$ of one parameter families of functions on M such that for $F \in U_{1}$, the induced arc of flows $\xi_{t}=\operatorname{grad}_{g} F_{t}$ is simple.
(2) Given any C^{∞} Morse function f on M, there is an open dense set $U_{2} \subset C^{k}\left(I, G^{r-1}\right)$ of one parameter families of Riemannian metrics on $T M$ such that for $G \in U_{2}$, the induced $\operatorname{arc} \xi_{t}=\operatorname{grad}_{G_{t}} f \quad$ is simple.

THEOREM B - Suppose $k \geq 1$ and $r \geq 2$. Then for any two Morse-Smale flows X and Y on M, there is a simple curve $\xi \in \Phi^{k, r}$ such that $\xi_{\eta}=X$ and $\xi_{\eta}=Y$.

Remarks: 1. It is very likely that a simple are ξ is structurally stable in the sense defined by Sotomayor; i.e., if η is near ξ, there is a homeomorphism $h: I \rightarrow I$ such that η_{t} is topoloqically equivalent to ${ }^{\xi} h(t)$ for all t.
2. Some of the motivation for theorem $A(1)$ came from a theorem due to J. Mather which says that any two stable real-valued functions on M may be joined by a curve of functions containing at most finitely many non-stable elements, [3]. We caution the reader, however,
that, due to the presence of saddle connections, stable functions often give rise to non-structurally stable gradient flows. Furthermore, non-stable functions may yield structurally stable gradient flows as is the case when several non-degenerate critical points have the same image.

3. Proof of Theorem B

In this section we give the proof of Theorem B assuming Theorem A and Proposition 1 have been proved. A discussion of the proofs of these last two results will be deferred to $\$ 4$.

LEMMA 1 - Let X be a c^{r} Morse-Smale flow on M. $r \geq 2$. Then there is a simple curve $\xi \in \Phi^{\mathrm{k}, \mathrm{r}}$ such that $\xi_{0}=X$ and $\xi_{1}=X_{1}$ is gradient-like.

Proof: We will show how to break each closed orbit by the introduction of a saddle node which splits into two hyperbolic critical points.

Taking a preliminary approximation, we may assume X is of class
C^{∞}. Let $I_{1}=[-1,1], D^{\sigma}$ denote the closed unit ball in $R^{\sigma}, \sigma=s, u$ with $s+u=\operatorname{dim} M-1$, and let (x, y, v) be coordinates on $D^{s} \times D^{u} \times I_{1}$. Choose a closed orbit γ of X, a point $p \in \gamma$, and a flow box neighborhood U of p so that there is a diffeomorphism $\phi: U \rightarrow D^{s} \times D^{U} \times I_{1}$ such that
(1) $\phi(p)=(0,0,0)$
(2.) $\phi^{-1}\left(D^{5} \times\{0\} \times I_{1}\right) \subset W^{s}(\gamma)$ and $\phi^{-1}\left(\{0\} \times D^{u} \times I_{1}\right) \subset W^{u}(\gamma)$
(3) $X^{\prime}=\phi_{\star} X=\frac{\partial}{\partial v}$
(4) $U \cap L(X) \subset \gamma$.

Here, of course, $\phi_{\star} X=T \phi \circ X \circ \phi^{-1}, \operatorname{dim} W^{u}(\gamma)=u+1$, and $\operatorname{dim} W^{s}(\gamma)=s+1$.

Let Y_{t} be the one-parameter family of vector fields on $D^{s} \times \eta^{u} \times I_{1}$ defined by $Y_{t}(x, y, v)=\left(-x, y, v^{2}-t\right)$ for t near 0 . Thus, Y_{t} has no critical points for $t<0$, one saddle node critical point for $\mathrm{t}=0$, and two hyperbolic critical points for $\mathrm{t}>0$. Take a Euclidean subball D_{1}^{S} of D^{s} centered at 0 such that $\phi^{-1}\left(b d D_{1}^{s} \times\{0\} \times\{-1\}\right)$ is transverse in $\phi^{-1}\left(D^{s} \times D^{u} \times\{-1\}\right)$ to $W^{U}\left(\gamma^{\prime}\right) \cap \phi^{-1}\left(D^{s} \times D^{\mathrm{u}} \times\{-1\}\right)$ for every critical element γ^{\prime} (i.e., closed orbit or critical point) of X. This can be done since if z is near γ and $z \in W^{u}\left(\gamma^{\prime}\right)$, then $W^{u}\left(\gamma^{\prime}\right)$ contains a $(u+1)$-disk through $z C^{\prime}$ near $\phi^{-1}\left(\{0\} \times D^{u} \times I_{1}\right)$ by the λ-lemma [12]. Similarly, we may take a subball D_{1}^{u} of D^{u} centered at 0 such that $\phi^{-1}\left(\{0\} \times b d D_{1}^{u} \times\{1\}\right)$ is transverse in $\phi^{-1}\left(D^{s} \times D^{u} \times\{1\}\right)$ to $W^{s}\left(\gamma^{\prime}\right) \cap \phi^{-1}\left(D^{s} \times D^{u} \times\{1\}\right)$ for every critical element γ^{\prime} of X.

Now one can choose a neighborhood U_{1} of 0 in I_{1} and a C^{∞} real bump function $\psi: \mathrm{I}_{1} \rightarrow[0,1]$, taking the value one on U_{1} and zero off a slightly bigger set, so that the following properties hold.

Let $Z^{\prime}(x, y, v)=\psi(v) Y_{0}(x, y, v)+(1-\psi(v)) X^{\prime}(x, y, v)$.
Then
(1) Z^{\prime} has a saddle node critical point at $(0,0,0)$.
(2) bd $W^{s}\left(0,7^{\prime}\right) \cap D^{s} \times D^{u} \times\{-1\}$ is C^{1} near bd $D_{1}^{s} \times\{0\} \times\{-1\}$.
(3) bd $W^{u}\left(0,7^{\prime}\right) \cap D^{s} \times D^{u} \times\{1\}$ is C^{1} near $\{0\} \times b d D_{1}^{u} \times\{1\}$.

These properties imply that the vector field 7 on M defined by
$Z(m)=\phi_{\star}^{-1} \circ Z^{\prime} \circ \phi(m), m \in U, Z(m)=X(m), m \in M-U$, is an element of the submanifold $Q_{1} \subset \Sigma_{1}$ defined in $\varsigma 2$. Now, let
$Z_{t}^{\prime}(x, y, v)=\psi(v) Y_{t}(x, y, v)+(1-\psi(v)) X^{\prime}(x, y, v)$, and $Z_{t}(m)=$ $\phi_{\star}^{-1} \circ Z_{t}^{\prime} \circ \phi(m), m \in U$, while $Z_{t}(m)=X(m)$ for $m \in M-U$.

Then, using arguments similar to those in [11], one can verify that for $\varepsilon>0$ small, $Z_{t},|t| \leq \varepsilon$ represents a simple arc with $Z_{0} \in Q_{1}$ and $Z_{t} \in \Delta$ for $0<|t| \leq \varepsilon$. Employing filtrations, one first checks that the bifurcations of the limit set $L\left(Z_{t}\right)$ are as required. Then the uniform estimates of the λ-lemma [12] insure that the appropriate transversality conditions are fulfilled. $\S 4$ contains a few more details on these points.

Now, it is easily shown that, for $\varepsilon>0$ small, there is a smooth arc $\xi_{t}, 0 \leq t \leq 1+\varepsilon$ with $\xi_{0}=X, \xi_{t}=Z_{t-1}$ for $1-\varepsilon<t<1+\varepsilon$, and $\xi_{t} \in \Delta$ for $t \neq 1$. Thus, after reprarmetrizing the arc, we obtain a simple curve $\xi_{t}, 0 \leq t \leq 1$, such that $\left.\xi_{t}\right|_{M-U}=\left.X\right|_{M-U}$ for all t, $\xi^{-1}\left(\Sigma_{1}\right)$ is a single point, $L\left(\xi_{j}\right) \cap U$ consists of two hyperbolic critical points, and $L\left(\xi_{1}\right)-U=L(X)-\gamma$. The lemma follows by repeatinq the construction for each closed orbit.

LEMMA 2 - Let X_{1} be the gradient-like flow of Lemma 1. There is a curve

$$
\xi \in \Phi^{k, r} \text { with } \xi_{0}=X_{1}, \xi_{t} \in \Delta \text { for } 0 \leq t \leq 1 \text {, and } \xi_{1}=\operatorname{grad}_{\mathrm{a}} f
$$

for some Morse function f on M and some Riemannian metric g on M.

Proof: We observe that it is sufficient to find a curve ${ }_{f}$ such that $\xi_{0}=X_{1}, \xi_{t} \in \Delta$ for $0 \leq t \leq 1$, and $X_{2}=\xi_{1}$ is a gradient in a neighborhood of each critical point. That is, there are a small neighhorhood U of $L\left(X_{2}\right)$, a Riemannian metric g on U, and a real-valued function f on U such that $\left.X_{2}\right|_{U J}=\operatorname{arad}_{g} f$. Once this is done, we may
proceed as follows [17]. Changing f by constant values near each critical point, we may assume that $f(p)=\operatorname{dim} W^{U}(p)$ for each $p \in L(X)$. Then we may extend f to M so that $\left.x_{2}\right|_{M-L\left(x_{2}\right)}$ is never tangent to a level surface of f, and the set of critical points of f is $L\left(X_{2}\right)$. Finally, using a partition of unity, one may extend g to M so that $X_{2}=\operatorname{arad}_{g} f$.

We now show how to construct the curve ξ_{t} alluded to in the proceding paragraph. Fix $p \in L(X)$. As before, we may assume that X_{1} is of class C^{∞}. Making a further preliminary modification, we may arrange for X_{1} to be equal to its linear part near p. This can be done with a C^{\top} small approximation within the C^{∞} vector fields on M.

Thus, if $\operatorname{dim} W^{U}(p)=u$ and $\operatorname{dim} W^{s}(p)=s, \quad 0 \leq u \leq \operatorname{dim} M$ there is a neiahborhood U of p in M and a C^{∞} diffeomorphism $\phi: U \rightarrow D^{s} \times D^{U}$ such that
(1) $\phi(p)=(0,0)$
(2) $\phi_{*} X_{1}(x, y)=(A x, B y)$
where $A: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ is a linear automorphism whose eigenvalues have negative real parts, and $B: \mathbb{R}^{\mathbf{U}} \rightarrow \mathbb{R}^{\mathbf{U}}$ is a linear automorphism whose eigenvalues have positive real parts.
(3) $I f \cap L\left(X_{1}\right)=\{p\}$.

Here again $D^{S}\left(D^{u}\right)$ is the closed unit disk in $\mathbb{R}^{s}\left(\mathbb{R}^{u}\right)$, and (x, y) are coordinates on $D^{s} \times D^{u}$.

Let $A_{t}, \cdot 0 \leq t \leq 1$, be a smooth curve of linear isomorphisms of $\mathbb{U i} i^{s}$ so that $A_{0}=A, A_{1} x=-2 x$ for all x, and for each t, the
eigenvalues of A_{t} have negative real parts. Similarly, let B_{t}, $0 \leq t \leq 1$, be a smooth curve of linear isomorphisms of \mathbb{R}^{u} so that $B_{0}=B, B_{1} y=2 y$ for all y, and the eigenvalues of B_{t} have positive real parts for each t. Now choose small neighborhoods $U_{1} \subset U_{2}$ of $(0,0)$ in $\square^{s} \times D^{U}$ and a C^{∞} real bump function $\psi: D^{s} \times D^{U} \rightarrow[0,1]$ such that $\psi(x, y)=1,(x, y) \in U_{1}$, and $\psi(x, y)=0,(x, y) \in D^{s} \times D^{u}-U_{2}$. Let $Y_{t}(x, y)=\left(A_{t} x, B_{t} y\right), \quad 0 \leq t \leq 1$, and define $\xi_{t}(m)=\phi_{\star}^{-1}\left(\psi \phi(m) Y_{t}(\phi(m))+(1-\psi \phi(m))_{\phi_{\star}} X_{p}(\phi(m))\right), m \in U$, and $\xi_{t}(m)=X_{p}(m), m \in M-J$. Then $\xi_{t} \in \Delta$ for all $0 \leq t \leq 1$ by the construction of A_{t}, B_{t} and the λ-lemma. Also, $\left.\xi_{1}\right|_{\phi}{ }^{-1}\left(U_{1}\right)$ is a gradient. Now, repeating this process for each critical point of X_{1} gives the lemma.

REMARKS: 1) Let X be as in Lemma 1, and let $Y=\xi_{1}$ be the gradient vector field obtained in Lemma 2. For each integer
$0 \leq \lambda \leq \operatorname{dim} M$, let C_{λ} be the number of critical points of Y whose unstable manifolds have dimension λ. Then $C_{\lambda}=M_{\lambda}+\bar{M}_{\lambda+1}$ where M_{λ} is the number of critical points of X whose unstable manifolds have dimension λ, and \bar{M}_{λ} is the number of closed orbits of X whose unstable manifolds have dimension λ. Thus the usual Morse inequalities for the C_{λ} 's give rise to the Morse inequalities for X obtained by Smale in [16].
2) In [.7], K. Meyer constructs Lyapunov functions for a MorseSmale flow. With methods similar to the proof of Lemma 2, one may show that if f is any Lyapunov function for a gradient like MorseSmale flow X_{1}, then there is a curve $\xi_{t}, 0<t \leq 1$, with $\varepsilon_{0}=X_{1}$,
$\xi_{t} \in \Delta$ for all t, and $\xi_{1}=\operatorname{grad}_{g} f$ for some metric g on M.
We now prove Theorem B. Let $x_{0}, x_{1} \in \Delta$. Say that $x_{0} \equiv x_{1}$ if there is a simple curve $\xi \in \Phi^{k, r}$ such that $\xi_{0}=X_{0}$ and $\xi_{1}=X_{1}$. Clearly this is an equivalence relation on Δ. Our goal is to prove that $X \equiv Y$ for any X and Y in Δ.

Using Lemmas 1 and 2, we may find Morse functions f_{0}, f_{1} and Riemannian metrics g_{0}, g_{1} such that $\operatorname{grad}_{g_{0}} f_{0}$ and $\operatorname{grad}_{g_{1}} f_{1}$ are in $\Delta, X \equiv \operatorname{grad}_{g_{0}} f_{0}$, and $Y \equiv \operatorname{grad}_{g_{1}} f_{1}$. Changing f_{0} and g_{1} slightly as in [17], we may assume $\operatorname{grad}_{g_{1}}{ }^{f} 0 \in \Delta$. Now choose arcs G_{t} in $C^{k}\left(I, G^{r-1}\right)$ and F_{t} in $C^{k}\left(I, \mathcal{S}^{r}\right), 0 \leq t \leq 1$, such that $G_{0}=g_{0}$, $G_{1}=g_{1}, F_{0}=f_{0}$, and $F_{1}=f_{1}$. Applying Theorem A, we may perturb G and F to conclude that $\operatorname{grad}_{g_{0}} f_{0} \equiv \operatorname{grad}_{g_{1}} f_{0} \equiv \operatorname{grad}_{g_{1}} f$. Hence $X \equiv Y$.

4. Proof of Proposition 1 and Theorem A

Proof of Proposition 1: The proof combines arguments in [11] and [21]. Similar methods were use to prove related results for diffeomorphisms in [11].

A critical element of X is either a critical point or a closed orbit. The period of a critical point is 0 , whereas the period of a closed orbit γ is inf\{t $\left.>0: \phi^{t}(x)=x, x \in \gamma\right\}$. Fix a riemannian metric a on TM. If γ is a hyperbolic or quasi-hyperbolic critical element of X, then the metric g induces metrics g_{s} on $W^{s}(\gamma)$ and g_{u} on $W^{u}(\gamma)$. Let d_{u} and d_{s} denote the distance functions induced
on $W^{U}(\gamma)$ and $W^{s}(\gamma)$, and, for a positive integer n, set $B_{\gamma}^{u}(n)=\left\{y \in W^{U}(\gamma): d_{u}(y, \gamma)<n\right\}$ and $B_{\gamma}^{S}(n)=\left\{y \in W^{S}(\gamma): d_{s}(y, \gamma)<n\right\}$. Let $\Gamma_{X}(n)$ denote the set of critical elements of X of period less than n which we think of as a set of subsets of M or (taking its union) a subset of M.

Let $O_{1}(n)$ be the set of all $X \in X^{r}(M)$ such that
(1) X has one quasi-hyperbolic critical point p, and the remaining critical elements of period less than n are hyperbolic
(2) for $\gamma_{1}, \gamma_{2} \in \Gamma_{X}(n), B_{\gamma_{1}}^{u}(n)$ is transverse to $B_{\gamma_{2}}^{s}(n)$. It follows from [21] that each $Q_{1}(n)$ is an embedded submanifold of $x^{r}(M)$ of codimension one ${ }^{1}$. Also, if $Y \in Q_{\eta}(n)$, with quasi-hyperbolic critical point p, there are neighborhoods U of Y in $x^{r}(M), V$ of p, V^{\prime} of $\Gamma_{Y}(n)-\{p\}$ in M, and a c^{r-1} function $f: U \rightarrow R$ such that $f^{-1}(0)=Q_{1}(n) \cap U$, and the following holds. If $Y_{1} \in U-O_{1}(n)=$ $f^{-1}(R-\{0\})$, then
(1) $\Gamma_{Y_{1}}(n) \cap V$ has only hyperbolic critical elements
(2) $\Gamma_{Y_{1}}(n) \cap V$ is either empty or has two hyperbolic critical points
(3) for any $\gamma, v \in \Gamma_{\gamma_{1}}(n), B_{\gamma}^{U}(n)$ is transverse to $B_{v}^{s}(n)$. Now, let $X \in Q_{1}$ have the quasi-hyperbolic critical point p.
Clearly, $X \in Q_{1}(n)$ for each n. We will show that if n is large enough and $I I$ is a small neighborhood of X as above, then $\eta_{1}(n) \cap U \subset O_{1}$
${ }^{1}$ Actually, $O_{1}(n)$ is an open subset of a submanifold considered in [21].
and $U-Q_{p}(n)$. n. This will prove Proposition 1 for Q_{1}.
For Y near X, let ϕ_{Y}^{t} be the 1-parameter group associated to Y. In the notation of [11], choose a filtration for X separating its cycles. This amounts to a sequence $M=M_{n} \supset M_{n-1} \supset \ldots \supset M_{i} \supset \emptyset$ of compact submanifolds with boundary of M (except M and ϕ of course) such that for $i \leq n$,
(4) $M_{i-1} \subset$ int M_{i}
(5) $\phi_{X}^{t}\left(M_{i}\right) \subset \operatorname{int} M_{i}$ for $t>0$
(6) $\bigcup_{i \in t \in \mathbb{R}}\left(\bigcap_{X}^{t}\left(M_{i}-M_{i-1}\right)\right)=L(X) \cup\left(W^{u}(p) \cap W^{s}(p)\right)$.

Now for n larger than all of the periods of the critical elements of X, choose neighborhoods V of p, V^{\prime} of $\Gamma_{X}(n)-\{p\}, U$ of X as above. From (4), (5), and (6), one sees that if these neighborhoods are small and $Y \in U \cap \cap_{p}(n)$, then $L(Y) \subset V \cup V^{\prime}, L(Y) \cap V^{\prime}$ is hyperbolic, $L(Y) \cap V$ is a quasi-hyperbolic critical point, and $W^{U}(p) \cap W^{S}(p)-\{p\}$ is a single orbit. Now the λ-lemma gives that for n large, U small, and $Y \in U \cap Q_{j}(n), W^{U}(\gamma, Y)$ is transverse to $W^{S}(v, Y)$ for any critical elements γ, v of Y. Thus $U \cap Q_{p}(n) \subset Q_{1}$. Also, if $Y \in U-Q_{p}(n)$, by (2) and the fact that $W^{U}(p) \cap W^{S}(p)-\{p\}$ is a single orbit, $L(Y)$ has either a hyperbolic closed orbit near $W^{U}(n) \cap W^{S}(n)$ or two critical points in V. Thus $L(Y)$ has only finitely many critical elements. Moreover, shrinking U again, the λ-lemma yields the transversality conditions to give $U-Q_{1}(n) \subset \Delta$.

The proof of Proposition 1 for O_{2} is similar. For O_{3}, proceed as follows. Let $Q_{3}(n)$ be the set of X in $x^{r}(M)$ such that $L(X)$ is a finite number of hyperbolic critical points, and, for some fixed
$p, q \in L(X), \quad B_{p}^{U}(n) \cap B_{D}^{S}(n)$ has exactly one orbit of type one intersections, the other orbits beind transversal intersections. Then, by [21], $0_{3}(n)$ is an embedded codimension one submanifold of $x^{r}(M)$. Again one shows (by means of a filtration and the λ-lemma) that for $X \in \Pi_{3}$ there are an inteaer $n>0$ and a neighborhood U of X in $x^{r}(M)$ such that $U \cap O_{3}(n) \subset U \cap Q_{3}$ and $U-O_{3}(n) \subset \Delta$. Note that X is Ω-stable [18] this time so the control on $L(X)$ is easy.

Proof of Theorem A: (1) The proof is a refined application of transversality methods (see e.g. [1], [23]) where one has to verify that the local approximations may be made without modifying the metric.

Fix a C^{∞} metric g, and $f \in C^{k}\left(I, \mathcal{S}^{r}\right), k \geq 1, r \geq 3$. We show that f may be approximated by a curve ξ such that $\operatorname{qrad}_{q} \xi$ is simple. This is enough since the set of simple curves is open.

For a map $h: N \rightarrow P$ between manifolds and $W \subset P$ a submanifold, we write $h \pitchfork W$ to mean that h is transverse to W.

We may assume with a preliminary chanae in f that $f \in C^{r}\left(I, \mathfrak{S}^{r}\right)$, so that the evaluation map $e v(f)$ is in $C^{r}(I \times M, \mathbb{R})$. Let $T * M_{0}$ denote the zero-section of the cotangent bundle $T * M, \pi: I \times M \rightarrow I$ b e the projection, and let $F=F(f): \quad I \times M \rightarrow T * M$ be given by $F(t, m)=d f_{t}(m)$. By standard transversality arquments, there is a dense open set $B_{1} \subset C^{r}\left(I, J^{r}\right)$ such that if $f \in R_{1}$, then $F \pitchfork T * M_{0}$ and $\left.\pi\right|_{F^{-1}\left(T * M_{0}\right)}$ has only non-degenerate critical points with distinct values. Thus for $f \in R_{1}, F^{-1}\left(T * M_{0}\right)$ is a one-dimensional manifold, and each $f t$ has only finitely many critical points. Hence L (grad f_{t}) is finite for each t, and $\operatorname{grad}_{q} f_{t} \in \Lambda$ if and only if it is

Kupka-Smale (i.e., it has only hyperbolic critical points and their stable and unstable manifolds meet transversely). For $f \in B_{1}$, let $C(f)$ be the set of critical points of $\pi \mid F^{-1}\left(T * M_{0}\right)$, and let $C_{p}(f)=\pi C(f)$.

One may verify with local coordinates that if $(x, t) \in C(f)$, x is a quasi-hyperbolic critical point of $\operatorname{grad}_{g} f_{t}$, and if $(x, t) \in F^{-1}\left(R * M_{0}\right)-C(f)$, then x is a hyperbolic critical point of grad ${ }_{g} f_{t}$.* With a refinement of the proof of Theorem A in [17] (so that q is unchanned), one may find a residual subset $B_{2} \subset B_{1}$ such that for $f \in B_{2}$ and $t \in C_{1}(f)$, the stable and unstable manifolds of $L\left(\operatorname{grad}_{g} f_{t}\right)$ are transverse - which means that $\operatorname{grad}_{g} f_{t} \in 0_{2}$. Moreover, since $F \pitchfork T * M_{0}$, the curve $\operatorname{arad}_{g} f$ is transverse to Q_{2} at t.

By Proposition 1, for $f \in B_{2}$, there is a neighborhood U of $C_{1}(f)$ such that $\operatorname{grad}_{g} f_{t} \in \Delta$ for $t \in U-C_{f}(f)$. Fixing such an f, we show that it may be modified on a neighborhood of $I-11$ so that $\operatorname{grad}_{g} f$ becomes simple.

Let $J \subset I$ be a finite union of closed intervals with
bd $J c$ int U and $J \cap C_{p}(f)=\varnothing$. There is an open neighborhood B_{4} of f in $C^{r}\left(I, s^{r}\right)$ so that for $h \in B_{4}$ and $t \in J, L\left(\operatorname{grad}_{g} h_{t}\right)$ is a finite set of hyperbolic critical points. Clearly, it suffices to show that a residual set $R_{5} r R_{4}$ has the property that if $f \in B_{5}, t \in J$, then $\operatorname{arad}_{q} f_{t} \& \Delta$ if and only if $\operatorname{grad}_{q} f_{t} \in O_{3}$ and $\operatorname{grad}_{g} f \& O_{3}$. We first show that for f in a residual set $B_{5} \subset B_{4}, \operatorname{grad}_{g} f_{t} \leqslant \Delta, t \in J$, if and only if there is one orbit of quasi-transversal intersections of stable and unstable manifolds. Then we show how to make the exceptional orbits into type one intersections.

[^1]For $t \in J, f \in B_{4}$, let $x_{1 t}, \ldots, x_{n t}$ denote the critical points of $\operatorname{grad}_{g} f_{t}$, and suppose that $W^{u}\left(x_{i t}\right), W^{s}\left(x_{i t}\right)$ are their respective unstable and stable manifolds. Let $u_{i}=\operatorname{dim} W^{u}\left(x_{i t}\right)$, $s_{i}=\operatorname{dim} W^{s}\left(x_{i t}\right)$, and let D^{σ} denote the closed unit ball in the Euclidean space $R^{\sigma}, 0<\sigma<\operatorname{dim} M$. For each i, t, there are embeddings $\psi_{t}^{u_{i}}: \quad D^{u_{i}} \rightarrow M, \psi_{t}^{s_{i}}: \quad D^{s_{i}} \rightarrow M$ so that
(1) $\psi_{t}^{u_{i}}(0)=\psi_{t}^{\mathbf{s}}(0)=x_{i t}$
(2) $\psi_{t}^{u_{i}}\left(D^{u_{i}}\right) \subset W^{u}\left(x_{i t}\right), \psi_{t}^{s_{i}}\left(D^{s_{i}}\right) \subset W^{s}\left(x_{i t}\right)$.

Let ϕ_{t}^{ν} denote the one parameter group determined by $\operatorname{grad}_{g} f_{t}$ (i.e. $\left.\frac{d}{d v} \phi_{t}^{\nu}(x)\right|_{\nu=0}=\operatorname{qrad}_{g} f_{t}(x)$). For each i, t, there is an induced embedding $\bar{\psi}_{t}^{u_{i}}: \quad R^{u_{i}} \rightarrow M$ defined by

$$
{\frac{\psi_{t}}{i}}_{u_{i}}(y)=\phi_{t}^{r(y)_{\psi_{t}}^{u}} u_{i\left(r(y)^{-1} y\right)}
$$

where $r(y)=1+|y|$. Since $f \in C^{r}\left(I, Y^{r}\right) \approx C^{r}(I \times M, \mathbb{R})$, the mapping
 $M \times M$ is c^{r-1} (for $|y| \neq 0$) by stable manifold theory (this can be gotten most easily from the proof in [7]).

Let diag $=\{(x, y) \in M \times M \mid x=y\}$ denote the diagonal in $M \times M$, and let $\pi: J \times b d D^{S_{i}} \times \mathbb{R}^{u_{j}} \rightarrow J$ be the projection. Since $r \geq 3$, there is a residual set $B_{5}^{\prime} \subset B_{4}$ such that $f \in B_{5}^{\prime}$ implies that $\rho_{i j} \pitchfork$ diag and $\pi \mid \rho_{\mathrm{ij}}^{-1}(\mathrm{diag})$ has non-degenerate critical points with distinct images. If (t, x, y) is a critical point of $\left.\pi\right|_{i j} ^{-1}($ diag $)$, conditions (1) and (2)(a) in
the definition of a quasi-transversal intersection are satisfied at $\psi_{t}^{s_{i}}(x)=\bar{\psi}_{t}^{u_{j}}(y)$. With a further approximation, we may fulfill the remaining condition and make ${ }_{\psi_{t}}{ }^{\mathrm{s}}(x)=\bar{\psi}_{t}{ }^{j}(y)$ a quasi-transversal intersection of $W^{U}(x)$ and $W^{s}(y)$. Also, all other points of $\rho_{i . j}^{-1}(\operatorname{diag})$ correspond to transverse intersections. Restricting B_{5}^{\prime} further we may assume that if $f \in B_{5}^{\prime}$, then for each $t \in J, \operatorname{grad}_{g} f_{t}$ has at most one orbit of quasitransversal intersections, the other intersections being transverse.

Now we restrict B_{5}^{\prime} to B_{5} so that the quasi-transversal intersections become of type one. Suppose $x \in W^{U}(p) \cap W^{S}(q)$ and $o(x)$ is and orbit of quasi-transversal intersections for $\operatorname{grad}_{g} f_{t}$ with $t \in J$, $f \in B_{5}$. Let $\operatorname{grad}_{g} f_{t}=\xi_{t}$, and let ϕ_{t}^{1} be the time-one map of ξ_{t}. With a first restriction, we may assume the eigenvalues of $T_{q} \phi_{t}^{1} W^{U}(q)$ and $T_{p} \phi_{t}^{1} \mid W^{s}(p)$ are distinct, say these are $1<\lambda_{1}<\ldots<\lambda_{\alpha}$ and $1>\mu_{1}>\ldots>\mu_{B}$, respectively. Let $E^{S} \oplus E_{1}^{u} \oplus \ldots \oplus E_{\alpha}^{u}$ be the decomposition of T_{q}^{M} where $E^{S}=T_{q} W^{S}(q)$ and E_{i}^{u} is the eigenspace of $T_{q} \phi_{t}^{1}$ corresponding to λ_{i}. From invariant manifold theory [6], there is a c^{1} diffeomorphism $\zeta: R^{s} \times R \times R^{\alpha-1} \rightarrow M$ such that
(a) $\zeta(\cap, \cap, 0)=q$
(b) $\zeta\left(\mathbb{R}^{S} \times\{0\} \times\{0\}\right) \subset W^{S}(q)$
(c) $x \in r,\left(\mathbb{R}^{s} \times \mathbb{R} \times \mathbb{R}^{\alpha-1}\right)$
(d) $\zeta \mathscr{H R}^{\mathrm{S}} \times[\mid 2 \times\{\cap\})$ is locally invariant under the one parameter group ϕ_{t}^{ν} of ξ_{t} (i.e., $\phi_{t}^{\nu}\left(\zeta\left(\mathbb{R} S^{s} \times[2 \times\{0\}) \cap \zeta\left(\mathbb{R} S^{s} \times \mathbb{R} \times \mathbb{R}^{\alpha-1}\right) \subset \zeta\left(\mathbb{R}^{s} \times \mathbb{R} \times\{0\}\right)\right.\right.$ for $\left.\nu>0\right)$.

With a second restriction of B_{5}, we may assume that $W^{u}(p)$ is transverse to $\left.50 R^{s} \times 12 \times\{0\}\right)$ which will insure that the first Grassmann condition in part (3) of the definition of type one intersection holds. Proceeding
similarly in a coordinate system near p, we may arrange for the second part of part (3) to hold. Finally, we obtain part (4) by means of approximations as in [17], but without changing the metric g. Then we have that $\operatorname{grad}_{\mathrm{g}} \mathrm{f}_{\mathrm{t}} \notin \Delta$ if and only if grad $_{\mathrm{g}} \mathrm{f}_{\mathrm{t}} \in \mathrm{Q}_{3}$.

The condition that $\rho_{i j}(f) \pitchfork$ diag $i_{11} s u r e s$ that $\operatorname{grad}_{g} f \mid J \pitchfork 0_{3}$. This completes the proof of part (1) of Theorem A.

The proof of part (2) is similar, and in fact, easier. This is because for a fixed Morse function f, any curve of riemannian metrics $g \in C^{k}\left(I, G^{r-1}\right)$ gives rise to a curve $\operatorname{grad}_{g} f$ so that $L\left(\operatorname{grad}_{g_{t}} f\right.$) is finite and hyperbolic for each t. Also, all of the approximations in [17] away from the critical points of a given gradient flow of a Morse function may be realized by perturbations of the metric.

REFERENCES

[1] R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin, New York, 1967.
[2] J. Cerf, Sur les diffeomorphismes de la sphère de dimension trois, Springer Lecture notes in Math., 53, 1968.
[3] J. Cerf, La stratification naturelle des espaces de fonctions differentiables réelles et le théorème de la pseudo-isotopie, Publ. IHES, $\mathrm{n}-39,1970$.
[4] G. Fleitas, On the classification of flows and manifolds in dimension two and three. Thesis, IMPA, Rio de Janeiro, Rrazil, 1972.
[5] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math. XIV, Global Analysis, AMS, Providence, R.I. 1970.
[6] M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds, to appear.
[7] M. Irwin, On the stable manifold theorem, Bull. London Math. Soc. 2 (1970), pp. 196-198.
[8] K. Meyer, Energy functions for Morse-Smale systems, Amer. J. of Math. 90, 1968, p. 1031.
[9] J. Milnor, Lectures on the h-cobordism theorem, Princeton Math. Notes, Princeton, N.J., 1965.
[10] S. Newhouse, Hyperbolic limit sets, Trans. AMS, Vol. 167 (May, 1972), p. 125.
[11] S. Newhouse, and J. Pallis, Bifurcations of Morse-Smale dynamical systems, Proc. Symp. on Dyn. Sys., Salvador, Brazil, 1971.
[12] J. Palis, On the Morse-Smale dynamical systems, Topology 8, 1969, p. 385.
[13] J. Palis and S. Smale, Structural Stability theorems, Proc. AMS symp. in Pure Math. Vol. XIV, Global Analysis, Providence, RI, 1970, p. 223.
[14] M. M. Peixoto, On the classification of flows on two manifolds. Proc. Symp. on Dyn. Sys., Salvador, Brazil, 1971.
[15] J. Singer, Three dimensional manifolds and their Heegaard diagrams. Trans. Am. Math. Soc. 35 (1933), 88.
[16] S. Smale, Morse inequalities for a dynamical system, Bull. AMS 66 (1960) p. 43.
[17] S. Smale, On gradient dynamical systems, Ann. of Math. 74 (1961), p. 199.
[18] S. Smale, The Ω-stability theorem, Proc. AMS Symp. in Pure Math. Vol. XIV, filobal Analysis, Providence, R.I., 1970, p. 289.
[19] J. Sotomayor, Estabilidade estructural de primeira ordem e variedades de Banach. Thesis, IMPA, Rio de Janeiro, Brazil, 1964.
[20] J. Sotomayor, Generic one parameter families of vector fields on two dimensional manifolds. Publ. Math. I.H.E.S., to appear.
[21] J. Sotomayor, fieneric bifurcations of dynamical systems, Proc. of Symp. on Dyn. Sys., Salvador, Brazil, 1971.
[22] J. Sotomayor, Structural Stability and bifurcation theory. Proc. of Symp. on Dyn. Syst. Salvador, Brazil, 1971.
[23] P. Thom, nuelques propriétés globales des variétés differentiables. Commun. Math. Helv. 28 (1954), 17-86.
[24] R. Thom; Stabilite Structurelle et morphogénèse. W.A. Renjamin. New York, 1972.

[^0]: *Research partially supported by a joint program sponsored by the National Science Foundation, U.S.A., and the Conselho Nacional de Pesquisàs, Brazil and by NSF Grant GP38246.

[^1]: * This follows by takinq suitable local coordinate expressions for f_{t} near x (see 「21 and 「3.7).

