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Société Mathématique de France 
Astérisque 24-25 (1975) 

PROBLEMS AND RESULTS IN COMBINATORIAL NUMBER THEORY 

by 

Paul ERDÖS 

I discuss a few problems and results, mostly connected with van der 

Waerden's theorem, which have occupied me and many of my co-workers a great 

deal over the last few years. I will try to give -as complète références as possible, 

but of course I do not claim completeness and I apologise in advance for any omis­

sions. In gênerai I shall give références at the end of each chapter, but first I 

would like to call the readers attention to the interesting paper of van der Waerden: 

"How the proof of Baudet's conjecture was found" , Studies in pure mathematics, 

papers in combinatorial theory, analysis. . . presented to Richard Rado, p. 251 -260, 

London and New-York, Académie Press, 1971. A Brauer, by the way, states that 

the conjecture was really stated first by I. Schur. Recently a very short proof of 

van der Waerden's theorem was published by R. L. Graham and Bruce Rothschild 

(Proc. Amer. Math. Soc. 42 (1974), 385-386). 

I introduce the following notations : A séquence of integers is said to have 

the property A(k) if it contains an arithmetic progression of k terms. It ha s the 
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property A(») if it has the property A(k) for every k . Van der Waerden's theo­

rem can thus be exprèssed a follows : if we split the integers into t classes, then 

at least one class has the property A(») . A set of real numbers is said to have the 

property A( if it contains an infinité arithmetic progression. 

I have published several papers in number theory Here, I only quote two 

récent ones, both of which contain many références : "Résultats et problèmes en 

théorie des nombres", Sém. Delange-Pisot-Poitou, 1972/73, n° 24 and "Problems 

and results in combinatorial number theory", A survey of combinatorial theory, 

1973, North Holland, p. 117-138. 

I. - The finite form of van der Waerden's theorem states : to every k 

and l there is an f(k,t) so tha t if we split the integers not exceeding f(k, V) 

into t classes, then at least one class has the property A(k) . 

Van der Waerden's proof gives a very bad estimate for f(k, t) , (even for 

t = 2") and this was one of the reasons which led Turan and myself to propose, 

more than forty years ago, the following problem, the positive solution of which of 

course implies van der Waerden's theorem : 

Is it true that for every ε > 0 and integer k there is an = nQ(e , k) 

so that every séquence 1 <a^ < . . . < a^< η , n — n

Q » s> e η has the property 

A(k) ? More precisely, dénote by r ^ . ( n ) t n e smallest integer s for which every 

séquence 1< a^<. . . < a

g — n » s ~ \ ( η ) ^ a s ^ e ProPerty A(k) · ^ e conjectured 

that for every k 

(1) r k (n) - o(n) . 

It is almost immédiate that r^fa+b)^ Τ ] ^ Ά ^ + and this subadditivity 

implies that lim r (n) /n = c exists, but the proof of (1) seemed to présent 
n-* oo k k 
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great difficulties. 

1 -c 
Originally we thought that in fact r^(n)< η , but this was disproved by 

Salem and Spencer who showed in 1942 that 

, Λ 1 -c/log log n r 3 (n )> n ' s » 

In 1946, F. Behrend showed : 

(2) r 3(n)> n exp(-c^log n) 

and this is still the best known lower bound for r ^ ( n ) · 

In 1951, K. F. Roth proved that ^ ( n ) = o(n) . More precisely he showed 

(3) r3'(n) < c n / log log n 

and this upper bound has never been improved. The gap between (2) and (3) is 

very large and it would be désirable to obtain better bounds for r ^ ( n ) · 

In 1967, Szemerédi proved that *" (̂n) = o(n) , his proof, which is a mas-

terpiece of combinatorial reasoning, is completely elementary but very complica-

ted and utilises van der Waerden's theorem. K. F. Roth using his method succeeded 

in eliminating the use of van der Waerden's theorem. 

Very recently Szemerédi proved (1) in full generality. His proof, which 

will appear very soon in Acta Arithmetica is, needless to say, again a masterpiece 

of combinatorial ingenuity. Unfortunately he again used van der Waerden's theorem, 

but he believes that by the method of Roth it will be possible to eliminate the use of 

van der Waerden's theorem and thus perhaps obtain a weak, but not entirely ridi-

culous, upper bound for f(k, t) . 

The best known lower bounds for f(2,£) are due to Berlekamp who, im-

proving previous results of Rado and myself and Schmidt, proved that 

f(2, t) > l 2l 

297 



P. ERDÔS 

if Ί is a prime number. It would be interesting to décide if 

(4) lim f(2,l)1/1 = œ 

is true. My guess would be that (4") is true. 

In connection with (4) the following might be of use and interest. Dénote 

by f(e , 2 , V) the smallest integer so that if one splits the integers not exceeding 

f(e, 2 , t) into two classes there is always an arithmetic progression of t terms 

which contains at least — (1 + e) terms of the same class. Clearly f( 1, 2, V) - f(2, V) . 

It is possible that 

(5) f(e , 2 , l) < c1 

ε 

holds for some ε >0 , but I never succeeded in making any progress with (5") . By 

the probalistic method it is quite easy to show that i(t,2,£)> 0 + cg) » (F- Erdôs, 

Math. Lapok 14, 29-3 7, in Hungarian). 

Szemerédi's proof of (1) is very ingenious, but rather complicated. One 

of its basic tools is a lemma on the structure of bipartite graphs which I state hère 

without proof. First I need some notation. Let A and Β be disjoint sets, 

|A I = m , | B | = m . Let G be a bipartite graph whose white vertices are A and 

black vertices Β . If X c A , Y c B , then [X , Y] dénotes the set of edges (x, y) 

of G with x ç X , y ç Y . Put β(Χ, Y) = | [X, Y ] | . |X | . |Y | (i. e. β(Χ, Y) is the 

density of edges of our bipartite graph). G(u) dénotes the set of vertices joined 

to the vertex u . 

Now we are ready to state the lemma of Szemerédi : to every 

e, , ε Λ . δ, ο , σ there are m , η , M and N so that for every G for which 1 2 κ ο ο 

(A| = m>M , | B | = n > N , there are disjoint sets C ^ A , l < i < m o and 

C. . c Β , 1 < i < n which satisfy for every 1 < i <m i, j ο y ο 
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m 0 nQ 

(6) |A- U C . | < p and |B - U C. . | < σ η . 
i=l 1 j = l X'J 

Further we have for every l S i < m , 1^ j —n and S< C. , Τ < C. . satisfying 
7 ο O 1 1, j 

|S| > e | C . | , | T | >t |C | 

β(β,Τ) > β(0 . - C ) - δ . 

Finally for every 1^ i — m

Q » 1 — j — n

Q > 

|G(X) n e . .| ^ (β(0 . , C. .) + 6) |C. .| . 
1, J 1 1, J 1 1, J 1 

Szemerédi believes that the lemma is not best possible but can be shar-

pened in various ways. So far, however, there has been no success in this direc­

tion. The proof of the lemma is not as complicated as one could have expected. 

There is no doubt that this deep lemma will have many applications. Here 

I only state a very récent theorem of Szemerédi. Dénote by G (n ; m) a hyper-

graph of n vertices and m eges (i. e. r-tuples). Let f (n ; k, Ί ) be the smal-

lest integer so that every 

G ^ (n ; f (n ; k, £ ) ) 

(i. e. every hypergraph of n vertices and f r ( n ; k, t ) r-tuples) contains a 
(r) 

G (k ; V) as a subgraph. V. T. Sos, W. Brown and I coniectured 

(71 f3 (n ; 6 , 3) = o(n2) . 

Szemerédi recently proved (7) using his lemma. We in fact thought that 

2 -c 
f (n ; 6, 3) < n also holds, but Ruzsa disproved this by showing 

f 3(n ; 6,3) > c n r^n) . 

More generally it is probable that 

f 3(n ; k, k-3) = o(n 2) 
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holds for every k , but Szemerédi's method does not seem to work for k> 6 . 

Perhaps 

(8) c 1 n r k_ 3(n) < f 3(n ; k, k-3) < c 2 n rR_ 3 (n) 

holds for every k> 6 . Ruzsa proved the lower bound in (8) for k = 6, 7 and 8 , 

but the proof seems to run into difficulties for larger k . The work of Szemerédi 

and Ruzsa is not yet published. 

It seems certain that Szemerédi's lemma will lead to further suprising 

insights. 
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II. - A well known conjecture states that the primes have the property 

A(°°) . If I remember correctly it is known that they have the property A(l6) and 

no doubt one could improve this, but as far as I can see the only way of proving 

the gênerai conjecture would be to show that for n> n^ r ^ ( n ^ < T T ( n ) · ^n f a ct> per-

haps for every k and t it is true that 

(1) lim r (n) ( — ) " = 0 . 
η-*00 K log n 

The following conjecture seems attractive to me : every séquence 
0 0 -1 

1—a < . . . satisfying Σ a. = « has the property A(°°) . I offer 2500 dollars 
1 i= 1 1 

for the proof or disproof of this conjecture. At the moment I see no hope for a 

proof but perhaps a counterexample can be constructed and this might be a relati-

vely easy way of earning 2 500 dollars, but I hope that the conjecture and (1) are 

both true. 

In some cases in the past I proved theorems on primes where I used rela-

tively few spécial properties of the primes and the fact that TT(x) is large. In fact 

I proved more than 3 5 years ago that for every r there are integers 
(r) (r) (r) _ . (r) 2 2 (r) 2 2 (r) , l V , „ n̂  , n^ , n̂  so that the équations n̂  = ρ +q , n^ = ρ - q , n^ = (p-1 Xq-1 J 

have at least r solutions in primes ρ and q . There seems little doubt though 

that the problem of k-tuples of primes in an arithmetic progression is much deeper 
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Is it true that for every k there are k consécutive primes in an arith­

metic progression ? This problem seems completely unattackable to me, even for 

k = 3 , though Renyi and I have some preliminary results for this case. 

Before ending this chapter I state a few related problems and results. 

Let â  < . . . be an infinité séquence of integers and assume that no a is the dis -

tinct sum of other a's, I proved that Σ a. _ 1 < 103 (math. Lapok 13 (1962), 28-38, 
i 1 

in Hungarian. An English version will appear in our joint paper with Benkoski in 

Math, of Computation). I heard at the last meeting of the Amer. Soc. (april 1974) 

that 103 can in fact be replaced by 5 , but that the resuit does not hold with 2 . 

Unfortunately I do not remember who proved thèse results. It was also suggested 
that the maximum of Σ a. is probably not much greater than 2 . In February 

i 1 

1973, I coniectured that if a. < a . < ... < a is such that ail the sums J 1 2 n 

Σ ε. a. , ε. = 0 or 1 are ail distinct, then : 
i=l 1 1 1 

n ι 1 
v -1 „ 1-n max Σ a. = 2 - 2 
i=l 1 

and the maximum is attained if and only if â  = 2* . Ryavec found a simple analy-

tic proof and recently E. and G . Szekeres found an elemeritary proof. Here I ma y 

mention one of my oldest conjectures : Let a^< . . . < a^^ X be such that ail the 
n 

sums Σ ε.a. are distinct ; is it true that 
i=l 1 1 

log X ^ 0 n < - * . + C ? log 2 

Moser and I proved that n < ^ + ^ 1 θ ξ , X + C . 
log 2 2 log 2 

Let < â  < . . . be an infinité séquence of integers ; assume that for 

i< i<k a. + a, à-0 (mod a.) . Put A(X) = Σ 1 , Sarkôzi and I proved A(X) = o(X) , J 3 k r i' a .<X 

we conjecture that Σ a ^ < » and that A(X) < X* t for infinitely many X . There 

is an interesting finite problem here which causes unexpected difficulties : 
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Let a, < . . . < a < X and assume that for i< j< r a.+ a ^ 0 (mod a.) , then 1 n j r V 

n^ + l · The n+1 integers 2n , 2n+l , . . . , 3n show that our conjecture, if 

true, is best possible. The proof présents difficulites which we have not been able 

to overcorne. If we assume a +a é 0 (mod a, ) (i. e. without k < r < s), then 
r s k 

η - o(X) follows from r ^ ( X ) - ό(Χ) , since the a's cannot contain a three term 

arithmetic progression. Szemerédi proved that n ̂  [—] + 1 if (a +a ) /a v can 
5 r s k 

never be an integer différent from 2 . 

REFERENCES 
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Quarterly J. Math. 7 (1936), 227-229 (see also : On sequences of inte­
gers no one of which divides the product of two others and on some rela¬ 
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III. - Some infinité problems. It is clear that one can give a séquence of 

integers which tends to infinity as fast as one likes and whose complément does 

not have the property A( N ) . This follows from the fact that the number of arith-

o 
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metic progress ions is denumerable. I then asked : "Can one décompose the reals 

into two sets and so that does not have the property A(3) and 

does not have the property A( fc< ) ? " Davies proved the existence of such a de -

composi t ion using 2 = ' ^ut r e c e n t l y Baumgartner gave an example of such 

a décomposi t ion without using any hypothesis. Baumgartner 's paper on the subject 

will be published soon. 

The following more gênerai question can now be asked. Let k be a given 

integer. Can one décompose the set of real numbers into countably many sets 

, t = 1 ,2 , . . . , such that every intersects every k - term arithmetic p r o ­

gress ion in at most two terms but the complemert of never has the p r o ­

perty A ( Ê < O ) ? 

It seems that Baumgartner 's method will give the existence of thèse sets. 

(Added in proof : Baumgartner has shown the existence of thèse sets"). 

I hope that one can ask more gênerai and non-trivial questions of the f o l ­

lowing type. Consider a family F of denumerable sets £A^} = a ^ < ..·. . of real 

numbers. We say that F has the property P^ if there is a set which intersects 

each A G F but never contains three consécutive éléments f i ? ^ , a!^ , a f ^ } α i i + l i+2 

of any A . Baumgartner 1 s theorem states that the family of ail infinité arithmetic 

progress ions has the property Ρ . Assume that the family F is such that if 
(αρ (α2) (ap (a2) (a,) (a2). 

a. = a. and a. , = a. , , then for every t> 0 , a. Λ - a. , (the infinité ι j î+l j+1 } ι+t j+t 

arithmetical progress ions certainly have this property). Is it true that F has the 

property P^ ? Assume now that every countable sub-family of F has the p rope r ­

ty P^ . Does it follow that F has the property P^ ? I would guess that the ans-

wer is no. I apologise if one (or both) of thèse questions has a trivial négative ans-

wer , they were only formulated recently. 
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Hindman recently proved the following conjecture of Graham and 

Rothschild : Split the integers into two classes in an arbitrary way. Then there is 

always an infinité subsequence a . < a _ < . . . s ο that ail the su ms Σ ε. a. , ε.= 0 3 n 1 2 ^ ι ι ι 

or 1 are in the same class. Recently Baumgartner found a simple proof of 

Hindman's theorem. The results stated in this chapter are not yet published. 

I have tried to formulate a conjecture which would be in the same relation 

to Hindman's theorem as Szemerédi's theorem is to van der Waerdens. I have not 

been very successful so far. Perhaps the following resuit holds. Let a^<a^< . . . 

be a séquence of integers with positive upper density. Then there is an integer t 

and an infinité subsequence a. < a. < . . so that ail the sums a. + a. + t are 
1 1 , 1 1 
1 2 r s 

again a's . 

In a previous paper I stated the following problem : Split the real num­

bers into two classes. Does there exista set fa } l^a<ii), of power K 
L a 1 1 

so that ail the sums 
a + a , 1 < a. < a o < uu. 

a i a 2 1 2 1 

belong to the same class ? I stated that I cannot settle this question even if the 

continuum hypothesis is assumed. Some time ago I noticed that using the methods 

of our paper with Hajnal and Rado I can prove -assuming the continuum hypothesis-

that the set of reals can be split into two disjoint classes Ŝ  and Ŝ  so that if 

A, Β with | A | = Κ , | B | = fc< are any two sets of reals there always are 1 ο 

real numbers Χ χ ç S 1 , Y χ , Y 2 £ S 2 , S 2 so Χ χ + S , X £ + Y ç S 2 . 
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IV. - In the last chapter we discuss miscellaneous problems on arithme­

tic progressions and related topics. 

(i) Is it true that for every k and r there is a séquence without the 

property A(k+1) , but is such that if we split it into r subsequences at least one 

of them has the property A(k) ? (added in proof : Spencer has recently shown that 

such a séquence exists). 

The conjecture was motivated by the following older conjecture of Hajnal 

and myself : Is it true that for every l and r there is a graph not containing a 

K(£+l) (i. e. a complète graph of t + 1 vertices) but if one colours its vertices by 

r colours, then at least one colour contains a K(-L) ? J. Folkman proved the exis­

tence of such a graph for r = 2 and every l (he probably had a proof for r^4) . 

Recently the problem was settled in full generality by Nesetril an Rôdl (their paper 

is not yet published). 

(ii) Riddell defines ê^.(n) a s *he largest integer so that every séquence 

a < . . . < a contains a subsequence of g v(n) terms not having the property A(k) . 
I n κ. 

One woulds guess at first that g ^ W = Γ ^ . ( η ) " 1 ' b u t R^dell shows that this is not 

( n ) 
always true. He also obtained some lower bounds for g^ which Riddell and I 
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slightly improved. This was supeceeded by a gênerai resuit of Komlos , Subjok and 

(ni 

Szemerédi (their paper will be published soon). They obtain g^ > c r^n) as a 

spécial case of their theorem. It is unknown if β^( η ) < r ^ n ^ " * n°].cls for infini-

tely many values of η , or if for every k 
gk(n) 

lim r-—- = 1 . 
n-» » r k W 

J. Riddel, on sets of numbers containing no t terms in arithmetic pro­

gression, Nieuw Archief voor Wiskunde 17, 204-209. 

(iii) Let r^ (n") (k^ Ί) be the smallest integer so that every séquence 

1 ̂ a^ < ... < a < η , s = (n) contains at least k terms of an arithmetic pro -

gression of length t . Clearly r (n) = r (n) . Using Behrend's idea one easily 
κ κ 

obtains for every k>2 

r^ '(n) < cnexp[-(log n) ' } . 

Szemerédi and I conjectured that for 3 '^k^<k 2 , ^ / k ^ ^ ^γ/^γ 

(Π 

( Ο 
r k (π) 

l i m ~~ΰ~Ί ' °° 
η-» οο Χ^-,Ι 

k i 

unless k̂  = k^ and ^γ~^2 ' ^ v e n ^ * s P r o v e d open problems remain, e. g. 

what is the value of 

l i m ~îsT~ ? 

(iv) Dénote by f(n ; k, V) k < £ the smallest integer with the property 

that if the séquence a^, ... , a contains f(n ; k, Vj k term arithmetic progres­

sions then it contains an £-term arithmetic progression. I conjecture that 
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2 2 - e(k, V) 
f (n ; k, t) = o(n ) and perhaps f(n ; k, Vj < n ' . 1 have not even been able 

2 
to prove that f(n ; 3,4) = o(n ) . 

More generally let f(n ; k^, t^, k^ , t^) be the smallest integer with the 

following property : Let be any séquence of n distinct real numbers. A s ­

sume that there are f(n ; k̂  , t^, k^ , t^) arithmetic progressions of terms 

which intersect A in at least k, terms, then there is an arithmetic progression 
n i 

of iry terms which interesects A in at least k_ terms. I hope that some inter-£ η Ζ 

esting results can be found about f(n ; k̂  , , k^ , t ^) . 

2 

Perhaps if A contains c^n arithmetic progressions of three terms, 

then it must contain an arithmetic progression of c^ log n terms (c^ = c^(c^)) . 

By probabilistic methods it is easy to see that, if true, this is best possible, apart 

from the value of c^ . 
Dénote by g(n, k, c) the largest integer so that every séquence 

ISa. <. . . < a ^ n , s > c n , contains at least g(n, k, c) arithmetic progressions 
1 s 

of k terms. Varnavides proved g(n, k, c) > a^(c) n for k = 3 and this was ex-

tented to ail k by Szemerédi. A good estimation of 0<k(c) as c -» » does not 

seem easy and I cannot prove that 

g(n, k 1 , c; 
lim lim —: • — = 0 for k, > k_ 

gin, k„ , c) 1 2 c-x» n-+œ 6 V 2 

P. Varnavides. - On a theorem of Roth. J. London Math. Soc. 30 (1955), 
325-326. 

(v) Is it true that if f(n) = ± 1 is any function defined on the integers, 

then to every c there is a d and an m so that 

m 
(1) | Σ f(kd)|> c ? 

k=l 
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This is one of my oldest conjectures (about 40 years old) and I offer 

300 dollars for a proof or disproof. Perhaps (1) remains true if f(n) is complex 

valued and |f(n)| = 1 , or perhaps it could be true in more gênerai vector spaces. 

If f(n) = ± 1 and f(n) is assumed to be multiplicative we obtain the con-

n 
jecture that | Σ f (k) | cannot be bounded. For a more gênerai conjecture see 

k=l 

N. G. Tchudakoff, Theory of the characters of number semigroups, International 

Coll. Zeta function, Bombay 1956, 11 -16. 

The sharpest quantitative form of (1) which could be true states as fol­

lows. There is an absolute constant c^ so that if f(n) = ±1 , n = 1, 2, . . . there 

always are integers d and m so that m d < x and 

m 
| Σ f(kd)| > c log χ . 
k=l 

(vi) Several years ago I asked the following question. Let a ^ < . . . < a n ^ X 

be a séquence of integers. Assume that no a divides the sum of the other a's . 

Put max n = F(X) . I thought that F(X) was les s than a power of log X , but 

E. Straus proved that 

(1) F(X)> exp(l + o ( 0 ) y 2 ) " ^ · 

What is more interesting, Straus observed that the problem is essentially équi­

valent to the following much more interesting one. Let l < a ^ < • • • < a

m ^ X be a 

séquence of integers such that no a_ is the arithmetic mean of any other a's . Put 

max m = f(X) . Détermine or estimate f(X) . Straus, in fact, proved that (1) holds 
3/4 

for f(X) and Straus and I proved f(X) < c . Szemerédi recently somewhat im-
ε 

proved the exponent 3/4 , but it seems probable that f(X) = o(X ) and we are 

very far from being able to prove this. 
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