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TRANSCENDENCE AND ABELIAN FUNCTIONS 

by 

David William MASSER 

I will first describe the results in the special case of elliptic functions. 

3 2 

Let , be algebraic numbers with g^ / 27 g^ , and let P(z) be the 

Weierstrass elliptic function satisfying the differential equation : 
(P'(z)) 2 = 4(P(z)) 3- g 2 P(z ) - g 3 . (*) 

This function is doubly periodic with a lattice A of periods which are also poles. 

We define an algebraic point of P(z) as a complex number u such that either u 

is in A or P(u) is an algebraic number. The ring IE of complex multiplications 

of P(z) is the ring of complex numbers a such that a As A . Clearly IE 2 2K , 

and for general g^ > g^ we have IE = Z ; otherwise IE is an order of a complex 

quadratic extension IK of the rational field Q . It is not hard to prove that the set 

of algebraic points of P(z) is an IE-module. Accordingly it was conjectured by 

Coates that algebraic points of P(z) are linearly independent over the field A of 

algebraic numbers if and only if they are linearly independent over IE . 
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I have proved this conjecture when IE / Z , and the following theorem is 

an essential tool. 

THEOREM 1. - Let u, , ... ,u be algebraic points of P(z) that are linearly in-  1 m 

dependent over IE ( / rE^) . Then given e > 0 there is an effectively computable  

constant C>0 depending only on 6 , u ] > » , * * » u

m

 a n d ^(z) such that 

|a.u +... +a u | > C e 
1 1 1 m m 

for any algebraic numbers 0^, ... , of_ IE , not all zero, of heights at most H . 

With this we can prove the following generalization of the conjecture which 

incorporates the number 1 into the basic linear form. 

THEOREM 2. - Let u^,... » u

m be algebraic points of P(z) that are linearly in­ 

dependent over IE ( -f ). Then 1 , u , ... , u ^ are linearly independent over A. . 

In particular, each u. and each ratio u./u. is transcendental ; in fact 

these special cases were obtained by Schneider in [2] for general IE . The quan­

titative version of theorem 1 can be used in conjunction with the finite basis theo­

rem of Mordell-Weil to give a new proof of Siegel's theorem for elliptic curves 

with complex multiplication. For example, if k is a non-zero rational integer, 

the curves 
2 3 x V 2 3 X V 

y = x + k , y = x -f kx 
have only finitely many integral points. 

Although this proof does not use the inequality of Thue-Siegel-Roth, it 

remains ineffective in character because there is no effective way of constructing 

the basis whose existence is asserted by the result of Mordell-Weil. 
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ÄBELIAN FUNCTIONS 

To generalize all this to abelian functions we proceed as follows. Let A 

be a lattice in C n satisfying certain relations of Riemann. If it is non-degenerate 

in a certain sense, the field 3 of functions meromorphic on C*1 containing A in 

its lattice of periods is of transcendence degree n over C . Thus we may write 

3 = C (A A . . . , A ) 

o 1 n 

where A^ , . . . are algebraically independent and A q is integral over the ring 

C [ A j , . . . »A ] . We express this dependence by a polynomial relation 
F(A , A _ , . . . , A ) = 0 . 

v o 1 n' 

For example, if n = 1 we can take A ^ = P , A Q = P' and F is given by (*) . 

The analogue of the condition that g^ > g^ are algebraic numbers is imposed as 

follows. The partial derivatives d/d map 3 to itself, and so we can write 
G (A A ) dA./dZ. = G.. (A , A A ") (1< i< n , 0< j<n~) v 1 n ; y I IJ o 1 n' v J ' 

after taking a common denominator and clearing this of the function A q . We say 

that 3 is algebraically defined if 

a) A^, ... ,A are holomorphic at the origin 0̂  and take algebraic values 

there, 

b") F , G , G . have algebraic coefficients, 
ij 

c) If we write B(Z) = G(A (Z), ... , A^ZJ) then B(0) / 0 . 

We call a vector u of C n an algebraic point of $ if 

d) A j , . . . ,A^ are holomorphic at u and take algebraic values there, 

e) B(u) f 0 . 

Once again we define IE as the ring of matrices of G ^ ( C ) that take 

the period lattice A into itself. It is no longer true that algebraic points form a 
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IE-module, because of the denominator B(Z") ; however, this statement is almost 

always true. The conjecture extending that of Coates would assert that algebraic 

points of 3 are linearly independent over M (.&.") if and only if they are linearly 

independent over IE , where M^A") denotes the ring of nx n matrices with al­

gebraic entries. 

Our methods only succeed when 3* has complex multiplication of the type 

discussed by Shimura. This is when IE is isomorphic to an order IL of an al­

gebraic number field IF of degree 2n over Q . It is convenient to make this iso­

morphism explicit by diagonalizing IE . There are n monomorphisms 

i|f. : IF -* C (IS i< n) such that the diagonal matrix D(a) of IE corresponding 

to a number a of IL is given by 

•l *n 
D(a) = diag (a , ... , a ) . 

The next result generalizes Theorem 1 . 

THEOREM 3. - Let û  , ... » _ u

m be algebraic points of 3 that are linearly inde­ 

pendent over IE ( « IL) . Then given e > 0 there is an effectively computable cons­ 

tant C> 0 depending only on £ , u^, ... , u ^ , and 3- such that 

|D(cJ u +..,'+ D(cr )u |> C e " H £ 

1 —1 m m 

for any algebraic numbers o^, ... , of_ IL , not all zero, with heights at most 

H . 

This enables us to give a new proof of Siegel's Theorem for any curve 

whose Jacobian variety has Shimura complex multiplication. An example is 

a x P + b y q + c = 0 

where a , b , c are nonzero rational integers and p, q are different primes. 

180 



ABELIAN FUNCTIONS 

Once again the estimates would all become effective if the theorem of Mordell-

Weil for abelian varieties could be made effective. 

Finally Theorem 2 can be generalized by introducing the vector 

v = (1, 1 , . . . , 1 ) . 

THEOR EM 4. - Let u^, ... , u^ be algebraic points linearly independent over 

IE («IL") . Then the vectors v , u, , ... ,u are linearly independent over the set v / — —l —m 1 c  

of non-zero diagonal matrices of M^(A) . 

In other words, if R , S. , . . . ,S are diagonal matrices of M ( A ) , 
1 m n 

not all zero, the vector 

R v + S, u. + ... + S u — 1—1 m —m 

does not vanish. This clearly gives the transcendence of the vectors (i. e. the 

transcendence of at least one of their components) ; this had been proved for 

general IE by Lang in [1]. More interestingly, we can separate components by 

taking the matrix coefficients suitably singular. For example, when m = 1 we can 

take for algebraic a 

R = diag (a, 0, ... , 0) S = diag (l, 0, ... , 0) ; 

this implies the transcendence of the first component of û  (and so obviously that 

of each component). Similarly, the choice R = 0 and 

S. = diag (a. , 0, ... , 0) 
l & l 

for algebraic a. gives the linear independence over A. of the first components of 

u. , ... , u —1 —m 
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