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1. Introduction 

This thesis*is devoted to a study of the deformations 

of an isolated singularity of an algebraic variety admitting 

a multiplicative group action. In this section we give a 

summary of the techniques used and the results obtained. 

(1.1) First we set up some notation and review the relevant 

elements of deformation theory. Details can be found in 

[4^] and [45]. We fix once and for all an algebraically 

closed field k. 

Let B be a local k-algebra of finite type. Let (5 be 

the category of local artin k-algebras, C that of complete 

noetherian local k-algebras: hence if A € C with maximal 

ideal m, then A/m 1 € C for all i. 

Definition (1.2) An infinitesimal deformation of B to A 6 C 

is a cartesian diagram 

B • > B = B 1 ® k 
T A A 

res ^ . 
A > k 

where A > B* is flat. 

* A slightly different version of this work was submitted to 
Harvard University in partial fulfillment of the Ph.D. 
requirements in May 19 74. 
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H. PINKHAM 

Definition (l.jj) D, the local deformation functor from C 

to {sets} takes A € C to isomorphism classes of 

deformations of B to A, isomorphism being defined in the 

obvious way. We extend D to C by taking inverse limits 

to get the notion of forma1 deformat!on. 

We will usually be interested in minimal "complete" 

families of formal deformations, in the following sense: 

Definition (1.4) A formal deformation £ € D ( R ) , R € C 

is versal if 

(i) any formal deformation £· € D(s) may be deduced 

from £ by a base change R > S . 

(ii) the Zariski tangent space of R is minimal for (i). 

R (or Spec R ) is then called the formal moduli space of B; 

its tangent space (the k-vector space of first order 

deformations) is denoted T^, or just T 1 if no confusion is 
B 

possible. 

Lichtenbaum-Schlessinger [28] have studied using 

the cotangent complex. Schlessinger 1s theorem [43] implies 

that when Spec B has an isolated singularity at its closed 

point, then B has a versal deformation. 
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INTRODUCTION 

Finally note that for simplicity we often speak of 

deforming Spec B when we mean we are deforming B, and 

write down the obvious dual diagrams. 

(1.5) We use the standard notation (E to refer to the 
m 

group of units k* of k under multiplication. 
Assume now that G acts on B. The first chapter of 

m 
this work is devoted to a general study of the deformations 

of B. Our first result is that we can construct a versal 

deformation of B: 
B ' > B = B ' <8U k 
t t 

R > k 

so that (E also acts on R and B· in such a way that all the m 
maps are "equivariant"(i.e., they respect the group action). 

This is proved in section 2. The first step towards proving 

this result is to show that T 1 has a CE action; therefore 
m 

decomposing T̂ " into eigenspaces we can write 

T 1 = £ T X(v) 
v 
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H. PINKHAM 

where v ranges from -co to + 0 0 . In this work we will 

concern ourselves exclusively with deformations derived from 

the non positive part of the grading and our main theme will 

be that these deformations lift to deformations of certain 

projective varieties. 

(1.6) Schlessinger [4^] has studied the grading of T"** in 

the following special case: let X be a smooth, projectively 

normal projective variety, and let C be the affine cone 
x 

over X. Projective normality (sometimes called arithmetic 
normality) just means the vertex of C is normal. The local 

x 
ring B of C„ at the vertex obviously has a G action. ^ X m 
Schlessinger shows the eigenspaces T 1(v) can be interpreted 

in terms of cohomology groups on X. In section 3 we sketch 

his results which we later use. 

(1.7) Now suppose that B is the local ring of the vertex of 

the cone C over a smooth projective variety X, no longer x 
assumed to be projectively normal. If T^(v) = O for all 

B 
v > O we say that B, or C , has negative grading. In 

J\. — — — — — — — — — — — — — — 

order to state our main result, we make some definitions. 
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INTRODUCTION 

Let C be the projective cone over X. If X c: ip n
 9 then 

C c: jp n + 1. Let Hilb be the local Hilbert functor of C X X 
n*fl 

in 3P , defined in section 4, and let cp denote the 

morphism of functors: Hilb > D obtained by 

"forgetting what happens at infinity". 
Theorem (1.8) Let X,C ,B, etc. be as in (1.7), and 
— — — — — — — » y\. 

suppose C has negative grading. Then we can construct a 

section to cp. Furthermore if X is projectively normal then 

CP is a smooth morphism. 

For details, see sections 4 and 5 where this theorem is 

proved. 

In chapters II and III we use (1.8) to study the 

question of existence of smooth deformations of a cone C . 

Definition (1.9) Let Spec B be an isolated singularity, and 

let Spec B* > Spec R be the versal deformation of Spec B. 

We say Spec B has smooth deformations if a generic fibre of 

Spec B 1 > Spec R is smooth. 
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H. PINKHAM 

Chapter II deals with cones over projectively normal 

curves X. When X has dimension >_ 2 Schlessinger [44,4p] 

shows that C gives many examples of singularities without 

smooth deformations. Mumford [31] extends this to curves: 

if X is a smooth nonhyperelliptic curve of genus 3* 

sufficiently amply embedded, then has no smooth 

deformations. Our main result is the following 

Theorem (l.lo) Let X be a smooth curve of genus g >̂  2 
(resp. g = l) embedded by a complete linear system of degree 

d > 4g+5 (resp. D > lo). Then the vertex of the cone C 

has no smooth deformations. 

This is proved in section 7· Note the explicit bound 

for d is new. In sections 8 and 9 we analyze in detail the 

deformations of cones over curves of genus O and 1. Results 

are stated at the beginning of each section. 

In Chapter III we study cones over O-dimensional 

varieties: X is a finite set of points, so that C x is a 

collection of lines all passing through one point. Using 

(1.8) again we obtain in section 11: 
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INTRODUCTION 

Theorem (l.ll) The general cone consisting of g+n+1 lines 
n 'i'l 

in general position in A > 3 < g < n , does not have 
smooth deformations for n > 4 + —~r. (The condition 

g-2 
g < n implies negative grading). 

This gives the first simple, explicit example of a curve 

singularity without a smooth deformation. Of course Mumford 

[30] had already shown that the "generic" curve singularity 

has no smooth deformations, but it was not known how 

complicated an explicit example would be. 

(1.12) Finally in Chapter IV we study irreducible curve 

singularities with action.1 Such singularities can be 

described parametrically as follows. Let H be any additive 

semigroup of non negative integers. B , the semi-group 
ri 

ring of H, is the subring of k[t] generated by t*1, h € H. 
B„ obviously has a S action. Unfortunately the formal ri m 
moduli space R of B does not necessarily have negative 

ri 
grading. Let R' be the quotient of R obtained by setting 
equal to zero the variables corresponding to T^(v), v > o. 
(See section 13 for a precise definition). We have now 
^ e e (1.20) 
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reduced ourselves to a negative grading situation. This 

means that R 1 and the restriction of the versal family above 

it B" are graded in positive degrees (the change in sign 

occurs because the variables of R' are dual to the 

corresponding elements in T 1 , hence have opposite weight). 

(1.13) Putting aside the above situation for a second, note 

that semigroups of positive integers occur in another area of 

the theory of algebraic curves. 

Definition (1·14). Let X be a smooth proper curve over k, 

P a point of X. The semi-group H p of P is the set of 

non negative integers h such that 

dim H°(X,G(hP)) - dim H°(X,&((h-l)P) = 1. 

Our main result (proved in section 13) relates the two 

semigroups: 

Theorem (1.15) With the notation of (1.12) and (1.13), 

there is an open set IJ in Proj R 1 , which classifies the 

set of pairs consisting of a smooth and proper algebraic 

curve X together with a point P € X with semigroup H p = H. 
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INTRODUCTION 

We do not claim that U is non-void. We discuss some 

cases of this in section 14. If U is non void, then we have 

constructed directly a compactification of a "moduli space" 

for curves with points of semi group H. In section 14 we 

also discuss how to compute the dimension of Proj R 1 using 

a result of Deligne [lo] stated in section lo. 

(1.16) To explain this construction we illustrate it in 

the simplest case: we let H be the semigroup generated by 

2 and 3. B„ = k[t 2,t 5] can then be written as k[X_,X_]/(f), 
~5 2 

f = X^-X^. This is the ordinary cusp, acts with weight 

2 on X^, weight 3 on X^. It is well known that the versal 

deformation of this singularity is given by 

F = X^ - X 2 + t x X x + t 2 over R = k[t J [,t 2]. To make this 

equation homogeneous for the <E action we must assign to t. 
TCI _L 

and t^ the weights 4 and 6. Therefore in this special case 

we are directly in a situation of negative grading. We now 

modify F in the following way: in F replace t^ by 
t i X o G l g l l t t^"> X o a n e w variable. W e obtain 

F - X l - X2 + t l X 0 1 < X l + Vo 6 R£*o' Xl' X2 ] * 
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Note that F is homogeneous in X ^ X ^ X ^ alone if we assign to 

them the weights 1,2,3· Considering R[X Q,X^,X 2]/F to be 

graded in the x^'s only, look at 

Y = Proj(R[X 0,X 1,X 2]/(F)) > Spec R. 

(E acts on R as before: it is easy to see that all fibres m ·* 
above points of the same (E orbit in Spec R are isomorphic. 

_ m 
All the fibres of Y > Spec R are smooth elliptic curves 
except 

1) the original cusp above (̂ ^̂ 2̂̂  
2) a family of rational curves with a single node 

above one orbit of CE in Spec R.  m 
We have a natural section obtained by setting X Q = O. 

It picks out a point on the smooth fibres of semigroup H, 

not a very surprising fact in this case since all points on 

an elliptic curve do.1 

Since the isomorphism class of the fibres is constant 

on 8 ^ orbits of Spec R, it is natural to quotient out by the 

action, i.e., take Proj R. In the case at hand we obtain 

the usual compactification of the coarse moduli space for 

elliptic curves with section.U* in this case is 

Proj R - {image of orbit corresponding to node} . 
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INTRODUCTION 

All the features of this special case generalize, 

except that, as we have already mentioned, it is not known 

in the general case whether or not U is void. 

This construction seems to raise more questions than it 

answers. Some of them are discussed in sections 13 and 14. 

(1.17) To conclude, let me mention some results that are 

byproducts of our main constructions. 

1) In section 8 we show that the formal moduli space 

of the cone over the rational curve of degree 4 in IP has 

2 positive-dimensional components. By a result of Artin [4] 

only one of the components is obtained by simultaneous 

resolution, therefore giving an example of a rational surface 

singularity with deformations that cannot be obtained in 

that manner. (8.3 ) 

2) In (12.8) we give an example of an obstructed 

Gorenstein curve singularity. 
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(1.18) It. is with great pleasure and gratitude that I 

thank my advisor, David Mumford, who stimulated my interest 

in this topic and proposed several of the problems treated 

here. His contributions to this thesis in both form and 

content are too numerous to be mentioned. Needless to say, 

the remaining errors are my own. I would also like to 

thank Mike Artin, David Eisenbud, Heisuke Hironaka and 

George Kempf for many interesting discussions, and 

Laura Schlesinger for her rapid and precise typing job. 

(1.19) Notation. We collect here some notation we will 

use without further warning. 

Spec will be used to designate both ordinary Spec 

and formal Spec 

0 f i^ A = module of differentials of A > B([l], VI) 

G = tangent bundle of the variety X. 

N - normal bundle of X for its embedding in x 
projective space. 

\(x,F) = Euler characteristic of the sheaf F on X. 

h X(x,F) = dim H X(X,F). 
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INTRO D UCTION 

Finally when we speak of the affine cone of a 
projective variety X cz ip n we mean Spec R, where R is the 
unique graded ring such that Proj R = X and R + (= maximal 
ideal of R) is not associated to R. In other words there 
is no embedded component at the vertex. 

(l.2o) In chapter 4 we must make the restriction 
characteristic k = O. We actually only need the 
characteristic to be large compared to g, the number 
of gaps of the semigroup. 
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CHAPTER I. Generalities on deformations of varieties 
with (E action.  m 

2. Deformations of singularities with (E action — — — — — _ _ m 
In this section C will be an affine variety defined over 

k with an isolated singular point p and a (Ê  action. In a 

suitable coordinate system we have: 

(2.1) C can be written as Spec(P/l), where P = k[X^,···,X n] 

and I an ideal of P containing p = (x^,···> x
n)· 9 ^ acts 

c i 
by X^ » > g X^. t 2Z is called the weight of X^. I is 
invariant under (E . B = P/l. 

m 
Such singularities have been studied extensively by 

Orlik and Wagreich in the case of surfaces [34] and Herzog 

and Kunz in the case of curves [24]. This generalizes the 

situation where C is the cone over a smooth projective 

variety, in which case c = 1 for all i. Using elementary 

techniques we prove the following results: 

Proposition (2.2). The tangent space T 1 of the deformation 

functor D of p in C has a natural grading T 1 = E T ^ v ) with 

v ranging from -co to oo . 

16 



DEFORMATIONS WITH € ACTION 
tn 

Proposition (2 .3) A formal versal deformation of C 

y < > c 

V < * Spec k 

can be constructed so that CE acts on Y and on V compatibly 
m 

in such a way that the action on Y extends the action of CE 
m 

on C. 

Remark (2.4) These gradings are of course the same obtained 

by Schlessinger on the projectively normal case, and 

described in section 3, since in both cases they are 

eigenspaces of the (5^ action. 

(2.5) The proof of (2.2) is purely formal. Given an 

infinitesimal deformation of Spec B to A: 

Spec B · < Spec B 

as in (1.2); if g is any 
Spec A < Spec k 

automorphism of Spec B then we get a new deformation of 

Spec B to A as follows: 

17 
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g* 

Spec B 1 < Spec B ~ > Spec B 

i V 4* 
Spec A < Spec k w Spec k 

Therefore g also acts on D ( A ) , for any A € £ In particular 

g acts on T̂ " = D(k[€]). It is not hard to show g is a vector 

space automorphism of T \ When the group of automorphisms 

is CEra, T
1 decomposes into eigenspaces which give (2.2). 

(2.6) Let us see what this means when g € <Em. We keep the 

notation of (2.1). Choose a basis {f.}. _ M of I. so 

d¿ 
that g € CE takes f. to g f. for some d. ^ 7L called m i i i 

the weight of f^. Any relation between the f^ decomposes 

into a sum of weighted relations, since the f. are weighted. 

We use vector notation and write F for the column vector (f.). 
N i 

Then we can find a basis (as a B = P/l module) for the rela

tions, {R*?}, ̂. where R ° is a row vector with entries r. . 

of weight N^-d^ for some integer . 

We use the exact sequence: 

Hom B(O p &B, B) >Hom B(l/l
2,B) > T 1 > O . 

1 8 



DEFORMATIONS WITH <E ACTION 
m 

Now Hom B(l/l 2,B) ~ {N-tuples b = (b ±) , b ± 6 B Rj #*> = O 

on B , Vj } 

Definition (2.7) We grade column (resp. row) vectors of 

elements of B as follows: a column (resp. row) vector is 

homogeneous of degree v if its i-th entry is weighted with 

weight d^+v (resp. v-d^) in B . 
O O Hence F has degree O, and R degree N^ . 

This gives a grading on Hora^fl/l ,B). Since 
O S f i 

d/dX^ € Hora B(O p®B, B) maps to (F > i = 1,-..,N) 
k 

€ Hom B(l/l ,B), which by (8.7) is homogeneous of degree -c^, 

the cokernel T̂ " is also graded. We denote the v-the graded 

piece T^(v). of course since the singularity of C is 

assumed isolated, only finitely many of the T^"(v) are 

non-zero [43]· 

(2.8) We proceed to the proof of (2.3)· It is not clear 

to us how formal this result is. Ideally one would like to 

have it for any sufficiently nice group G. If D also 

satisfies condition H^ of Schlessinger [43], hence is prore-

19 
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presentable, the result is well known and obvious using the 

uniqueness of the maps on the base. The standard example is 

the (global) deformation functor of a proper smooth curve 

with finite automorphism group G. However if D does not 

satisfy H^, there seems to be a problem in extending the 

group action to the total space of the deformations. There

fore we give the proof only in the special case of (2.3), 

continuing the explicit description of (2.6). 

(2.9) Choose a homogeneous basis of T̂ *, 1 < k < r, 

F?[ € T 1(e ). Let S = k[ [t. , · · · ,t ] ] , m the maximal ideal 
K. J€ JL r 

of S. We know there is a £^ € D (s/m ) inducing a bijection 
2 1 

of Hom(s/m ,k[e]) with T ; choose it so that the "dual11 of t 
maps to F?\ Hence t has weight -e under the natural dual 

o action of G . The general first order lifting of F is then m 
written F*" = F° + Et, F.?". The extension of the action of 

k k 2 1 CÊ  to S/m by duality makes F homogeneous of degree O by 

(8.7). 
Recall that to get the versal deformation of C, i.e., 

the hull of D, Schlessinger constructs by induction on q an 

2 0 



DEFORMATIONS WITH <G ACTION 
m 

ideal J <= S , J_ = m , and a £ € D(S/J ) such that J" is q 9 2 ' ^q x / q 7 q 
the minimal ideal J satisfying the following two conditions: 

i) m J c j c j 
q-i q-1 

ii) there exists a £ € D(S/J) inducing £ ^. 

Then pick any £^ € D( S / J ^ ) inducing ^ ^. Finally set 

J = O R = S/J. 

(2.10) We now prove by simultaneous induction on q the 

following two statements (by this we mean a^ depends on both 

a , and b _ , etc. ) . 
q - l q_l> 

a : J is invariant under the (E action on S. q q m 
b : £ can be chosen so that the liftings F q of F° and 
q q 

Q, Q 
Rj of Rj are homogeneous of degree O and respectively. 
Proof. (2.9) shows that both a ? and b^ hold. First we 

prove a^ using a
q _ x

 a n d ^q l* APP^Y 9 ^ C E
m
 t o a n Y £ ^ D( s/ Jq) 

inducing £^ 1 # We obtain g(£) flat over S/g( J ) . Since C is 
invariant under g, g(£) € D(s/g(j^)). Furthermore g(£) 
induces P „ by b ,, so that by versality J c g(j ), 

q-x q-i q q 
Since this is true for all g € (E we get a · 

m q 

2 1 
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We now prove b^. Let us remark here that everything we 

have done up to now can be done by general nonsense as in 

(2.5). It is not clear that the same holds for b · To 
q 

cr cr prove b recall that R ? * F ^ = O mod J for any lifting q J q 
£ € D(S/.J^). Replace R9- and by their degree O and 

—cr 
parts respectively. Call the polynomials so obtaxned R 
and F ^ . By b _ this only affects terms of R^-R?^ 1 and q-i J J 
cr cf~l cr cr F - F . Notice this operation replaces R J - F by xts 

weighted part of weight N^. Therefore since is weighted 

(by a ) we have R ^ ' F ^ = O mod J" . Hence we have replaced 

£ by a new element £^ € D (s/ĵ ) satisfying b^, and 
inducing £ . . 

g-x 
This completes the proof of (2.3). In the next section 

we specialize to the situation where C is a cone. However 

in section 13 we will apply (2.3) to varieties with (Ŝ  action 

which are not cones· 

2 2 
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3· A Sketch of Schlessinger 1s results for cones over  
projectively normal varieties 

(3.1) Let X be a smooth and proper algebraic variety, 

L a very ample, projectively normal invertible sheaf on X. 

The embedding we obtain: X — > JPU will be fixed 

throughout. Let C (or just C if no confusion is possible) 
•A. 

n +1 
be the cone over X in this embedding. C x C > 2& 

Projective normality means the vertex p of C is normal. 

For simplicity we write V for A n + J" and IP(v) or just 3P for 
3Pn. C has obvious <E action. X m 

(3.2) In this section we sketch some results of 

Schlessinger which in the situation described in (3»l) 

interpret the eigenspaces T^"(v) of T̂ ", the tangent space 

of the deformations of the vertex of C , in terms of 

cohomology groups on X: 

(3.3) T 1(V) = coker(H°(x,G x(v +l)® V) > H° (X ,N X( v ) ) ) . 

Here © v(v) = (3 (l) where G v(l) = L is the canonical 
X .X X 

sheaf for the projective embedding X > 3Pn, N is the 

normal bundle for the embedding. For any sheaf F on X, 

23 



H. P I N K H A M 

F(v) = F ® ô
x ( v ) · 

The proof of (3-3) is in two parts. First we transfer 

information from C to E = C-p, using projective normality. 

This is Schlessinger 1 s comparison theorem ([44] or [45]) 

which can be applied to a much greater class of singularities. 
GD 

Then we use E = Spec ^ ^X^ V^ over X to compute in terms 
v=-oo 

of X. 

Step 1. Since p is a normal point on C, its depth in C is 

> 2. ([1], VII.2.12). Now for any coherent sheaf F on C of 

depth > 2 at p, H°(c,F) « H°(c-p,F) by the long exact 

sequence of local cohomology [16]. 

Definition (3.4) X an algebraic variety. A sheaf F on X is 

reflexive if F = Hom^ (G,^) for some coherent sheaf G on X. 

The following observation is elementary but important : 

Lemma 3.5 ([44], lemma 1). All reflexive sheaves F on a 

variety X with a normal point p have depth 2 at p, hence 

H°(X,F) = H°(X-p,F). 

We return to the situation described in (3.1). From 

the exact sequence 

1/1 2 > ov ® $c > nc > o 

24 
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m 

(see 1.18) where I is the ideal sheaf on C in V, the results 

of [28] give after applying Horn(»,&c) the exact sequence: 

0-> Hom(O c J& c) > Hom(ft v®6 c,& c) > Hom(l/l 2,$ c) > T 1 >0 

||def. ||def. ||def. 

c v|c c 

Taking global sections, since C is affine: 

o >H°(c,e c) —>H°(c,e v| ) > H ° ( C , N c ) ^ T 1 >o 
II II ° II 

H°(E,e c) H ° ( E , G V | ) H°(E,N C) by (3.5). 

We will work mainly with this exact sequence. 

Note (3.6) T̂ " is supported at p, since X is smooth, so that 

the sequence of sheaves 

O , . > N . > D 
|E |E |E 

is exact. Its cohomology sequence (E is not affine) 

combined with the previous exact sequence shows that 

T 1 c > H 1 ( E , © ). Similarly one can show T 2 c >H 1(E,N ), 
E E 

t 4 5 ] . 

25 
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OD 

Step 2. E = Spec ^ ° X ^ V ) J hence is affine over X with 
v=-co 

structure map TT: E ^>X. Therefore we get: 

H ° ( x,^e ) > H ° ( X , T T ^ N ) > T

1 > 0 

|E |E 

acts on both ^(^yi ) a n d I ^* T h e i n v a r ^ a n t s 

j E IE 
under are O x(l)®V and respectively, and the map on 

the invariants is the obvious one: 

H°(X,© X(1)®V) > H°(X,N X) 

H°(X, e : i p | x) 

( 3 · 8 ) follows, since 

OD 
H°(X ,TT o ) ̂  Y H°(X,O k(v+l)®v) 

|E v=-co 

H°(X,TT^Nc| ) - Y H ° ( X , N X ( V ) ) 
|E V=-OO 

because T T is affine. 

26 



DEFORMATIONS WITH <G ACTION 
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Similarly T 2(v) = H^X^N (v))n T 2 gives a grading 
2 

on T . 

4. A theorem on negatively graded cones 

We keep the hypotheses of (j>.l) except we no longer 

assume that X i« projectively norma 1. 

Definition (4. l) We say that C has negative grading if 
' X — — — — — — — I • 

T^(v) = o for all v > o. 

Theorem (4,2) If C has negative grading then any 
— — — — — — — j\. 

infinitesimal deformation of C lifts to an infinitesimal 
x 

— n+1 
deformation of the projective cone <z IP . More 
precisely we construct a section to the natural morphism cp 

n+1 

from the Hilbert functor of *C in IP to the deformation 

functor D of the vertex of C · 
Definition (k .3) Hilb, the local Hilbert functor of C in — — — — — x 

n 11 
IP , is the functor C to {sets} which to the artin ring 

A € C associates the cartesian diagrams: 
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J E ^ * 1 Y < ^ C = Y <8>k A 

Spec A < 3 Spec k 

with Y flat over Spec A. The Hilbert functor was introduced 

by Grothendieck [17] and has been studied by Artin [3]· 

(4.4) The natural morphism cp: Hilb > D of the 

theorem is just restriction to an affine containing C . 
X 

Proof of (4.2) . Let Y < C c aP4"1 with coordinates 
X_ · · ··.X as in 1 9 9 n 
(2.1) 

V < Spec k 

be the versal deformation of C constructed in (2.3)· W e 

construct a projective family Y over V as follows. Let 
oo 

F°° = ]T F*" be the lifting of F° constructed in the proof 
i=6 

of (2.3). Similarly let R3^ be the liftings of R°. In 
- e k 

these power series substitute formally t^ ^^n+l^k a n c * 
call the ensuing power series F°° and R^°. By (2.3) F°° 

—CO 
ancT Rj are now homogeneous under the action in the 
variables X

0 ' X 1 ' * * * , Xn+l a-*- o n e # B ^ hypothesis e^ <̂  O, 
hence by this substitution we introduce no denominator. 
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Note the F°° define a family over V, since the ideal defining 

V is weighted. We have 

Y C >y c i P n + 1 

V 

To finish the proof we must show Y ——> V is flat. If 

Y = Proj (A) and V = Spec(S) it suffices to show that A is 

flat over S. This is equivalent to being able to lift the 

homogeneous relations among the generators f^ of the ideal 

of C to homogeneous relations among the f°°, where f^ are 

the components of the vector F 0 0 . But we know the homogeneous 

relations among the f^; they are generated by R°. To lift 

them we need only take . 

5. The theorem on negative grading when X is projectively  
normal 

We keep the notation and hypothesis of (3.1). In 

particular X is projectively normal. With this extra 

condition we can improve (4.2): 
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Theorem (5.1) If X is also projectively normal, then the 

morphism cp: Hilb > D is smooth. 

Hilb and cp are defined in (4.4) and (4.5). "Smooth" 

means that if B > A is a surjection in G , then the 

obvious map Hilb(B) >Hilb(A) X
D ( A ) D ( B ) ^ s a surjection 

([43],§2). Thus if H prorepresents Hilb, then H is a formal 

power series ring over R, the formal moduli space of the 

vertex of C (cf. (l.4)). Hence we get the algebraizability 

of R directly, since H is algebraizable ([17]; also [3]) 

without appealing to Elkik's more general result [12]. 

By similar techniques we show that C has no locally 

trivial deformation (5*3)· 

Theorem (5.1) of course is an improvement over (4.2). 

As it turns out however, (4.2) is sufficient for much of our 

work. We only need (5.1) in the fine analysis of the 

deformations of cones over rational and elliptic curves in 

sections 8 and 9· 

Proof. Let B >A be a surjection in C · We may 

assume that »J = kernel(B >A) has square zero, and that 

J.nig = O, where m B is the maximal ideal of B. This makes J 
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a k-vector space. 
By standard obstruction theory we need only show 

(a) the map of tangent spaces Hilb(k[e]) => D(k[e]) is 
surjective. 

(b) Hilb is "less obstructed" than D. We make this precise 
below. 
Proof of (a); By Grothendieck [17], 

Hilb(k[€]) « H°(c,N—), where N— is the normal sheaf to C 
in 3^ +^. Since the vertex p has depth 2 (X is 
projectively normal), and since N— is reflexive, by (3»5) 

H ° ( C , N - ) ~ H ° ( E , N - ) ~ H ° ( E , N - ) 

where E = C-p ("cone projectif epointe": see [15], §8) and 
N—· is its normal sheaf. Now E = v(0 (-1)), so we have a 
natural affine structure morphism TT; E > X . It is known 
that N— ~ Tr*N , so that 

JE X 
o 

H°(E,N-) « H°(E,TT*NX) - H°(X,n#if»Nx) « £ H°(X,Nx(v)). 
V=-OD 

Since we are assuming T^(v) = O, for v positive, (5.3) 
induces a surjection Hilb(k[e]) « ) H°(x,N (v ) )—T1^D(k[e]) v . x V= —CD 
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which is easily seem to be the tangent space map of cp. 

Proof of (b) ; Let B >A be as before. Take 

£ Q € Hilb(A), C 0 = °p(?o^ ^ D( A)> a n d suppose that D is not 

obstructed on B >A, so that there is a £ € D ( B ) mapping 

to £Q» We must show that Hilb is not obstructed on B 

i.e., there exists a £ € Hilb(B) mapping to £ Q such that 

c p ( £ ) = C -

Notice that since we are assuming that £Q lifts to £, 

there is no local obstruction to lifting £Q- indeed C is 

smooth outside of p, so there is no problem lifting except 

at p (see [18], exposé III), and £ gives a lifting there. 

By [17], the global obstruction lies in Ĥ "(jpn+"*", CL), 

where 

& = B + 1 < I < * o ) » * € n * A
J > ' 

=k ° 

Here i ( C ^ ) is the ideal of £ in 3P^ + 1 and $ 6 is its 

structure sheaf. fc^ €>A J « ^ ®^ J since J-m^ = °> so 

p 
(X = Hom A (i/l · ̂ 7 ®ir»l) since J is annihilated by 

— C K C k 
— +1 

m* · is ^ e ideal of C in 
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We will apply the following lemma to show that 

H*~(JP™^, CL) = O, thus completing the proof. B 

Lemma 5.2 Consider the diagram 

IP - p > 3P 

TT 

where IPn is the projective space of lines through p and TT 
n+1 

is the map taking a point x € IP -p to the line through 
p and x. Let F be any coherent sheaf on 3Pn. Then 

_,1 / _n +1 . _#- \ ^ H (3P t*-*™ F) = °* 
When C is the cone over a projectively normal variety 

X the lemma applies to N ~ and Ô - since they all have 

depth 2 at p, so that they can be written as I^TT F. 

To apply the lemma to CL note that CL = Hom(l/l ,0^&j) 

has depth > 2 at p by (3-5), so that H1(c, a) c > H 1 ( E > CL) . 

But on E Oi = N = ® J , so the result follows from that for 

E 9 C 

Proof of (5.2). The exact sequence of low degree terras 

of the Leray spectral sequence for i shows that 

H ^ J P ^ i ^ F ) C >H 1(lP n" f l-p, T T * f ) . on the other hand 
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since TT ±s affine 
O 

H ^ J ^ - p / ^ F ) - £ H 1 ^ , F®<* (V)) . 
v=-oo ^ 

Let a be the section of TT: 0P n +^-p > IPn "at infinity". 

As we have already seen in the first part of the proof of 

(5.1), H 1(0P ? 1 + 1-p-a(3P n),TT*p) = ^ H ^ O P V t v ) ) , so that 
v=-oo 

combining with the maps above we get an injection: 

^ ( j P ^ i ^ F ) C > J H^nP, P(v)). 
V=-OD 

But this map is induced by the inclusion j : 

— > JP ; since j factors through the affine 

JÊ 1*"*"- C X (3P n) the map induced of Ĥ " must be the zero map. 

Therefore H 1(IP 1 1 4" 1 , i*lf*F) = O, proving (5-2). 

This completes the proof of (5.1). The proof presented 

here is a slight rearrangement of that appearing in [35]· 

Remarks (5.3) We have noticed that (5.2) shows that 

Ĥ "(c,©̂ ) = O, which means that C has no locally trivial 
deformations. When C has negative grading we can use (5-1) 

to show that the local and the global deformation functors 
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of C are identical, since there is no extra global 

obstruction. This could conceivably fail in the general 
2 

case: all we know is that the obstruction in H ( c m a p s 

to O in H2(E,e=-) . 
( 5 . 4 ) Our interpretation of the grading on T̂ *, given in 

section 2 (which does not rely on projective normality) shows 

that deformations with "tangent vector" in XT^(y) cannot 
v>0 

be lifted to projective deformations. 

( 5 . 5 ) If T^"(o) = O we get some extra information. Write 

Hilb- for Hilb and let Hilb be the Hilbert functor of X in C X 
3Pn. Let Hilb— > Hilb be the natural morphism of 

C X 

functors obtained by "restricting to the hyperplane at a>". 

( 4 . 2 ) gives a section c p ': D >Hilb^- of cp, so by 

composing we get i|f #cp': D > Hilb . When T 1(o) = O 

t(f •cp * is constant, i.e., all deformations of the cone map to 

closed point of Hilb . We say that "the intersection with 
x 

the hyperplane at infinity does not move". 
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CHAPTER II, Deformations of cones over projectively  

normal curves. 

6. Muroford's study of T̂ " 

As always the notation and hypotheses of (3*1) are 

in force. 

(6.1) When dim X = d >̂  2, Schlessinger [45] shows that 

if L is sufficiently ample, T 1(v) = o for all v ^ O: 

just note that T 1 ̂  > H 1(X,TT Q ) by (3-6) and use Serre 

duality. The point is that d-1 > O. On the other hand he 

establishes that cones with only T^ío) ¿ O have only 

conical deformations, i.e., deformations that arise by 

taking cones over projective deformations of X in IPn. 

Therefore such cones have no non-singular deformations. 

(6.2) Mumford [31] develops a technique for studying the 

case where X is a curve. He shows 

1) if X is IP1 embedded by » 2 (n), then T^v) = O 

for all v ^ -1, and dim T X(-l) = 2n-4. 

2) if X has genus >̂  3, is not hyperelliptic and is 

embedded by a sufficiently ample invertible sheaf L, then 

T X(v) = o for all v ^ o . HEnce C v has no smooth 
x 
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deformations. Unfortunately the proof does not yield an 

explicit bound on degree L for this to be true: compare 

with (7.5). 

(6.3) In this section we outline a proof of 1) and then we 

apply Mumford's techniques to treat the elliptic curve case: 

T X(-l) is always j^O, so we have some non conical deformations. 

(However the results of section 9 show that for an embedding 

of degree >̂  IO, all the deformations coming from T X(-l) are 

obstructed.) Before that we give a more elementary proof of 

some of the easier parts of his results which are of special 

interest to us. 

But first we state here, for lack of a better place, 

some relevant theorems on invertible sheaves on (smooth) 

curves. 

Theorem (6.4) (M. Noether, see [4l]) If X is a non-

hyper elliptic curve of genus >̂  3, then 0^ is (very ample and) 

projectively normal. 

Theorem (6.5) (Mumford [32]) If X is any. curve of genus g, 

then all invertible sheaves of degree > 2g+l are (very ample 
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and) protectively normal. 
We now give an elementary proof of a result contained 

in [31] : 

Lemma (6.6) Let X be a (smooth) curve of genus g embedded 
by an invertible sheaf L of degree d > 4g-4. Then T*(v) = o 
for all v > o, i.e., C has negative grading. Also if X is 

X 
rational T1(o) = O. 

Proof. Consider the following diagram of exact 
sequences: H^X . e^v)) 

H°(X,Sx(v+l)®V) —2—» H°(X,NX(V)) >T X(V) > 0 

H0(X,©;p| ® 6 X ( V ) ) 

H°(x,ex(v)) H 1(X,0 X(V)) 

If deg L > 4g-4, H1(x,©x(v)) = o for v > 1 

H^X.fc^v)) = 0 for v > 1 . 

Therefore a is surjective and T^(v) = o for v >. !· T n e 

last statement of the lemma is proved in the same way. 
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(6.7) w© now turn to Mumford's paper. We use * to denote 
Hom^ (-,<*x). Apply * to ft^V ^^(-l) >Nx(-l) 

X 
to obtain N*(l) >e p̂(li/X > ̂  8 V* ̂  ^ ^ ( X ^ L ) . 

On the other hand consider the product: XxX with its 
two projections p^ and p^ to X. Let A be the diagonal. 
The sheaf p2^[p*L( -2A) ] j> p2^[p*L] ~ O ^ r C x . L ) is 
clearly locally free. Mumford then shows that the two 
subsheaves N*(l) and p ^[p*L(-2A)] of ft ̂ ( X ^ L ) are equal 
by showing that their fibres at the point x are both 
T^,m^)C > r ( Y , L ) . 

Example(6.8) Following Mumford we compute the normal bundle 
of the rational curve X = IP1 embedded by L = ft _(n) . Indeed 

ipi 

in this case •Jplx3pl(-2A) = p* ̂ ( -2) ® p2**jpl(~2^' S° 

P 2 J.IPJI-(-2A)] = P 2 # . [ P ^ ( n - 2 ) « P J ^ - 2 ) ] 

- P2^[p*ftjpL(n-2)] 8> ̂ ( -2) 
= r(iP1 , o (n-2))• * ^ ( - 2 ) . 

Hence N ^ ^(IP 1^ .(n-2))* <S> <S>. ,(n+2). X jp-L jpl 
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We can now compute T
c ( v ) for all v. We already know 

TX(v) = O for all V > O. For v < -2 , r(x w ®L V) = O so 
T^(V) = o also in this case. Finally 

T1(-l) = coker[r(x,(y» k v) —^ > r ( x ^ l T 1 ) ] 

can be computed, noting that a is xnjective, 
dim r(x,N 3L" 1 ) = 3(n-l) 

dim r ( x ^ 8>v) = n+l, x 
so that 

dim T1(-l) = 2n-4. 

(6.9) We return to the general case. Once we have 
N*(l) = p [p*L(-2A)], by manipulations involving Serre 
X. JL 

duality and the Leray spectral sequence for the morphism p^, 
we see T̂ "(v) is the cokernel of the following map (at least 
when deg L > 2g): 

HX(XXX, pjfiy*.-1) ® P*L V + 1)) >> 

^(XXX^^O^L - 1) ® P*L V + 1 ® ®(2A). 

If X is a non hyperelliptic curve of genus > 2, Mumford 

40 



CONES OVER CURVES 

shows this map is surjective for all v ¿4 O [31] · 

Example (6. lo) Now suppose X JLs elliptic. We already 

know that T*(v) = O for v > O. It is easy to see that 

T 1(o) « 1 and that if deg L = dj>_3, T 1(v) = O for v < -2 

(the cone over X is then not a complete 

intersection and is defined by quadrics). The only 

interesting case is v = -1. We claim: dim T̂ "(-l) = d. 

2 
Note that A = O > and fi *= ft , so we want to examine 

X X 

the cokernel of the map a: 

a: H^XXXjpJflT1)) > H 1(XxX,p*(L^ 1)0O X x X(2A)). 

Since the normal bundle of A in XXX is trivial, and factoring: 

H^XXXjpJfL"1)) > H^XxXjpJflT1) * <* X x X(A) 

> H1(XxX,p*(L""1) <8> ft(2A)) 

it is easy to see a is injective. Now 

h 1(xxX,p*(L~ 1) 8> ft(2A)) « -xCpJ.tl-"1) ® ft(2A) 

(use Serre duality to show both H° and are o) . 

Therefore since x( p* (L""1)®^ (2A) ) -= 2d by Riemann-Roch, 
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H^XXX.p'dT 1) ) H 1(XXX,p*(L" 1)®© X X X(2A) )_^r1(_U ·> o 
dimension d dimension 2d =^dimension d 

(6.11) Similarly for hyperelliptic curves in general 
T V I ) t o . 

7· Smooth deformations of cones over curves 

(7.1) The main result of this section is that cones over 
sufficiently amply embedded curves of positive genus do not 
have smooth deformations. In outline the proof runs as 
follows: X is a curve of genus g, deg 1» = d. By theorem 
(4.2) since C has negative grading (6.6) such a deformation 
would lift to a smooth deformation of C in 3P n +\ We then 

x 
show that the general fibre would be a rational surface 
containing a smooth curve of genus g and degree d. But for 
d > 4g+4 if g 2 and d > 9 if g = 1 this contradicts 
Hartshorne1s theorem [20]. 
Proposition (7.2\ l) Let X be a smooth curve of genus g, 
embedded by a very ample, projectively normal invertible 
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— |L I d-Q sheaf L of degree d >_ 2g-l. Hence X —•1—^ 3P . Assume 
the projective cone C in 3P d~ g + 1 can be infinitesimally 

x 
projectively deformed to a smooth surface Y. Then Y is 
embedded by a projectively normal invertible sheaf L and is 
rational. 

2) If X is non hyperelliptic, and L is replaced by 
the canonical sheaf 0^, then Y is a projectively normal 
K-3 surface (cf. [29] and [ 4o ] ) . 

(7.3) Proof of 1). Let X' denote a smooth hyperplane 
section of Y. X' has genus g and degree d and is projectively 
normal. A. Mayer [29] has shown that a projective variety 
with projectively normal hyperplane section is projectively 
normal. So we only have to show Y is rational. 

Let K be a canonical divisor on Y. By the genus formula 
(K+X'J-X* = 2g-2 and ( x ' ) 2 = d, so that K-X' < O. 
Similarly nK-X* < O for all n. Therefore P r = h°(Y,ft(nK)) =0 
for all n. On the other hand by upper semicontinuity 
n1(Y>ftv) < h1(c,ft—) and h1(c,ft-) = O by (5.2)· Therefore 
Castelnuovo's theorem [46] proves the rationality of Y, 
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Proof of 2). Let X' be the smooth hyperplane section 
of Y at infinity (in the notation of section 4, x

n + i = °^" 
X 1 is a projective deformation of X and is therefore also 
embedded by its canonical bundle. We use the exact sequence 

(•)v O > L
V > L

V + 1 > O^t 1 * O 

where L is of course ^y(^)* A s before h^"(Y,$v) = O, and of 
course h^X',^,) = 1. (*)v shows that h2(Y,LV) = h 2(Y,L V + 1) 
for all V >_ 1; since h2(Y,Lv) = O for large v since L is 
ample, h (Y,L) = O. Therefore by (*)Q we see that 
n2(Y,Oy) = O or 1. If h2(Y,0Y) = O then h^Y^L) = 1. As 

1 v 
before, this implies h (Y,L ) = 1 for large v, a contradiction 
since L is ample. Hence h1(Y,0Y) = 1, so K is effective. 
Since K*X* = O, K must be the trivial divisor. Therefore 
Y is a K-3 surface. 
Theorem (j.4) (Hartshorne [20], Theorem 3.5). Let X be a 
nonsingular curve of genus g ̂  O on a rational surface Y. 
Then either 

a) g = O and the embedding X ^ Y is equivalent to a 
section of a geometrically ruled rational surface; or 
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b) g = 1 and the embedding X > Y is equivalent to a 
2 2 nonsingular cubic curve in IP-, in which case X = 9; or 

c) X 2 < 4g+4. 

Note: The cases g = O and g = 1 were obtained by Nagata 
[33]. 

Combining this theorem with Theorem (4.2), we obtain 

Theorem (7«5) • Let X be a smooth curve of genus g >_ 2 
(resp. g = l) embedded by a line bundle of degree d >_ 4g+5 
(resp. d > lo). Then the vertex of the cone C over X has 
no smooth deformations. 

Proof. By Lemma 6.6 we see C has negative grading, 
hence by Theorem 4.2 its local deformations can be lifted 
to projective deformations of C. Such a projective 
deformation Y, if it is smooth, must be a rational surface 
by (7.2). This contradicts Hartshorne's theorem. 

Remarks (7-6) i) We did not use(5.l): we only used the 
existence of a section to cp. We will use the smoothness of 
<p in our detailed study of genus O and 1 (sections 8 and 9). 

ii) For non hyperelliptic curves of genus >_ 3, the 
only improvement over Mumford's result ([31],d*)) is the 
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explicit bound for d. In the elliptic and hyperelliptic case 
the theorem answers (negatively) a question posed by Mumford 
([31]> remark B): we do not have nonsingular deformations 
even though T^f-l) j£ O. 

iii) Suppose that a smooth curve X is the hyperplane 
section of a smooth surface Y on 3Pm so that O (l)®0 is 

x X 
projectively normal. As we have seen already, <3̂ (l) is 
projectively normal. In that case C (and hence C ) has a 

x x 
smooth deformation with generic fibre isomorphic to Y, 
constructed as follows. Let H be the hyperplane in 3Pm 

cutting out X on Y. Consider C v in J^1. H c > jpmC—^I^1. 
m 11 

Let be the pencil of hyperplanes of IP containing H, 
parametrized so that H Q passes through the vertex of C y. 
Then O C y is a flat family of projective surfaces over 
Spec k[t], with fibre C above O and all other fibres 
isomorphic to Y. The family if flat because C y is normal. 
We call this construction "sweeping out the cone with 
hyperplane sections". 
(7.7) To conclude we examine the "canonical embedding" 
case, i.e., X non hyperelliptic of genus g, L = fi^. 
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Unfortunately in this case T^(l) is not zero; indeed has 

dimension at least g. 

A simple counting argument (Mayer [29], p. 9) shows 

that for g >_ 12 only a proper subspace of the non 

hyperelliptic curves of genus g can occur as hyperplane 

section of a K-3 surface. Take a curve X that does, i.e., 

X is the hyperplane section of a K-3 surface Y. Then by 

sweeping out the cone C y by hyperplane sections as above, 

we obtain a curve in the formal moduli space R of C with 
x 

tangent vector 77̂  € Er̂ "(v). -oo < v < o. Another way of 
deforming C is to deform X into curves X 1 not appearing x 
as hyperplane sections of a K-3 surface. This will give us 

another curve R with tangent vector 7?̂  in T̂ "(o) . Clearly 

the plane spanned by 7?̂  and 77̂  in T̂ " must be obstructed 

(although 77̂  and 77 2 are not) since otherwise X 1 would be 

the hyperplane section of a K-3 surface. Hence the 

deformation spaces of C and C will look entirely 
X X 

different. 
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8. The cone over the rational curve of degree n in J^1 

1 n 
(8.1) We embed IP in P by ^ -.(n). The image X is 

IP1 

projectively normal by (6.5). One easily sees that the 
homogeneous prime ideal I of X is generated by the 2x2 
minors of the matrix 

(XC Xl X2 Xn-l\ 

\ Xl X 2 Xn / 
By (6.8) we know TQ( v) = 0 f° r v 5̂  —1, so we can apply 
Theorem (5.1), and study only the projective deformations 
of C, a surface of degree n in JPn+1. They are surfaces of 
the same degree, and such surfaces have a simple 
classification: the only singular one is C, the others 
are rational ruled surfaces, and, if n = 4, the Veronese 
surface in IP̂  (i.e., the image of IP2 by G- P(2)). (We 

IP̂  
exclude the trivial cases n < j). This classification is 
a result of Del Pezzo, A modern reference is Nagata [33]· 
Using this classification we determine here the versal 
deformation of the cone C , by studying the Hilbert scheme 
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at the ruled surfaces and the Veronese. 

(8 .2 ) When n = 4 , the formal moduli space is reduced with 
two components, of dimensions 3 and 1 meeting transversally, 
the fibres of which are the rational ruled and the Veronese 
surface, respectively. When n 5 it is a nonsingular 
n-1 dimensional space with a O—dimensional embedded component 
at the origin. Thus the reduced formal moduli space is smooth 
for all n except n = 4 . 

(8 .3 ) The deformations have simple matrix representations. 
The 2x2 minors of the matrix 

(X^ X n X 0 X n \ 

O 1 n-2 n-1 
Xl- tl X2*2 Xn-l-*n-l X n / 

describe, for all n >_ 2 , the deformations, which, after 
homogenization in an extra variable x

n + ^ * a r e rational 
ruled surfaces. These deformations were known previously 
(Tjurina [47] wjho states, however, that these are -no 
obstructions), and they form the component of the deformation 
space that can be "simultaneously resolved" (Brieskorn [ 9 ] ; 

also see Artin [ 4 ] ) . When n = 4 we can also write C as the 
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locus of 2x2 minors of the matrix: 

X_ X n X^ ̂  O 1 2 

3) X l X 2 X 3 

i X 2 X 3 X 4 I 

The component of the deformation space corresponding to the 
Veronese is a line k[t], and the fibre is the locus of 2x2 
minors of the matrix 

/ X G X l X 2 - f c \ 
4) x x x 2 x ? 

\ x 2 - t x 3 x 4 J 

which after homogenization is indeed a Veronese surface. 
This deformation does not admit a simultaneous resolution 
(Artin [4]) and is the first example of a rational singularity 
with such a phenomenon (for another example see [37]). 

At the end of the section we exhibit the direct 
computation of the versal deformation using generators 
and relations, in the case n = 4. It is of some independent 
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interest, since it can serve as a model for all such cone 
computations. For n = 5 we give the equations of the formal 
moduli space of the singularity. 

Proofs. 
(8 .4 ) As in Theorem 5*2, H prorepresents Hilb^- and R is 
the formal moduli space of D. By that theorem, 
H - R[[Z^,···,Z^]]. We first compute N. We have the exact 
sequence 

£ H°(X,N (V ) ) > T £ >0 

II 
Tangent space of Hilb. 

Using ( 6 .8 ) we know dim T^ = 2n-4 and compute easily that 
O 
Y H°(X,Nx(v)) = (n-l)(n+3) + 3(n-l) 

v=-oo 
2 

= n 4- 5n - 6 
2 

so that N = n + 
We now use the notation Hilb for the global Hilbert 

__n -f"l functor of subschemes of 1? and Hilb for the local F 
Hilbert functor at the subscheme F. Let f: W > Spec H 
be the total space of Hilb^-. We consider Spec R as a 
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subscheme of Spec H via the section cp' of cp given in 4 . 2 , and 
examine the fibres of f above points of Spec R. By the 

n*̂ l 
classification theory of surfaces of degree n in JP ( [ 33 ] ) 

the fibres of f are rational ruled surfaces or cones over 
rational curves, and, if n = 4, Veronese surfaces. However, 
by (5·5)* there are no cones in the fibres above Spec S 
except the original C above the origin, since T̂ "(o) = O 
( 6 . 6 ) . By [ 4 5 ] , §4.3> this is equivalent to the well known 
fact that all rational curves of degree n in 3Pn are 
projectively equivalent. Therefore the other fibres above 
Spec R are rational ruled surfaces and, if n = 4 , Veronese 
surfaces. 

If we study Hilb^ for a rational ruled surface P in 
I^4^", we find: 
(a) h1(F,N_) = O, so that Hilb_ is smooth. 

r r 

(b) h°(F,N ) = n^ + 4n - 3 = (*>Y smoothness) dimension of 
Hilb at the corresponding point. We defer these 
standard computations. Since Hilb is smooth, and since Hilb is smooth over D F ' 

by the theorem, we see that Spec R is smooth at the points 
with rational ruled surfaces as fibres, of dimension = 
h°(F,N )-N = n-1. r 
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If n > 5 this shows that Spec R is smooth outside the 
origin, of dimension n-l. Furthermore there can be only one 
component through the origin: were there two or more, 
since they lie in a 2n-4 dimensional space they would 
intersect outside the origin (they all are of dimension n-l), 
which would contradict the smoothness of Spec R outside the 
origin. So for n >̂  5 Spec R is irreducible, except perhaps 
for a O-diraensional component at the origin. The positive 
dimensional component is that found by Tjurina [47] and 
given by Eq. 2; it is obviously nonsingular at the origin. 
Therefore, since n-l < 2n-4 = dim T 1, Spec R does have an 
embedded component of dimension O. This settles the case 
n > 5. 

When n = 4 we must also study Hilb v, for the Veronese 
surface V in IP̂ . Since V is the image of by the linear 
system ^^(Z) > w ® get easily: 

(a') h ^ V , ^ ) = O 

(b') h°(v,Nv) = 27-

Since for n = 4 N = 26, we see Spec R is smooth and has 
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dimension 1 at points corresponding to Veronese surfaces. 

However we cannot conclude from this analysis that there is 

only one component corresponding to Veronese surfaces; we 

prove this by direct computation in (8 .6 ) . 

We now prove (a) and (b). 

Proof of (a). Using the standard exact sequences 

o > e p * V + 1 | F > N p > o 
o > < ^ n + 1 > ^ * ^ + 2 ( D » » o 

2 
and h (F,$) = O since F is rational, it is enough to prove 

F 
2 2 that h (F,e ) = O. Since this is true for IP , the 

F 
following lemma completes the proof: 

Lemma ( 6 . 5 ) h (F,© F) is a birational invariant of smooth 

surfaces F. 

Proof. By Serre duality h 2(F,© p) = h°(F,0*®n|), 
2 

and 0̂  the bundles of 1 and 2 differential forms. To show 

this is a birational invariant we proceed as in the case of 

the plurigenera (see [46], p. 5 ) . The proof works for any 

bundle 0 of differential forms. Since we are dealing with 
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surfaces, we need only show that h°(0) is invariant under 

the blow up of one point: F ' >F. Global sections 

of pull back to global sections of 0 . Conversely, 
F * 

given a section of 0 , by restricting to the open set on 
F 

which TT is an isomorphism, we get a section on (̂u) of 

0_. Since F - T T ( U ) has codimension 2, this section extends 
F 

to a global section of This sets up an isomorphism between H ° ( F',n ,) and H° (F,fl ), as desired. (6.5) is r F 
proved. 

Proof of (b) . By the same exact sequences and (a), 

we see that h ° ( F , N ) - h°(P ,e n + 1 | ) - x ( F,8 ) . By 

JP |F 

Riemann-Roch (see [48], p. 127, formula (***)) 

X(e p ) - 2(K 2 ) - l o ( x ( * p ) ) 

where K is the canonical divisor of F . Since F is a rational 
ruled surface x($„) = 1; the explicit formula for the 

t 

canonical divisor on F (given for example in [4o] , §1) shows 

that K 2 = 8. Hence x(©^) = 6 and 
F 

fc°(F,Nj = (n+2) 2 - 1 - 6 = n 2 + 4n - 3 
r 

as claimed. 
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( 8 . 6 ) The direct computation. 
X is embedded in Up by Ĝ j_(n) as before. Using 

the surjectivity of the map 

r(jpn,& „(v)) > r(jp\ft ,(vn) (projective normality) 
I P * 1 J P 

we obtain without difficulty the following information 
concerning X. Its ideal I in P = k[X ,•••,X ] is generated 
by f. . « X.X -X. .X, , , O < i < n-2, i+2 < j < n. There are J ij x j x+1 j-1 — — 9 ~ — 
N = n(n-l)/2 such generators. The relations between the f 
are given by 

R5j - V i j " Xi fkj + Xj-l*k.± +l' ° ^ k < 1 < J"1* j * n 

Sij = ' W i - l , j - X i V j + Xj fXi* H-Hl < i < j < n, O < Jc. 

We want to give an explicit basis for T 1. The well known 
exact sequence 

z / * 2 > Q P A V > N B A > ° 

with B = P/l, gives after dualizing 

Hom B(n p / ]®B,B) >Hom B(l/l 2,B ) ^ T > ° 
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(see [28]). So we first exhibit a set of elements of 
Horn (i/l ,B) from which we later select a basis for T . B 
Elements of Horn (i/l , B ) are N-tuples of elements of B, 

B 
which we write as column matrices A, such that R*A = O 
(matrix multiplication), where R is the MXN matrix of 
relations of the f.., i.e., the entries of R are the 

x j k k coefficients of R. . and S. .. 
Note: M is the number of relations. For convenience we 
index (l,2,---,N) by a double index (i,j) with O < i < n-2 
and i-2 < j < n. (i,j) corresponds to f of course. If 
A is an N-vector, we denote by A(i,j) the corresponding 
entry. It is easy, albeit tedious, to check that the 
vectors below are in Horn (i/l ,B). We list only the nonzero 
entries. 
A

a ' 0<a<n-l. Aa(j,a+l)=Xj, j<a-l; Aa(a,j)= -Xj^, a< j-2. 
B
a > 0<a<n-l. B a( j,a+l)-X J + 1, j<a-l; Ba(a,j)» -X , a<j-2. 

C 0 · C
0

( ° > j ) = ~ Xj-2' 2 ^ n -

Cn-1 · C
n - l ( ^ n ) = X

j + 2 ^ °<J< n~ 2· 
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And if n > 6 , 

D
a > 0<a<n-6. D a( j ,k)«X k - a - 5 , 0<j<a+3 and a+5<k<n. 

For n > 5 it is easy to show they are linearly independent 
(over k): for n = 4 we have one relation C -*A_H-B -fC = o. 

O JL d 5 

On the other hand an elementary computation shows that 
the image of Hom^ ( 0 p^®B , B) in HomB(l/l ,B) is generated 
over B by B - A -B _ (o<a<n-l), and A , . 

J O* a a+1 v — — 9 9 n-l Claim: A (o<a<n^2), C^, C . and D (o<a<n-6) are a  a x — — O' n-l a — — 
k-basis for T 1 if n > 5. If n = 4 delete C_ to get a 
basis. 

Indeed, these give us 2n-4 linearly independent elements 
. 1 in T . 

This completely determines the first order deformations. 
To get the higher order ones we "lift generators and 
relations". (For a description of this process see [14], §3.1). 
We now write F° for the column vector (f.„), and F 1 for the 

i j ' * 
first order lifting of F° which we have just computed: F"*" is 
the column vector 
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n-2 n-6 
(6) Y t ,A + t C + t .C _ + ) s n D , v y L> a + l a n O n+1 n-l *~ a+1 a 

a=0 a ~ ° 

where the t and the s are parameters. 
a a 

We lift the matrix of relations R° (previously denoted 

R) to first order; call the first order lifting R^. Since 

we must have R^**F° + R°-F*" = O (matrix multiplication) and 

since R° (resp. F°, resp. F"*") is homogeneous of degree 1 

(resp. 2. resp. 1) in the X^, R̂ * must be homogeneous of 

degree O in the X^. 

Next we want to lift to second order. By this we mean 2 2 we want to find a vector F and a matrxx R , of degree 2 in 
the parameters t and s^, so that to solve the equation 

R 2.F° + R̂ -F"** + R 0 # F 2 = O we introduce a minimum number of 

relations among the parameters. This is what is meant by 

versality. Now R̂ "*F̂ " has degree 1 in the X^, and thus 
2 O 

cannot cancel against R *F which has degree at least 2. 
Therefore we will be able to find a versal lifting with 
2 2 R = O. Then F is homogeneous of degree O in the X^. 

1 2 
Finally the only higher order cross term is R *F , which 

has degree O; it cannot cancel against any of the other 
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third order terras, so it must be identically zero. All the 

higher R-' and F^ may be taken to be O. 

These homogeneity considerations make it possible to 

carry out the computation explicitly for small n. When n = 4 

and t^,t 2,t^,t^ are the parameters corresponding to 

A o > A ^ , A 2 , C Q respectively, then the formal versal deformation 

is k t t t ^ - . - ^ n / c r , with J — ( t ^ ^ t ^ . t ^ t ^ - t ^ ) . 

Therefore we have 2 components: the hyperplane t^ = O and 

the line t. = t_ = t,.-t0 = O. The fibres of the deformation 1 p 4 d 

space above each of these components are given the 2x2 minors 

of the matrices ( 2 ) and ( 4 ) respectively. 

We now give the details of the actual computation for 
k k n = 4 . We will only lift the relations R. . since the S. .can 

be obtained by symmetry. 

As we have seen, F̂ * is the column vector 

/ ~ * ι χ ι + fc2Xo - fc4xo \ 0 2 

- t l x 2 + t 5x 0 - V l 

~ t l X 3 " tkX2 OH 

- fc2X2 + b X l 1 5 

- t 2 X 3 14 
- b X 3 / 24 
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The matrix R° is (the (i,j,k) row corresponds to ): 

02 03 o4 13 14 24 

(0,1,3) / x 2 - x x X Q \ 

(o,i,4) x ? -xx X Q 

(o.2,4) \ x ? -x 2 X Q 

(1,2,4) \ X ? -x2 X ; l / 

Now 
/-V02 \ 

RO. f1 _ -*4*o3 

_ t4 f 1 3 / 
\ o / 

so that R 1 is 

(0,1,3) / t 4 \ 
(0,1,4) t 4 j 

(0,2,4) 1 t 4 I 

(1,2,4) \ / 
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Therefore 

R 1 ^ 1 = 

"*l t4 Xl + t2 t4 X0 
" t l t 4 X 2 + S t 4 X 0 

- t 2 t 4 X 2 + V 4 X l 
o 

It is easy to see that to lift to second order we must set 

t l t 4 = V4 = t 4 ( t 4 " t

2

) = ° * T h e n 

2 
« 2 -t„ F = 4 

O 

\ o / 

and we are done. 

An easy computation shows the formal moduli space is 

rigid. This also follows from a general result of R. Sheets, 

Thesis, Brandeis University. 

( 8 . 7 ) We also have computed the versal deformation when 

n = 5 . We give only the ideal of the formal moduli space: 

( V l ' V ? * t 6 t 2 ' W t 5 ~ t 6 t l ' S V S V 

V s ' V i ' V i - I ) 
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tj_ and are nilpotent: t̂  = tg = O . Mod (t^'^g) 

we get a polynomial ring on t̂  .···.t^,checking our general 
resuit. 

9. Cones over elliptic curves 
/ \ d-1 (9 · ! ) X is an elliptic curve embedded in IP by a 
complete linear system of degree d > 5, and C c & its 

— x 
cone. We know that dim TQ(O) = 1* 3im T^(-l) = d and 
T 3 ( V ) = ° f o r a 1 1 other v (6.lo) . Hence C has negative 
V-» X 
grading. Also if d > 10, C has no smooth deformations 

1 x 
(7-5). 
(9.2) In this section we improve the results mentioned in 
(9-1) by using theorem (5-1) and the classification of surfaces 
of degree d in I P * 3 (Nagata [3?]). Our results are: 

(a) When d >̂  IO the formal moduli space R of C is 
X 

just a line (the j-line for elliptic curves) with a large 
nilpotent neighborhood. In other words all the deformations 
from T^(-l) are obstructed. It would be interesting to know 
if R is the product of k[[j]] with an artin ring. 
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(b) When 5 < d < 9 , Spec R (the formal moduli space 
of C^) has one component of dimension 11-d containing 
the j-line V , smooth at v ^ " V j * such that the projectivized 

2 
fibres over V̂ -Yj a r e biregular to IP embedded by a system 
of cubics with 9-<3 base points. The fibres above V are of 
course cones over elliptic curves. When d = 8 Spec R has 
a second component of dimension 11-8 = 3 smooth at V^-V. 

2 2 j 

with fibres the Veronese transform of a quadric in IP5. 
and intersect along . In all cases Spec R has no 

other positive dimensional component, except possibly for an 
embedded component along V\ . In general we do not know how 

(and when d = 8) behave along V\ , but for d = 5 and 6 

we have the following results: when d = 5, R is formally 
smooth by a dimension argument. When d = 6, (9.6) shows 
that Spec R is the product of V\ with the cone over the 
Segre embedding of IP x 

We conclude with the explicit computation in the case 
d = 6 (9 .6 ) . 

Theorem (9.3) (Nagata [33]) If F is a surface of degree d 
in IP̂ , then F belongs to one of the following 5 classes, 

(i) F is the projection from a point x not on the 
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surface of a surface of degree d in IP 
2 

(ii) F is biregular to IP embedded by a system of 

cubics with at most six base points, hence d < 9· 

(iii) d = 8 and F is the Veronese transform of a 

quadric in IP^. 

(iv) F is a cone over a nonsingular elliptic curve. 

(v) d = 8 and F is the Veronese transform of a cone 

over a nonsingular plane conic. 

( 9 . 4 ) We ask which of these surfaces can be projective 

deformations of C^m Certainly not (v), since its hyperplane 

section is not elliptic, nor (i) since it is not projectively 

normal ( 7 - 3 ) · A result of Schlessinger ( [ 4 5 ] , § 4 . 3 ) shows 

that (iv) occurs, since projective deformations of X lifts 

to deformations of C and it is easily seen that (ii) and 
x 

(iii) can be realized as deformations of C by sweeping out 
x 

a hyperplane through C_ ((7.6),(iii)). 

( 9 . 5 ) T o compute the dimension of the versal deformation 

Spec R of C at points with fibre of type (ii) and (iii) x 
and to show Spec R is smooth there, we proceed as in ( 8 . 4 ) . 

To find the relative dimension N of Hilb^- over D, we 

65 



H. PINKHAM 

compute the dimension of the kernel on tangent spaces: 

Hilb(k[€]) > D(k[€]) « T* 
II X H°(x,N (v)) dimension d+1 by (6.lo) 

_ x v<o 

Now (6 . I 0 ) also shows h°(x,N ( - 1 ) ) = 2d and a 
x 

computation using the standard exact sequences shows 

h°(X.N v) = d 2. Finally since T X(v) = O for v < -2 also 
X """" 

by (6·lo), sequences from [jl] (see (6.9)) show that 

h°(x,N (v)) = 0 v < -2. Therefore 
«*v """" 

N = d 2 + d - 1 . 
Next we compute h x(F,N ), i = 0 , 1 , for surfaces of 

F 
type (ii) and (iii). As in the rational curve case since 

h^F.e^) = O (lemma (8.5)) we obtain h X(F,N ) = O and 
F £ 

h°(F,N F) = ^ ^ ' ^ p d j p ) ~ X( F,® F) 
II 

(d+l) 2-l 

By Riemann-Roch (c.f. proof of (b) in (8.4)) 

X (o p ) = 2(K 2) - 10 
2 

where K is a canonical divisor. We must compute K . 
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In case (iii) F is biregular to a (geometrically) 
2 

ruled rational surface, hence K ** 8% In case (ii) F is 
2 2 biregular to IP with 9-d points blown up. Since K 

2 2 2 decreases by 1 for each blow up, and K = 9 for IP , K = d 
O 2 for F. So h (F,N_) = d + lO in both cases. t 

Therefore the components corresponding to both types 
2 

have dimension d + lO •- N = 11 — cl, as claimed, and since 

h*(F,N_) = O they are smooth (sinee the Hilbert scheme is) 

at points corresponding to both types· 

( 9 * 6 ) To conclude we carry out the computation for d = 6 . 

3 3 3 2 Take the elliptic curve Z*: + + 2^ «= O in 3P , Reembed 
O 1 

2 S(2) S 2 by 3P i—' >:IP . In this eiribedding IP is defined 
by 

fO = x o x i - A *o = x o Y o - Y 1 Y 2 

f l = X 1 X 2 ~ Y 0 % " X 1 Y 1 " Y o Y 2 

f 2 - X Q X 2 - Y l *2 " X 2 Y 2 " Y 0 Y 1 
2 

i.e., IP is given parametrically by 

X D - Z 0 *0 - Z 1 Z 2 

X l - Z l * 1 " Z Q Z 2 

* 2 - Z 2 Y 2 - Z 0 Z 1 ' 
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To obtain the elliptic curve we must add three equations 

h O -
 Xl + X 1 Y 2 + X 2 Y 1 

h l " 4 + X 2 Y C + X C Y 2 

h 2 - 4 +
 X G Y 1 + X 1 Y C ' 

Note that both the Veronese surface and the elliptic curve 

are invariant under the projective transformation a such 

that a ( x .) = X. , a(Y.) = Y. - . (All indices are taken 

mod 3 ) . a(f ±) = f ± + 1 , ct(gL) = = h
i + i ' 

We now write down the matrix of relations R° between 

the generators of the ideal of C : each row represents a 

relations. (See Fig. 1 . ) 

Notice the relations are grouped in triples (and one 

pair) that are permuted under a. Hence we will only have to 

lift one relation from each group. It is easy to check 

using projective normality that we have all the generators 

and relations for the cone over the elliptic curve. 

We now exhibit a basis for T 1 . (See Fig. 2.) The 

first six vectors belong to T 1(-l), the last to T1(o). 
(Note we write them as row vectors.) 
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CVJ Ο Ο Ή «Η 
-C >f Χ Χ 

r-i CVJ CVJ O O 

Ο «Η Ή CVJ CVJ 

Ä X ÌH Χ ΪΗ 

CVJ CVJ Ο Ο «Η «Η Ο Ή 

ο: ι ι ι ι ι ι 

r H 

•Η Η W W Ο Ο CVJ Ο 

Pu 

Ο Ο Ο Ή r H CVJ CVJ r H CVJ 
t P Î H Î H ^ Ï H i H Î K Î ><ί ><¡ 

CVJ r H CVJ O cvj o 

r H O O r H CVJ r H CVJ 

*w >f x x x ><: ><! 

O CVJ O *H Ο r H 

*w X >< χ ><; ¡*¡ 

Ο Ή CVJ Γ Α 

r H CVJ K N ^ f i n V û S CO ^ H H r H r H r H 
v—· " ^ - ^ ^ ^ _ 
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rH 
CVJ CVJ r H O CVJ *H Ä ÎH Î H ÎH X O 

ÎH 

CVJ 

^ « H CVJ r H O Î H 
ÎH 

O O O CVJ r H » H ^ Ä ÎH Χ X ÎH [ r H 
ÎH 

CVJ r H O 

r H r H O CVJ 

CVJ 

CT Ο Ή CVJ 
-H CT» Χ X 
fa I f 

CVJ O CVJ r H 
MH ÎH ÎH X 

r H r H O CVJ 
«M ÎH X >H 

O CVJ r H O 
•M X >f >f 

Ο Ή CVJ O «H CVJ 
> > > I* £ £ 3 
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71 

Note here again the symmetry under a. Let 

F̂ " = / t.v. + / s.w. + ru 
1=0 i=0 

where t^,s^ and r are parameters. It is easy to see we have 
a basis for T̂ ". We now give the first order lifting of 
o 

R : see Fig. 3 . 

p 
Next we lift to second order, i.e.. we want to find R 

, 2 _ . 2 O „ 1 „1 „0 „2 . ̂  and F solving R *F •+• R »F + R *F = O, introducing a 
minimum number of relations among s^.t^.r. This is done by 

2 
taking for F the column vector 

f i + t i r Y o 
f2 Sl t2 + fc2rYl 
9 0 ~ S 2 t 2 
g i " so to 
g 2 fcO " Sl f cl 
ho " V 2 
h i ~ V l 
h 2 " t l t 2 

2 
for R the matrix (rows 3 and 6 are zero) of Fig. ^, and 
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CM Ο «H CM 

rH O rH rH 

M ÎH ÎH 
CM rH CM rH CM O «H 

Cn «P -P Í>* Oí 4J +1 

rH 
03 
I 

rH CM 

* *"<M ° * M 
rH X rH rH 

• • C T » I • • C T » -Ρ 
CM -=t" I 

CQ 
I 

CT» CT» 
• H "H 
t u EM H 

O CM O O -"H 
CT» -P -P CT» «P 

CM rH O . C M 
MH -p M «M 

rH CM rH 
UH 4j> *P 

O O O 
ΜΗ Ï0 «P 

I 

CM CM 
r H K N V O C T N r H r-{ (J\ *~* 
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introducing the relations S 2 t l = ° 

Sl tl - SO f c2 = ° 

32*2 ~ S l t O - ° ' 

For the next order lifting we need introduce no extra 
3 3 

relations among the parameters, taking R = O and F the 

transpose of 

( t ^ r , t Qt 2r, t 0 t i r , O, O, O, -t^r, -t^r, -t^r). 
2 2 1 o 2 3 Finally we see that R -F + R -F = O and R *F =. O 

mod s.t. - s. nt. . so we are done, i i i-l i+l 
Therefore the formal moduli space is given in 

k[[r,s^,t^]] by the 2x2 minors of the matrix 

S D S l S 2 

fcl *2 *o 
so it is the product of the line k[[r]] by the ring of the 

1 2 S 
cone over the Segre embedding of IP x IP in IP . 
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CHAPTER III. One-dimensional cones. 

lO. Computation of T"** for Gorenstein curves. 

In this section we study the dimension of T̂ * of any 

Gorenstein curve singularity, i.e., we do not assume it has 

a CE action. This section can be skipped without loss of m 
continuity. Our main result, which is actually a corollary 

of the work of Berger, Kunz and Herzog, will be used only 

once to give an example of an obstructed Gorenstein curve 

singularity (12.8). 

(10.1) A denotes throughout a one-dimensional reduced local 

ring over k. Since the deformation theory of A only depends 

on its completion, we will assume A complete. A is its 

normalization, C its conductor ideal. Set 

6 = dim A/A C = dim A/c 

d = dim[Coker(HomA(n^-,c) > HomA(nA ,A ) ] . 

We write H A for /̂̂ J etc. i: 0A > 0̂-

(10.2) In his thesis Schlessinger showed that the global 

formal moduli space of a proper reduced curve X, locally a 

complete intersection,has dimension 

3g-3 + h°(x,ex) 
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where g is the arithmetic genus of X. Rim [ 38 ] later showed 

how to derive from this result the dimension of T 1 for Spec A, 

A a complete intersection and a domain: 

dim T 1 = 6 + dim(0^/iOA) 

Of course since A is a complete intersection this is 

also the dimension of the formal moduli space. A result of 

Deligne generalizes Rim's formula in this direction: 

Theorem ( 1 0 . 3 ) ([lO],2 .27) Let E be a component of the 

formal moduli space of Spec A, A as in (lO.l), such that 

the fibre above the generic point of E is smooth. Then 

dim E = 36 + d - c. 

When A is Gorenstein this reduces to the number in 

Rim's formula: c = 2 6 and d = dim(n^/iOA). (Note 

d = dim Ext^(0—/iO , A) and use Gorenstein duality.) 

Despite the fact ( 1 0.2) and ( I 0 . 3 ) are purely local, 

the proofs are global. It is therefore of interest to 

obtain local proofs. We obtain a partial result for the 

dimension of T 1 in case A is a Gorenstein domain. 

Recall that since A is reduced, T̂ * = Ext?"(n ,A). 
A A 
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Lemma (10 .4) If A is Gorenstein. dim T"*" = dim(n^ -
' v A/k7torsion 

Proof. By Auslander [5]> corollary 8, since 0^ is 
finitely generated and T = (0_ . is the maximum •* A torsion 
submodule of finite length in 0^, 

E x t A ( ° A ' A ) = E x t A ( T ^ A ) -

By Gorenstein duality (Grothendieck [ 1 6 ] , 6 .3) 

T = H ° ( T ) ^ Hom A(Ext A(T,A), I) 

where m = maximal ideal of A, and I is the injective hull 
of the residue field k of A. Now 

dim(Hom A(Ext A(T,A) ,l) = dim(Ext A(T,A)) 

by [24a], I .36 , so that 

d i m ( T ) = dira(ExtA(T,B)) = dim(ExtA(0A,A )). 

Remark ( I 0 . 5 ) . Let X = Spec A be any local curve. 
It has been conjectured (see Berger [ 7 ] ) that if ^ s 

torsion free then X is regular. If this conjecture is 
verified, (10.4) implies there are no rigid Gorenstein 
curve singularities. 
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(10 . 6 ) We establish some notation. Let x be a parameter 

of A, and let v = k[[x]]. o5 N̂> <£fK> will denote the 

Noether, Kahler and Dedekind different, respectively. We 

recall their definition: let R > S be any ring horao-

morphism. We follow the presentation of [ 26 ] · 

( 1 ) Noether different. Let m: S # S > S be 

multiplication m(a^a^) = s^s^. Then OC9^(S/R) is the 
annihilator of the kernel of m. 

( 2) K & n 3 - e r different. Assume & S / R can be finitely 

presented: 

F l > F o > °s/R > C 

F. free and dim F = n = number of generators of 0 . • . Then 
JL O S/R 

(S/R) is the ideal generated by the nxn minors of the map 

Fx > F Q (the O-th Fitting ideal of n
S / / R ) . 

( 3 ) Dedekind different. This is the classical 

different. To define it, we must make some restrictions. 

Let R be a subring of S which is a domain with quotient 

field K. Assume S ® K = L is a finite-dimensional 
R 

separable K algebra, and let Tr: L >K be the trace. 
Then 
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S* = {x € Li| Tr(xs) € R , V s € s} 

( S * ) " 1 « {y € L | yS* c S} 

and C # D ( S / R ) = ( S * ) " 1 . 

We now return to the specific situation of (lO.l). 

Berger ( [ 7 ] , Satz 6 ) shows the torsion module T of 0 has 
A 

dimension: 

dim Or/ifi + dim 0 , - dim Chr , - 6 . A' A A/v A/v 

Lemma (10 . 7 ) dim(A/«^(A/v)) « dim(A/o^(A/v)) + c 

when A is a Gorenstein domain. 

Proof. Since A is a complete Gorenstein domain, by 

Herzog-Kunz [24], 4 . 7 , o& N(A/v) .A = c ^ A / v ) and by [24], 4.9 

O^(A/V) is principal. Therefore by Berger [ 7 ] , 

dim(A/.tfN(A/v)) = dim(A/A-c^(A/v)) 

»» c + d i m ( A ^ ( A / v ) ) 

by lemma 3 of [ 7 ] · 

Proposition (10 . 8 ) Let A be a Gorenstein domain. Then 

dim T 1 = dim T = dim + 6 + dim 0 y - dira(A/#_(A/V)) . 
A A A/V JN 
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Proof. Since A is Gorenstein, c = 26. Since A is 

regular, dim A/£$^(A/V) = dimCO^y^) so combining with the 

formulas above we are done. 

Corollary ( 1 0 . 9 ) Assume Spec A , A=*Gorenstein domain, has 

smooth deformations. Then 

dim 0 A/ y > dim A/#? N(A/V) 

with equality holding iffthe deformations of Spec A are 

unobstructed. If A is a complete intersection a result of 

Kunz [ 26 ] shows that equality holds, hence reproving Rim's 

formula locally. 

Proof. By (lO , 3 ) , since Spec A has smooth deforma

tions a component of the moduli space has dimension 

dim ^ / i ^ + &· Conclude by ( l O # 8 ) . 

1 1 . Deformations of cones of lines 

We study in this section the deformations of a cone C 
x 

where X consists of d reduced points in linear general 

position in U?n, by which we mean no hyperplane H c ipn 
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contains more than n points of X. We prove a criterion for 
C to have negative grading and apply it to show that X 
certain "cones of lines" have no smooth deformations. 

Theorem (ll.l). If X consists of d points in linear general 
position in ipn. with n+1 < d < 2n+l, then C__ has negative 
grading (4.1). 

The lower bound on d is mentioned only to insure that 
C is minimally embedded. We can state this result more x 
geometrically as follows: let C be as in (ll.l). and 
suppose Y is a curve with singular point y such that the 
tangent cone of Y at y is formally isomorphic to C · Then 

x 
Y is formally isomorphic to at y, More generally 
Proposition (11.2) Let C be any cone with negative 
grading. Then any variety Y with tangent cone at y € Y 
formally isomorphic to C is itself formally isomorphic to C. 

Of course by M. Artin's general results the formal 
isomorphism can be descended to an étale one. 

Proof of (11.2). Any variety Y can be considered as a 
deformation of its tangent cone in the following well known 
way: 
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Let J be the ideal of Y in kfx. , · · · .X ] . Pick a set of 
1' 9 mJ 

generators f of J" also generating the ideal of the tangent 
cone. We have placed y at the origin. Now replace in the 
generators f̂  the X^ by tX^, and factor out in each 
generator the largest possible power of t. Call the elements 
thus obtained gj(x^,t). It is clear gj(x^,o) generate the 
tangent cone. The family gj(x^,t) over k[[t]] is flat 
with closed fibre isomorphic to the tangent cone and 
general fibre isomorphic to the variety we started out with. 

We now use the negative grading hypothesis to show 
this deformation is trivial: indeed the monomials of 
g^(X^,t) involving t have strictly higher degree (in the X^) 
than those not involving t. Therefore this deformation 
belongs to the positive part of the grading and is trivial, 
finishing the proof. 

Proof of 11.1. 
Let B be the homogeneous coordinate ring of X, 

hence the affine ring of C , localized at the vertex. For 
« X 

simplicity of notation we usually suppress localizations. 
The normalization B of B is e k[Y ] and the map B c——-> B 

a=l a 

is graded in the obvious manner. We write the graded pieces 
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B v and B v respectively. 
Lemma (11 .3 ) . cpv : B v > B v is surjective for all 

v > 2 . 

Proof. For each point P^ of X we can find a quadric 
in JPn not passing through P^, but passing through all 

the other points of X. Indeed since d < 2n+l we can do 
this with two hyperplanes. Clearly € B^ maps to 

2 
(o,···,cYa,···,) so we get surjectivity. 

Remark (11 .4) . Saint-Donat [39] uses (ll.3) to prove 
that if d < 2n the ideal of X in 3Pn, hence that of C in 
n+1 

Bi is generated by quadrics. We will not need this 
result. 

We return to the proof of (ll.l). Assume T 1 ( M ) ^ O 
for some M> > O.. Pick an element G € T ^ M ) . By the exact 
sequence 
Honv (0 ®B,B) >Hom(l/l2,B) T 1 > O 

B *r 
2 

we can view G as an element of Hom(l/l ,B). (We are using 
the notation of ( 2 . 6 ) ) . We will show that G lies in the 
image o f Horn (ft ®B s B ) . 

B Jr 
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Since T"*"(v) = O for V » o , for all a the element 
V 2 1 Y *G € Hom(l/l ,B) maps to zero in T . Hence ct 

n O 
Y V-G = Y LL with L € B . a ^ k , a k , a |a+v+l 

oF° 
since v has degree -1 for all k (see 2.7)· Here G 

and ~ = I x—- ] are column vectors and L, and of 
d X k V d X k / k ' a 

course Y^ are scalars. By taking v sufficiently large 
we may assume = c_ € k. Write * k , a k ,a a 9 k .a 

c, Y - i 4 V + 1 ^ ( c Y M + 1 ) Y V . The crucial fact is that since k , a a N k , a a * a 

\i > 1. Y ^ + 1 € B a n d n o t only B, by (11 .3 ) , Then it is 
easy to see that 

G = y y M+i O F ° = y y n+i O F ° 
£ Ck , a a aX^ £ L ck , a a dx^ 

and hence is trivial in T**". (ll.l) is proved. 

(11.5) Combining (9.1) with (ll.l) we see that to study 
the deformations of C it suffices to study the projective 
deformations of C Since all such deformations of C will 
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have the same arithmetic genus g as C, let us compute it. 
V, the normalization of C, consists of d disjoint rational 
curves. The exact sequence O > > & v > ̂ V^C — ^ ° 
shows that g = 6-d+l, where 6 = h°(©v/C^) = îrô  B/B. 
Since the cokernel of B > B on the zeroth (resp. first) 
graded piece has dimension d-1 (resp. d-n+l) and since for 
the higher graded pieces cp is surjective (11.3), we see 
6 - 2(d-l)-n. Therefore g = d-n-1. 

Note. (11.6) We see that at least in the range d < 2n+l, 
g depends linearly on d. For general d this is not true: 
each time a line is added the cokernel on each graded piece 
increases by one, roughly speaking. 

(11.7) Next we study the d-tuples of points of IPn which 
can be a hyperplane section of a smooth curve of genus g 

__xn-l 
in 3P . Since we have dn independent choices for the 
coordinates of the.points, and since PGL(n+l) has 

2 
dimension n +2n, it is clear that the "moduli space" of 
d-tuples of points of I>n form a variety M of dimension 

2 
dn-n -2n = n(g-l). 6n the other hand, it is easy to find 
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an upper bound for the dimension of the subvariety of 

d—tuples appearing as hyperplane sections: there are 
3Q— 3 Q co curves of genus g, with oo^ line bundles of degree d 

n +1 
and co hyperplane sections; therefore we get at most a 

3g_3 + g + n+l = 4g + n-2 dimensional family. Therefore 

as soon as 

(11.8) n(g-l) > n + 4g - 2 

is a subspace of dimension strictly less than that of M. 

Proposition (11 .9 ) . Take any d-tuple of points X € M-*-

(closure M ). Then C has no smooth deformations. 

Proof. Suppose it did have a smooth deformation. We 

know then that C has a smooth projective deformation. 

Restrict the deformation to the hyperplane at infinity, 
i.e., in the notation of the proof of (4.1) set X , = O. * n+l 
Then we have a family of d-tuples of points in IP n , hyperplane 

sections of smooth curves in degenerating to X, a 

contradiction to the hypothesis. 

Let us now analyze the information contained in (11.8). 

For g = O, 1 or 2 we get nothing. For g > 3 we obtain 
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Theorem (ll.lo). The general cone consisting of g+n+1 
lines in 3P n +\ 3 < 9 < n, does not have smooth deformations 

^ 4g-2 „ 6 for n > * 0 = 4 + — - . g-2 g-2 
7 12 For instance 13 lines in IP , or 15 lines in 3P cannot 

in general be smoothed by deformation. This complements the 
result of Mumford [30]. 

Remarks (ll.ll). It should be possible to give another proof 
of (ll.lo) using a result of Deligne (10.3). With the same 
notation as before we get an n(g-l)-dimensional family of 
deformations of C v by taking the cone C__ over a neighborhood 

X M 
of X in M. It is clear that if all the cones in C! have 

M 

smooth deformations there will be a component in the formal 
moduli space of C v containing c with smooth generic fibre. 

X M 

It would have dimension > n(g-l) + 1. Deligne1 s result (10.3) 
tells us exactly what this dimension is; comparing the two 
numbers we get a contradiction for d and n sufficiently large. 
Unfortunately the computation in the case of lines of the 
invariants appearing in (10.3) is awkward, and the result 
obtained seems weaker than that of (ll.lo). 
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( 1 1 . 1 2 ) The bound obtained in (ll.lo) is probably not 
the best possible. A more detailed analysis, including a 

study of the automorphisms of C , should improve it; in 

particular show that when g = 2 we also obtain a bound on n. 

( 1 1 . 1 3 ) For g = O and g = 1 it is easy to see that the 
yHl 

corresponding cone C of g+n+1 lines in IP is smoothable. 

Indeed in this case for each n there is only one cone (in 

other words T1(o) = o), so one gets a smooth deformation as 

follows: let Y be a smooth curve of genus O (resp. 1 ) 

embedded by a line bundle of degree n+1 (resp. n+2) in 
n 4~1 

IP Y is projectively normal by ( 3 *5 ) · S o just sweep 

out C v by hyperplane sections (cf. ( 5 * 6 ) ,iii). 

On the other hand it is possible to see this 

"combinatoriallyM. We treat the genus O case first, 

following Rim. We can deform the system of lines (which 

in this case has normal crossings, i.e., independent tangent 

directions) by pulling one line out of the vertex along any 

other line. 
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Z Z 

/ / / ^ ^ 
~ / * 0 Y ~ / ~ 

/ X 

It: is easy to see this does not change the arithmetic genus 
of the configuration. We may now continue by induction on 
the number of lines with normal crossings. 

The case g = 1 is more subtle, since we cannot just 
pull out a line as above: that would lower the genus. 
Instead we take two lines and deform them, in their plane, 
to a smooth component still passing through the vertex, 
with tangent direction depending on those of the remaining 
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lines. We then have the same configuration for n-l, so we 
continue by induction as before. 

Y~Z plane . j , Y-Z plane 
2 / / 

the Z and Y axes have 
deformed to a hyperbola 
through the origin with 
tangent direction depending 
on that of X and W 

(11.14) The main result of M. Schaps' thesis [42] 
states that singular curves in IP5 can be smoothed by 
deformation. If we examine her proof we note it implies, 
in the case of a cone of d lines that the smoothing 

89 



H . P I N K H A M 

deformation takes place in X T ^ ( V ) * Therefore as in (4.1) 

we may lift it to a deformation of the projective cone. We 
do not need to make any restriction on d, the number of 
lines. Let g(d) be the arithmetic genus of the cone: as d 
becomes large, g(d) increases rapidly. The existence of a 
smooth deformation implies the existence of a smooth 
projectively normal curve in of degree d and genus g(d), 
an interesting fact since the embedding line bundle will be 
very special for large g. The dimension of the versal 
moduli space of the cone should give some information on 
the dimension of the family of curves with such a line 
bundle, but the presence of a large group of automorphisms 
complicates the problem. 

Finally, since for a large d, the number of generators 
of the ideal of C is quite large, we see this implies that 
we can find smooth projective curves in for which an 
arbitrarily large number of generators is required to 
generate the homogeneous prime ideal. 

(11.15) The following question is of some interest: 
given any d > n+1, consider any cone of d lines in E> n + 1 
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in as general position as possible. Let g(d) be the 
arithmetic genus of such a cone. Then we ask: do any 
of these cones have a smooth projective deformation. Note 
that in the range we considered earlier, it was clear that 
some such cones did. As d increases, such a smooth 
projective deformation corresponds to a more and more 
special embedding. We have just seen that for n = 2 such 
embeddings always exist. What happens for n > 2? 
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CHAPTER IV. Monomial Curves. 

12· Monomial curves: definitions and study of T̂ " 

By monomial curve we mean an irreducible affine curve 
with G action ( 2 . 1 ) . It is easiest to study them in 
parametric form, and to do so we develop some terminology, 
following Herzog and Kunz [ 2 4 ] . 

( 1 2 . 1 ) H will denote throughout a sub-semigroup of the 
additive semigroup JN of non-negative integers. Hence 
O € H. We always assume the greatest common divisor of 
the elements of H is 1 , so that there are only a finite 
number of elements of IN not in H. Such elements are 
called the gaps of H. The number of gaps is called the 
genus of H, noted g(H). The smallest integer c such that 
c + IN c H is the conductor of H. 

Definition ( 1 2 . 2 ) . Let B be the subring of the poly-
Jti 

h 
nomial ring k[t] generated by the monomials t , h € H. B is called the semigroup ring of H. H 

Since we deal with only one semigroup H at a time, 
we write B for BTT. If B = k[t], then g(H) = dim B/B, it 
and if C is the conductor ideal of B in B , dim B/C = c. 
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Let a_ < a_ < ·.. < a be the minimal set of 1 2 n 
generators of H. We write B as the quotient of the 

a i 
polynomial ring P = k[X ,···,X^] by sending X i to t 

If I is the kernel of this map, it is obvious I is 

invariant under the CE action on P with weight a. on 
m i 

X ± ( 2 . 1 ) . 

Note ( 1 2 , 3 ) If n = 2 , s o H is generated by 2 elements, 

then I is of course principal. If n = 3 , Herzog [2J>] 

showed that I is generated by either 2 (in which case it 

is a complete intersection) or 3 elements. However for 

n > 4 H. Brezinsky [ 8 ] has shown that I may require an 

arbitrarily large number of generators. 
Lemma ( 1 2 . 4 ) Let be as usual the module of differ-

• i3 

entials of B over k. Then O has torsion unless H = IN, 
i.e., unless B is regular. 

Proof. is the quotient of the free module dX ,···, 
V s of 

dX^ by relations ^ dX ±, f € I. We grade ^ B by 
i=l i 1 

assigning to dX i the weight a ^ Note that in this grading 

all the relations have degree strictly larger than a^+a^. 

To test if an element of 0 is torsion we have the 
B 
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m a P r̂> —~"—^ ̂ xr> K = quotient field of B, defined as 
B J\ a. - 1 follows: dX. :> a . t 1 dt. It is clear that uu € " 

i i B 
is torsion iff a(uu) = o. Let 

a) « a 1X J LdX 2 - a 2X 2dX 1. 

Since w has degree a±+eL2 ^ "*"s c l e a r l Y n o t ° ^y t n e a ^ o v e 

remark unless both a^ and a^ are divisible by the 
characteristic of k, in which case the lemma is trivial. 

a l a2~"l a 2 al"~ 1 Now a(ou) = a^t a^t dt - a^t a^t dt 

= O. 

Therefore u) is a nonzero torsion element of . 
B 

By ( 1 0 . 4 ) , (O^)^ . :4 O is equivalent in the case •* v \ B'torsion 7 ^ 
of Gorenstein curves to T 1 ^ O. For a general semi-group 
ring we do not know if T̂ * ̂  O, though this should not be 
too difficult to prove using the grading as in the 
following: 

Lemma (12.5) For all monomial curves C, T^(°) = °-
Proof. We use the terminology of ( 8 . 6 ) . The proof 

is very similar to that of (lO.l). Pick a nonzero element 
1 2 G € T (o) and consider it as an element of Hom(l/l ,B). 
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The singularity of C being isolated the element t m*G is 

trivial in for m sufficiently large; therefore can be 

written as 
n 
Z ra+a^ d 

1=1 i 
O a i * 

since g x has degree -a. . Therefore, since t ^ B, we 
i 

see that n n 

c i - 2_ c ± x ^ . 
i=l i i=l i 

Similarly we can prove the following criterion for 

negative grading. 

Lemma ( 1 2 . 6 ) Suppose there is only one gap of H greater 

than a^. Then C , the monomial curve associated to Hjhas 

negative grading. 

Proof. Using the relation X a i X i ÔX~ ± n Hom(l/l 2,B) i 
we can push through the proof of (12 . 5 ) with only n - 1 on 

the •§§- . 

X 

Remark ( 1 2 . 7 ) Consider the semigroup generated by 3 and 

5. There are two gaps, 4 and J, after a^ = 3· Y e t one 
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5 3 

sees easily that X ^" " X 2 * i a S n e ^ a t ^ v e grading: the element 
of T 1 with greatest weight is ^ t 1 ( - 1 ) * Therefore the 
condition is not a necessary one. 

On the other hand it is easy to construct semigroups 
without negative grading. Take for example the semigroup 
generated by 4 and 5. It has 3 gaps: 6, 7 and 1 1 , after 
a^ = 4. X^-X^J does not have negative grading: the element 
X 1 X 2 € t 1 ( 2 ) i s n o t trivial. 
(12 .8 ) T o conclude we give an example of an obstructed 
Gorenstein monomial curve in codimension 4 (we were not 
able to find any in codimension 3 ) . 

Let H be the semigroup generated by 6 ,7 ,8,9,10· The 
conductor c of H is 12. H is "symmetric" in the following 
sense: if a is a gap of H, then c-l-a = 11-a is not. It 
is known this implies that B„ is Gorenstein [ 24 ] . In 
section 14 we will show that B„ has smooth deformations, 
hence by (10 .3 ) its formal moduli space has a component of 
dimension dim n-/±n + dim B/B. Then by ( I 0 . 9 ) to show 

B J3 
the deformation space is obstructed we need only show 
dim CI / > dim B /<£T(B/V), where v = k[X. ] . By Herzog-Kunz B/ V N JL 
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[24], 4.4 the right hand side is c + a J L - 1 = 17· We will 

now show by a brute force computation that dim 0 y = 20, 

concluding the proof. 

(12.9) It is easily seen that the ideal I can be generated 

by the 2x2 minors of the following 2 matrices. 

X l X 2 X 3 X 4 X l X 2 X 3 X 5 

X 2 X 3 X 4 X
5 I X 4 X 5 

Prom this it is easy to compute *t *-s the quotient 

of the free module over B generated by four elements 

= dX^, i = 2,·••,5 by the relations given by the 

following matrix: 

w 2 w 4 w 5 

-2t 7 t 6 

- t
8 - t7 t 6 

- t 9 -t7 t 6 
-2t 8 t 6 

t 1 0 - t 9 -t 8
 t 7 

t 1 0 -2t 9 t 8 

- t 1 2 t 1 0 t 9 

- t 1 2 2 t 1 0 

- 2 t 1 5
 2 t

1 0 
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An elementary computation using the grading then shows that 
^B/V ^ a S a S a âsis o v e r the starred elements tStfj 

w 2 w 3 w 4 w 5 

^ * # * * 
t

6 

t 7 * * 
O 

t * * * 
t^ * * 

t

1 0 * * * 

t 1 2 

t 1 5 

t 
t 1 5 

L6 

There are 20 such elements. 
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13. Monomial curves and Weierstrass points 

In this section we will show how to construct from 

the versal deformation space of the semigroup ring B a 
H 

compact!fication of a "moduli space" for smooth algebraic 

curves with a Weierstrass point of semigroup H, 

Definitions and precise statements are made belowj 

(13.1) Let C = Spec B, where B is the semigroup ring of 

H (12.2)· Then by (2.3) a formal versal deformation of C: 
Y < C 

V< Spec k 

can be constructed so that (E^ acts compatibly on Y, V and 

C. In the notation of (2.9) we have 

V = Spec R, R = kat̂ -..,̂ ]]/̂  
Y « Spec A, A = R[[X1,---,Xn]]/(F°°) 

and CB acts with weight a. on X. and weight -e. on t. . m 1 1 x 1 

Unfortunately it is easy to give examples of semigroup 

rings for which some of the e^ are positive: for example 

1See (1.20) 
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take the semigroup generated by 4 and 5 and the deformation: 
X^ - X^ + tX^X^. t h a s weight —2, hence the corresponding 
e is 2· In other words the action of Cfî  on R may be partly 
attractive, partly repulsive. We will take the quotients 
R' and A • of R and A respectively obtained by setting all 
t^ with e^ > O equal to zero. Since by (12 .5) T 1 ( o ) = O 
all the remaining variables t^ have weight -e^ positive. 
More geometrically we intersect Spec R with the linear 
subspace of Spec k[ [ t^, · · · ,t^] ] on which OĈ  acts attractively. 
This puts us in a situation of negative grading as in our 
preceding work. In the terminology of Orlik and Wagreich 
[34] R 1 and A' have "good action". Let Y 1 = Spec A', 
V = Spec R*. Note that the construction of ( 2 . 9 ) shows 
that the generators of the ideal of R' and A 1 in k[[t^]] 
and k[[t^,Xj]] are polynomials; therefore we replace R* and 
A' by the corresponding quotient rings of k[t^] and k[t^,Xj], 
which we continue to call R 1 and A 1. 

(13 .2 ) We have a flat graded morphism cp: R' > A'* 
where R' and A 1 are graded in positive degrees. Following 
Grothendieck [ 1 5 ] , 3*5* this gives a rational map 
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Proj A • 2> Proj R' which is a raorphism except at the 
unique point of Proj A 1 above the irrelevant ideal R + of 
R. It is natural to blow up the ideal R A in A to obtain 
a morphism from the blown up variety to Proj R· 
Unfortunately in general it is not true that this morphism 
is flat. This arises from the GE quotient we are taking 

m 
in the base variety Spec R 1 · 
(13.3) Instead we will projectivize the fibres without 
projectivizing the base. This is done as follows: in 

00 — el the equations f̂  of A 1 substitute ^ χ

η + ι f o r fc£ · Recall 
~ ei ^ ° a ^ ^Υ (13·!)· Call the polynomials so 
obtained ff°. Then let A be the ring R 1 [X_ , · · · ,X , J/Cff0). 

k 1' 9 n+1 k 
(since R' is graded with weights -e^, A is an R 1 algebra). 
As in the proof of (4.1) we see that A is flat over R*. 
We consider A as a graded algebra in xi>* #** x

n +i alone with X..···,X having the same weights a. as before and X , 1' 9 η ^ ^ 1 n+1 

having weight 1. Thus 

Proposition (13.4). The morphism 

π: X = Proj A > Spec R 1 = V 
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is flat and proper with fibres reduced projective curves. 
Let 0 be the section of TT obtained by X , = O. 

J n+1 
Definition (13· 5) Let U be the open set of points u € V 1 

such that the fibre of Spec A · > Spec R* above u is smooth. 
U is obviously (S invariant. J m 

U may of course be void. 

Remark (13·6) All the fibres of Proj A > Spec R' 
(and for that matter Spec A' Spec R' ) above a given 
CEm orbit of Spec R* are isomorphic. 

Before we state our main theorem we make some 
definitions for smooth projective curves. 
Definition (13.7) Let P be a point of a smooth projective 
curve X. Let H p be the following semigroup of non negative 
integers: h € IN is in H p iff there exists a meromorphic 
function on X, holomorphic on X-P, of degree exactly h. 
Hp is called the semigroup of P. 

The genus g of the semigroup H p (12.1) is equal to the 
genus of X. If the first nonzero element of is g+1, P 
is called an ordinary point of X. If not, P is called a 
Weierstrass point. In characteristic O all curves have 
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only a finite number of Weierstrass points; rational and 
elliptic curves have none. For an introduction to 
Weierstrass points, see Gunning [19], P* 120. 

(13.8) y^lg 1 will denote the coarse moduli space of 
smooth projective curves of genus g with a section 
("pointed" curves of genus g). Consult [11] and [32a] 
for definitions and details. 

Theorem (13·9) Given a semigroup H, construct TT. X > V 
with its section 9 as in (13.4). Restrict *T and 9 to 
U c > V . The fibres of TT: x ^ f u >U are smooth 
projective curves of genus g = g(H), and 9 picks out a 
point of semigroup H. Hence we get a morphism U Tfl^ ^, 

which by (13·6) factors through the quotient U of U by <E . 
m 

Then U > 1 ^ s a bijection of U with the subscheme 
of 1 Parametrizing pairs •[ (x

0*^)|Xo smooth 
projective curve of genus g, P € X Q a point of semigroup 

• } · 

The next few pages will be devoted to a proof of 

(13.9). 
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Theorem (13.10) With the same notation as before consider 

the family W = Spec A > V . The fibre above any 

point u € u is an affine surface with a normal singularity 

and a good (E action. W is obtained from X . the fibre of ^ m u u * 
X > V as follows: let P » ff(u). Embed X u in the affine 

line bundle Z with sheaf of sections © i.e., 
x u 

Z = v ( (^ x (P)). X u has self intersection -1 in Z. Then 

is isomorphic to Z with X^ blown down to a point. 

P s= a(u) has semigroup H, hence X u has genus g(H) . 

Proof of (l3«lo). We first show W^ is normal. Let T 

be the closure of the orbit of u in V , and let T be its 

normalization? Consider the cartesian diagram 

W q Spec A ' 

T > V 1 

Then by construction W^ is isomorphic to W Q . It is easy 

to see that W Q is normal by Serre's criterion ( [ 1] ,VH. 2.13) 

since the flatness of W Q > T implies S^ and the smooth

ness of the general fibre of the deformation on T implies R ^ . 

*A ramified equivariant cover of T may be needed. 
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We now construct the canonical equivariant resolution 
of W ^ , a la Orlik-Wagreich [ 3 4 ] . Let Z be the graph of 
the rational map W^ ^ x

u * T n i s replaces the singular 
point of by a copy of X^. In general the blown up 
surface Z obtained in this way may have rational 
singularities along the exceptional locus, corresponding 
to the exceptional orbits of (E on W . i.e., those orbits 

m u' 
with a non trivial stabilizer. Such orbits can only 
occur when at least one of the coordinates X^ is equal to 
zero. If x

n + i = O, we get back the original curve C. 
Since the greatest common divisor of the a. is 1, (E acts 

JL 9 m 
without stabilizer on C. If X - is not zero, then no 

n+l 
stabilizer is possible since x

n + ^ has weight 1. Therefore 
there are no exceptional orbits, so Z is smooth. 

Now Z is fibred over the exceptional divisor X^ by 
the orbits of G^; No ether 1 s theorem (see [ 4 6 ] , p. H*t ) 
shows Z is a line bundle over X U : Z = V(L" " 1 ) , L an 
invertible sheaf on X^. The ring of holomorphic functions 
on Z and hence on W is 

u 
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© T ( X L ) 
i=o u 

and therefore has a natural grading which by the very 

definition of the line bundle must coincide with the 

original (Ê  action on x^>"* * > x
n + i · Therefore 

X n + 1 ^ ^ ( X
U > L ) since it has weight 1 . Since in X u the 

point obtained by setting x
n + j ^ = O is P, we see that 

Ii = <&(p). It is now clear that H is the semigroup of P; 

in particular has genus g(H). The proof of ( I 3 . I 0 ) 

is complete. 

To prove (13-9) it suffices to prove the following 

proposition: 

Proposition ( 1 3 · 1 1 ) Let X Q be a smooth projective curve, 

P € x^ a point with semigroup H. Then there exists one 

and only one orbit O of <E in V* such that for all u € O, 
m y 

X^ is isomorphic to X Q and s(u) = P. Of course O c u. 

Proof of (13· 11)· We will just reverse the 

construction made above. Let L = $(P) and let W Q be the 

normal surface with coordinate ring 
Ao = i? 0

r ( xo' I j i )-
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If a^, · · · ,a n are generators of H, then A Q can be generated 

as an algebra over r(X Q,Gx ) = * by suitably chosen 

X ± € r(x o,i l
 i ) and x

n + 1
 6 r ( x

0 > L ) . Adjusting constants 

if necessary we see that W^ n (x
n4.i=°) = c> ^ e original 

monomial curve. Therefore we have constructed a deformation 

of C over Spec ^ t x
n +i] which clearly maps to V (and not 

only V ) . Requiring that Spec k[X . ] map to an orbit of V 1 

n+x 
makes the map Spec ^£X n +^] u n^- ci u e-

This gives existence of an orbit O. To get uniqueness 

note that the only choices made in the construction were the 

X^, i = 1,· A different set of X^ will just induce a 

coordinate change in k[X^,···JX
N+^3* and will not affect 

the orbit obtained} 

The proof of (13.9) is now complete. 

Remark (13.12) The idea of constructing a moduli space 

for algebraic curves with Weierstrass points goes back to 

that of putting curves with a given type of Weierstrass 

point in normal form. See for example Baker [6], p. 59 

or Hensel-Landsberg [22], p. 547. Instead of using all 

the generators of the semigroup they used only two 

*This argument breaks down in characteristic p> 0. 
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relatively prime ones in order to obtain a plane curve, 
and then counted constants. 

14. The existence of smooth deformations of monomial  
curves in certain special cases 

We will study here the following two questions: 
(1) When is U nonvoid? 
(2) What is the dimension of Proj R 1? 

We conclude with some examples and some questions. 
(See section 1? for notation.) 

As we have already noted (13.9) does not give us any 
information on whether U is void or not. 

Definition (l4.l) If U is non void we said C can be 
smoothed negatively. 

In view of (l^.l) and (13-5) this is reasonable 
terminology. Thus the existence of a projective curve 
with a point of semigroup H is equivalent to negative 
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smoothing for C = Spec(B„). 
ri 

Theorem (14.2) If H is a complete intersection, i.e., if 
the ideal of C = Spec(BH) in P = kfX^-'^X^] can be 
generated by n-1 elements, then there exists a smooth 
projective curve of genus g(H) and a point P € x of semi
group H. 

Using M. Schaps' main theorem [42] one can probably 
prove that semigroups generated by 3 elements can be 
smoothed negatively, but we have not worked out the 
details. 
(14.3) On the other hand since all curves have ordinary 
points, and since almost all curves have normal Weierstrass 
points, we see the semigroups and ^ generated by 

g+l,g+2,···,2g+l and g,g+2,g+5,···,2g-l 

respectively have rings that can be smoothed negatively. 

The question of existence of Weierstrass points with 
given semigroup seems not to have been seriously studied. 
Rauch [36], Farkas [12] and Arborello [2] have studied 
the case where only the first non-gap is specified, and 
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have proved dimension formulae for the moduli Space in this 
case. M. Haure [21] studied the general case, applying the 
methods of (13.12). Unfortunately his claim that certain 
semigroups must be excluded is based on a faulty analysis 
in the case the functions considered do not have relatively 
prime orders at the Weierstrass point: see [21], p. 151, 
last paragraph. That the plane curve obtained is not 
birational to the original curve was already noticed by 
Baker [6] and Hensel-Landsberg [22]. The only example he 
gives is clearly invalid: it is the semigroup generated by 
4, 6 and 9· It is immediately seen to be symmetric, hence 
its ring is Gorenstein. Since it has embedding codimension 
2 it is a complete intersection, so we can apply (14.2). 
On the other hand the tables at the end of his article seem 
to show that all possible semigroups can occur for genus < 7· 

We have been mainly interested in semigroups v/ith only 
one gap after the first non gap, in part because their rings 
have negative grading (12.6) which will make the computation 
of Proj R * easy using (10.3). 
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Definition (14.4) Let H be the semigroup of integers 

_ g , K 

generated by g, g+l,***, g+k-1, g+k+1, · · ·, 2g-l, 1 < k < g-1, 
that is, g+k is the only gap of H after the first non 

g,K 
gap g. 
Theorem (l4.5) The semigroup ring of H , 1 < k < g-1, 

g,Jc 
can be negatively smoothed; in other words there are smooth 

projective curves with a point of semigroup ^. 

By (l4.3) we already know this is true for k = 1. 

Our method of proof will allow us to also treat that case. 

Proof. Let H be any semigroup of integers with 

minimal set of generators a, < a _ < • • • < a . Hence 
l d n 

a l a n B « k[t , · · · ,t. ]. We consider the family of curves over xl 
k[s] generated by 

a l a2"^l/ a l \ an"^l/ a l \ t x - s , t * x(t A - s ) , ···, t n x(t - s ) . 

In the case n = 2, a^ = 2, a^ 3, these are parametric 

equations for a node degenerating to a cusp. In the general 

case we want to determine when this is a deformation of 
a l a 2 a n k[t ,t ,•••,t ], i.e., when the closed fibre of this 

family is B^. To do this it is sufficient to check the 
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arithmetic genus of a fibre s / O and compare it with the 
arithmetic genus of B : if they agree we have a deforma-

£1 

tion. There is no problem in what we mean by arithmetic 
genus since we can projectivize our affine curves. So 
fix s ̂  O and consider the fibre B above s. Since it is 

s 
parametrized by t it is rational, so that the arithmetic 
genus g„ of B B = ) 6 , where 6 = dim B V B 

S 8 x^pec B s
 X X S > ^ S ' X 

B = local ring of Spec B at x, and B its normaliza-s ,x s s ,x 
tion. Therefore we must find the singular points x of 
Spec B , and compute 5 . Now the singular points of s x 
Spec B 0 fall into 2 categories: 

(a) a single branch where the "velocity" ~£ is o, 
(b) several branches through one point. 

It is clear from the parametrization that the only point of 
type (a) is obtained when t = O; the singular point is 

monomial with semigroup H a^ generated by 

a x , a 2-a x, a3""ai^ *# * ̂ a
n " a i * 6 Q 1

 s g ^ H a 1 ^ · Therefore 

when a^ = a^+l the point obtained is actually not singular. 
What about singular points of type (b)? When can 2 values 
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t̂  and t 0 give the same point on the curve. We must have 
al al t 1

x-s = t 2 ~s 

so t 1 = wt^, where cu is an a^-th root of unity. But 

ai~ al, al ^ ^i^l/ al x t± (tx -s) = t 2 (t2 -s) 
al 

for a^ relatively prime to a^, so t̂  -s = O. Hence we 
get only one point of type (b) : a^ distinct branches 
through the origin in linear general position. 

We return to the hypotheses of the theorem. Suppose 
first that k > 2. Then = g, n = g-1, so that by (11.5) 

6Q^ = g. By the remark above this is the only singular 
point, so the arithmetic genus of B g coincides with that 
of B„. Therefore we do have a deformation. 

LX When k = 1, a. = g, n = g, so 6 Q = g-1. But now ± 2 
6Q = 1, SO the arithmetic genus is again g. So in this 
case too we obtain a deformation. 

To complete the proof of (l4.5) it suffices to show 
H can be smoothed by deformation, since by (12.6) they 
are negatively graded . Let 
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Y < Spec B R 

V ^ Spec k 

be the versal deformation space of Spec B · As noted in 
xl 

(lj.1) V is algebraic. B^ is a specialization of B g. 
Therefore if O € V corresponds to Spec(B ) and s € v is 

H 
a point near O such that the fibre of Y •> V at s is 
isomorphic to B - then Y >V localized at s is a complete 

s 
(but not necessarily minimal) family of deformations of B g. 
In both cases (when k = 1 and k > 2) it is clear by (11.13) 
that B has smooth deformations. Therefore B has smooth 

S xi 
deformations, proving the theorem. 
Remark Ik.6 The construction of B also works for H .  s g 
It would be interesting to understand in exactly what 
generality it holds. 

Theorem 14.7 The open set U (13.5) associated to the 
semigroup H is nonvoid of dimension 3g-k-l, hence the g ,k 
number of moduli of smooth curves with a Weierstrass point 
of semigroup ^ (the dimension of U) is 
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3g - k - 2. 

Proof. By (I0.3) and (13.9) the dimension of U is 
35-c-fd, since all the semigroup rings in question have 
negative grading. Easy computations show: 

6 - g 
c = g + k + 1 
d = g 

giving the dimension. The fact that U is nonvoid follows 
from (14.5). 
Remark (l4.8) In general it is difficult to compute the 
dimension of U c Spec R 1, since (10.3) only gives us the 
dimension of certain components of Spec R. 

(14.9) When the semigroup H is Gorenstein, then Rim's 
formula ((10.2) and (10.3)) shows that the versal 
deformation space of B has dimension 2g(H) Therefore 
U has at most dimension 2g(H) - 1. This maximum is 
attained when B has negative grading: this is the case 

rl 

when H is the hyperelliptic semigroup (generated by 2 and 
2g+l) . The dimension of U can drop much lower however. 
*in characteristic 0. 
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If H is the semigroup generated by 4, 6 and 2g-3, then U 
has dimension2g-3 (elementary computation). The ideal of 
B in k[X. ,X ,X ] is generated by 
Xl 1 £L 3 

x 3 - x 2 

X l X 2 
2 v2g-6 

X 3 ~ 1 2 
so it is actually a complete intersection. 

(14.10) We have just seen that the number of moduli of 
curves with a hyperelliptic point (i.e., a point with a 
semigroup generated by 2 and 2g+l) is 2g-l. This was of 
course well known, since they are the hyperelliptic curves. 
The next case to consider is that of a semigroup with first 
nonzero element 3· Rauch [36] has shown that the number of 
moduli of curves of genus g with a point of semigroup 
starting with N is N+2g-3. When N = 3 the number of 
moduli is 2g. In each genus g we will exhibit a semigroup 
with that number of moduli. 

Case I. g even. 
Set g = 2n, and consider the semigroup generated by 3» 

3n+l, 3n+2. It is easy to see the number of gaps is g. 
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The semigroup ring of this semigroup is B = k[X^ ]/l 

where I is generated by the 2x2 minors of 

X^ X^ X-̂  

X^ X^ X^ 

Elementary computations show that B has negative grading; 

it would not be difficult to write down explicitly all the 

deformations, since they arise from deforming the matrix. 

We compute the dimension of Spec R using (lQ . 3 ) . & = g, 

c = 3*1. It is slightly more difficult to compute d, but 

using the grading we find d = n+1. Hence the dimension of 

Spec R is 6n~3n-!-l = 4n+l = 2g+l, so Proj R has dimension 2g, 

proving the result. 

Case II. g odd. 

Set g = 2n+l and let H be the semigroup generated by 

3> 3n+2, 3(nn-l) + 1. The ideal of B„ in k[X. ,X 0,X 1 is 
rl ± d 2 

generated by the 2x2 minors of 

X l X 2 X 3 

x 2 x 3 x n + 2 . 
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B has negative grading, c = 3n+2, d = n+2, so Spec R has 
dimension 36 + d - c = 3(2n+l) + n + 2 - 3 n = 2 = 4 n + 3 

= 2g + 1 , as claimed, 

(l4.ll) To conclude here are some questions to which we 
hope to devote attention at a later date. 

(1) We have shown here in some special cases that 
U is non void, and we have computed its dimension. Is this 
true in general, and what is the dimension? 

(2) X >V* is a flat family of projective curves, 
with smooth fibre above U c: v 1 . What are the fibres above 
V'-U? What is the significance of the section a? Will it 
give us information concerning the degeneration of Weier
strass points? 

(3 ) By forgetting the section O, we get a map 
U > ̂ g* t l i e c o a r s e m o <^ u^i space for curves of genus g. 
As before this map factors through U. What is the generic 
degree of U > ?7?g above its image? This degree is known 
to be 2(g+l) in the case of the hyper elliptic semigroup, and 
(g-l)g(g+l) in the case of the normal semigroup H [19]· 

g, I 
In general one expects it to be 1 : if it is d > 1 then the 
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general curve with a point of semigroup H must have d-1 
other points (up to isomorphism) with the same semigroup. 

(4) Can one use deformation theory to obtain 
information about R or R 1? For example when is R 
irreducible? reduced? When is Proj R' unirational? 

(5) Probably the most interesting semigroup is H^, 
since U is then an open subspace of 77? n. Recall H is 
generated by g+l,g+2,···,2g+l. The ideal of in 

9 

k [ X ^ , · · · i s generated by the 2X2 minors of 
X l X 2 x 3 Xg+1 

2 
X.~ X_ X ,. X 
2 3 g+i 1 

B H has negative grading by (12.6), and Spec R has 
9 

dimension 3g-l by (10.3). We obtain a 2g+l dimensional 
subspace of Spec R by deforming the matrix, and it is not 
hard to see we obtain only the hyperelliptic curves this 
way. Even when g = 3 it is difficult to compute what R is: 
T̂ " already has dimension 11. 
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(6) has one other special feature: it is the only 
semigroup with semigroup ring having a 2-dimensional family 
of automorphisms, at least formally. Indeed besides (Ê  we 
have G acting by t *> t/l-at (t is the parameter of the 

a 
normalization k[t] of Br, ). This heuristically explains why 

g 
the moduli space Spec R of B H has dimension 2 greater than 
that of smooth curves of genus g. Does this <E action lift 

a 
to the versal deformation? This is probably not the case. 
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15. An example 
We now compute the simplest case of degeneration 

mentioned in (14.11), question (2), that is, the case of 
an ordinary point on a genus 2 curve degenerating to a 
hyperelliptic point. To simplify notation we write H for 
the semigroup generated by 3, 4, 5 (previously called H2) 
and G for the one generated by 2, 5 (previously called H 0 ) . 
These are the only semigroups in genus 2. 

The versal deformation space of B„ is given, over 
R = k[t-̂ , ...,tj_] by the vanishing of the maximal minors 
of the matrix 

xl x2 X3 
(1) 2 

x 2+t 3 x 3+t 1x 1+t 4 x 1+t 2x 1+t 5 

Since B has negative grading, by (13.9) Proj R, where t-
has weight i+1, is a compactification of U (13.9) which is 
isomorphic to the open subspace W H <—> #l2 i consisting of pairs 
of genus 2 curves with an ordinary point. Now the complement 
of W H in ± t t l e a n a l o <? o u siy defined subspace WG. 
Fix a point w £WG. Hence w represents a curve C and a hyper
elliptic point P£C. Let S be a discrete valuation ring and 
a: Spec S > )?22 i a curve in Tfl^ 1 with closed point w and 
generic point in WTT. Via the isomorphism of U with W , and 

H H 
using the valuative criterion we deduce a curve a1: Spec S ^ 
Proj R. We want to determine the image w* of the closed point 
of Spec S, and also the fibre of the versal deformation space 
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of B over any inverse image of w' in Spec R. If we do this 
rl for all w W and all possible a, we will obtain a great deal G 

of information concerning the structure of W Q in Tfl^. \* 

More generally we can ask the same question for any 
pair of semigroups H and G, both of genus g, such that W 

G 
is contained in the closure of W„ in Yft , . 

« g 9 J-
We return to the special case. Note that a should be 

thought of as a one parameter family of curves X —> Spec S 
of genus 2, with closed fibre C and a section picking out 
generically an ordinary point and, at the closed point of 
Spec S, the hyperelliptic point P. For simplicity we work out 
the degeneration only when the curve a has the following 
special form: we have the obvious map ffl0 n —~* #2^ by forqetting 
the section. We let a be the localization of f 1(f(w)) at w. 
This means we are approaching w = (C, P) along C. 
Claim 1: the point w' obtained for this special a does not 
depend on the choice of w *WQ. 

We will give explicit coordinates for w' later on. Note 
that the claim is false if we do not assume a has the special 
form mentioned above; in other words w* does depend on the 
direction in which we are approaching w. Thus, roughly speaking, 
we get Proj R from ffl^ 1 (in a neighborhood of W G) by first 
blowing up along W and then contracting the proper transform 

G 
Of W G. 
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To prove the claim we make a construction which gives 
the orbit of (C, P) in the versal deformation space of B 

G 
by a method slightly different from the one described in (13.11). 

Let X be the product of C with the affine line A 1. Let 
Pi 1 

s be the section of X- * A picking out in each fibre the 
point P, and let t be any other section with t(0)=P and not 
tangent to s at that point. Denote by XQ the fibre of p-̂  
above 0, and BQ=s (0)=t(0) : / 

·.. J*o x ; 

\_J%o  

' A 1 

0 
>' 
A 1 ~0~ 

We now blow up on the surface X. Call the transformed 
surface X, the exceptional divisor E and the proper transforms 
of XQ, s and t, X^, s and t respectively. Let Q^, and be 
the points of intersection of E with X Q, s and t respectively. 
By hypothesis they are distinct. 

X^ has self-intersection -1 in X, hence by Grauert's 
theorem we can contract it analytically. We obtain a (singular) 
surface X and a flat map X *A~̂  with sections s~ and t, such 
thatthe fibre E above the origin is a rational curve, singular 
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at Q 1 with two other distinguished points Q 2 and Q ̂ . As 
t varies varies over all the points of E except Q and Q , *5 1 2 
which are uniquely determined. All the other fibres of 
X are isomorphic to C. It is not hard to see that 

^S^j E ^2 "*"s i s o m o r P n i c t o Spec 
/ and hence that the family 

E\ / — 1 — \ I _ ^ X X > A with the section s 
* -^—7& 

\ / % represents (the normalization 
Y of) the orbit corresponding to 

(C,P) in the versal deformation space of B^. >r G 
o 

Claim 2: the pairs (E, Q^) , as varies, parametrize the 
fibres of the versal deformation space of Spec B R over the 
points of Spec R lying above w' 6 Proj R. 

This is proved by examining the graded ring 

© H°(X, Orr( it)) 
i 7/0 X 

and showing that its Spec is the total space of a 2 dimensional 
family of deformations of Spec B . This is essentially 
equivalent to showing that is an ordinary point on E, i.e., 
that the meromorphic functions on E with poles only at 
have orders in H. 

Claim 2 implies claim 1, since (E, Q ) does not 
depend on the curve C we started out with. 
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MONOMIAL CURVES 

We now show how to find w 1 explicitly. The point is 
to notice that the representation (1) can be used to find 
the hyperelliptic covering of the curves in the family: we get 
a rational map to IP"*" by taking the common ratio of the columns. 

x 2 + t 3 = x 3 + t l x 1 + t 4 = x^ +t 2x 1 +t 5 

1 2 3 

Note that we have a natural section X^=X^=Z=0 (where Z is the 
homogenizing coordinate, the X^ having weight 1). s is infinite 
at that point. The other point with s infinite is X =X =X =0, * ^ 1 2 3 
hence there never is a ramification point at infinity. Indeed 
an easy computation shows that the ramification points of 
this map are given by the roots of the equation 

(2) s 6- 2t l S
4-2t 2s 3+(t^-4t 3)s 2+(2t 1t 2-4t 4)s+(t2~4t 5) = 0 

Two fibres of the family are isomorphic if and only if their 
ramification points are equivalent under the natural action 

1 
of the projective linear group on (P . 

Consider the fibre C above t = t = t = t = 0 . Cis easily 
1 2 3 4 1 

seen to be nonsingular by the jacobian criterion; another 
way of seeing this is to notice that s^-4t^ has six distinct 
roots. 

Next we determine the curve in UC^Proj R above which 
the fibre of the versal deformation is isomorphic to C, and 
then find its limit points in Proj R. There is only one such 
limit point which is the w 1 we are after. 
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H . P I N K H A M 

To find this curve we let SL^ act on \P^~, with inhomogeneous 
coordinate s, in the usual way: 

/a b A as+b 
\c d SL2, s \ * cs+d 

We ask which elements of SL send s^+T^, T^=-4tr , to an eo/uation 
2 5 

of the form (2). Necessary and sufficient conditions are that 
6 6 6 1 a +T c = 1 I 

5 g f and of course ad-bc=l 
a5b+c dT =0 j . ^ _ \ /a -T 6c 5\ so that the matrices are of the form j I with a +Tc =1. 

\ c a 5 / 
We let a tend to infinity. A computation shows that the 
coefficients of the transform of s +Tb under this matrix tend 
to ( 1, 0, -15T2, -40T3, -45T4, -24T5, -5T6) in the sense of 
invariant theory, so that we obtain the point in Proj R with 
projective coordinates 

t1=3-5/2; t2=22-5; t3=5-34/24; t4=34; t5=5*34/22. 
The T factor disappears by homogeneity. The equation for the 
discriminant is (s-5) (s+1)^. It is easy to see that the fibre 
of the versal deformation above this point is a rational curve 
with a singular point above s=-l and that the map to te>^ is 
its normalization. Hence in the notation of the earlier part 
of this section, the singular point above s=-l is Q , the 
section X1=X2=Z=0 is Q 3 and the point above s=5 is Q 2. Since 
we have a 5-fold root of the discriminant at s=-l it is easy to 
see directly that the singularity at is isomorphic to Spec B̂ ,. 

This completes the study of this simple type of 
degeneration. 
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