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A THEOREM ON THE MONODROMY OF ISOLATED SINGULARITIES 

Fulvio LAZZERI 

INTRODUCTION . - Let rr : (X, x) -> (T, t) be a flat morphism between germs of 
smooth complex spaces, ( A , t) its discriminant. Suppose that the fibre 
(X̂ _, t) = TT (t) is a hypersurface with an isolated singularity at x . 
Then TT induces a fibre bundle on T - A whose fibre M has the homotopy type 
of a bouquet of spheres of dimension r = dim X - dim T (see [4]) ; the 
associated representation rr̂ fT - A , t) -* Aut(H^fM, 77)) is called the monodromy 
of TT . By looking at the properties of a representation of T T ^ ( T - A , t) in the 
case that TT is semiuniversal, we show an irreducibility property of such a 
representation. As a consequence we get a no-splitting principle for a hyper
surface isolated singularity, that extends a known result for curves [3] . 

1 . THE MONODROMY OF n • - Let TT : (C N, 0) -> (C n, 0) be a flat morphism whose 
fibre (X , 0) = TT (o) is a hypersurface with an isolated singularity at 0 . 
Denote by ( A , 0) the discriminant of TT . Choose a small ball B around 0 in 

. Then there exists a contractible open neighborhood U of 0 in C n such 
that TT : B D TT (U) -* U is a smooth proper map and TT is of maximal rank on 
T T " 1 CU - A ) 0 B and on n" 1 (u ) (1 BB . It follows that TT : B 0 T T ~ 1 ( U - A ) - U - A 

is a differentiable fibre bundle, whose fibre M is a compact differentiable 
2r-dimensional manifold with boundary, where r = N - n ; moreover since rr is 
of maximal rank on TT ( U ) H SB we may suppose that the group of the bundle is 
made with diffeomorphisms of M which are the identity on BM . 
One knows (see [4]) that M is a parallelizable manifold which is homotopically 
equivalent to a bouauet of (j, spheres of dimension r . In particular H^(M, 77 ) 
is a free module of rank jj, over 77 . Let p 6 U - A and identify M with 
TT (p) (1 B . Then there is a homomorphism n^(U - A , p) -* Aut H^(M, 77.) . Letting 
U vary, one deduces a homomorphism a : TT (C - A , •) Aut H (M, 77) , where 

r n -v n F f*l T T ^ C - A, OJ denotes the local fundamental group of C - A at 0 . 

(*) Remark that n / ](C n - A , o ) is defined up to an inner automorphism ant that 
the indeterminacy of or is just that of an inner automorphism of n yj(C N -A,0). 
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2 . THE PRESENTATION OF TT / |(C n - A, 0) . - Let (A, 0) c (C n, 0) be defined by 
an equation 

w + a ^ l z j w + ...+ a m(zj = 0 
where (w, z^,..., z

n__/|) a r e local coordinates on (C n, 0) and a_^(o) = 0 
for i = 1, . . ., m . 
Consider a nice stratification of A , say a stratification verifying Whitney's 
conditions. By the curve selection lemma one can see that there exists £ Q>Os.th. 
for 0 < 6 < the hypersurface ||z|| = £ is transversal to each stratum. 
It follows that, if U r = {(w, z) | ||z|| < e} then for 0 < £' < Z < e the 

o o 
inclusion U^, - A - A is a homotopy equivalence. Moreover let 
T 1 ( £ ) = sup (w| , U c « r ^ = {(w, z) € U r I IwI < 1 1 ( e ) } . Then the inclusion 

U e (1 A e ' , R e j 8 

^e 1](e) ~~ ^ "* ^e ~ ̂  is a homotopy equivalence. Since a^(o) = 0 for i = 1,..,m 
one has that 1](e) -» 0 as e -» 0 , so that U £ T](e) i s a n a rbitrary small 
neighborhood of 0 in C n . In particular if 0 < e < e^ and p 6 U £ - A , then 
TT^ (C n - A, 0) -• T\^[\S^ - A, p) is an isomorphism. 

NOTATIONS. - U = U. ; V = U H {w = Ol; cp : U - V the projection. Fix Iw 1 » 8 . 
"~~~~~~*~~~~~~" O O 

For z 6 V , L is the straight line cp" (z) and p = (w , z) 6 L 
o 

^ —1 
Finally let T denote the discriminant of c p : U f l A - * \ / , r = cp (T ) . 
Suppose z^ € V - r . then one has a diagram : 

J ~ 3 
• - T T 1 ( L z - A) - TT (U - A U T) * rr^V - T) - 0 

o Y 
i a 

T T ^ U - A) 

where the base point is always p z , j and a are induced by inclusions, 
o 

3 by cp and Y by the map z •-» ( W Q , Z ) . 

Remark that c p : U - A U T - » V - T is a fibre bundle with fibre L - A and 
o 

that z -» (w , z) induces a cross section of such a bundle. So from the homo-v o' J 

topy sequence of a fibre bundle we get 
1) the horizontal line is exact and 3 o Y is the identity on TT (V - F) . 

Moreover one has obviously 
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2) a is surjective 
3) a o Y is the null homomorphism 

Y ~ a 

Consider the sequence 0 -» TT^ (V - T ) - T T ^ U - A U T) - T T ^ U - A) -• 0 . 
This must not be exact at T T ^ U - A U T ) . Nevertheless one has 

4) ker a is generated by the conjugated of Im Y . 
Proof. - Obviously for v € Im Y and b € n^(U - A U T) one has b vb € ker a . 
Let b € ker a . Then b = dc with c € T T 2 ( U - A , U - A U T) . Let us represent 
c by a map c : [0, 1] x [0, 1] -» U - A which is transversal to T . Then 
c (r) is a finite set of points, let say p^,..., p s . The following picture 
shows that b is equivalent in n,(U - A U T) to a product w„ ... w of 
simple loops around T 

W i / P l 

' * 
w. simple means that it is composed of an arc T from p to a point near 

~ Z° 
a regular point p of T , a small circle around T and then back with T 
One can construct a cylinder in U - A U T whose boundaries are two circles, 
one being that of w_̂  , the other being in V - T . Choose an arc T in V - T 
from p to that circle, and call v. the resulting simple loop ; if a. is 

o 
defined so that it follows T and then a path along the cylinder from one circle 

-1 -1 
to the other and then T , one realizes that w. = a.v.a. .So b is a product 

1 1 1 1 ^ 
of elements, each of which conjugated to an element of Im Y • 
COROLLARY. - ker a fl ker |3 is the minimal normal subgroup N of ker 3 that 

-1 -1 

contains the elements of the form bvb v with b 6 ker 3 , v € Im y . 

Proof. - Let b € T T ^ U - A U ?) , v 6 Im y . 
Then bvb" 1 = (b .Y3(b" 1 ) ) . [Y3(b).v .Y3(b" 1 ) ) . (Y3(b).b" 1) = b.v.b " 1 

where v € Im y , b € ker 3 • So if b € ker a , one has from 4) and this 
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- -1 -1 remark that b = b.v.b. ... b v b with b. € ker 3 > v. € Im Y . 1 1 1 s s s 1 1 
Moreover b € ker 3 implies 3(vA v ) = 1 and hence v^ ... v = 1 , 

S —1 —1 S 

since 3 is injective on Im Y . Let n. = b.v.b. v. € N ; then 
_1 _1 1 1 1 1 1 

b = n„v„ ... n v = v . . . v / 1 n . v / 1 . . . n v . from this and the remark that 
1 1 S S S 1 1 1 _ / j S S 

v € Im Y , n € N implies that v nv € N one deduces b 6 N . 

Let R be a straight line in V s. th. rr. (R - T) -* TT. (V - T) is surjective 
—1 

and let H denote cp (R) . From the preceding result we know that T T ^ H - A) 
and TTyj (U - A) have the same generators with the same relations, hence they are 
isomorphic. This is the local version of a theorem of Zariski - Van Kampen on the 
presentation of the fondamental group of P minus a hypersurface ; compare the 
article of Cheniot [2] in this volume. Now H = C x E where E = [z € C | |z|<£} and A. = A U H is defined by some equation w m + b.(z)wm~'' + ...+ b (z) = D , 1 1 v J m v J 

with the b^ holomorphic on E . Suppose that TT is versa!. Then (see [ 1 ] , [6]) 
one may suppose that Â  has the following properties : 

i) it is irreducible 
ii) it has only cusps or ordinary double points as singularities, with 

distinct images on E . 
iii) it is flat on the z-direction, i.e. z is a transversal parameter at 

any point of Â  . 

Let o : kA -* kA be the normalization of Â  and consider T = c p D a : -» E . 
Then T is only ramified at points that correspond to cusps of Â  , and the 
ramification index at those points is two. 

LEMMA. - The permutation group of the Riemann surface Â  is the full group of 
permutations of r elements. 

Proof. - It is sufficient to remark that a) it is transitive (because of the 
irreducibility of Â  ) and b) it is generated by transpositions (because Â  
is simply ramified over distinct points). 

Let Y be a simple loop in L - A from z turning positively around some z o o 
element of H A . Its image in T T ^ ( U - A) will be called a geometric 

o 
generatoro 
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THEOREM 1. - i) Let , Y 2 be geometric generators ; there exi sts 6 € TT 1 CU - A) 
s. th. y^l = 6.Y2 . 

ii) Suppose that A is not smooth, and let Y be a geometric 
generator ; there exists a geometric generator Y' s. th. 
Y.Y'.Y = Y'.Y.Y* . 

Proof. - i) Remark first that any two loops around the same are conju
gated in T^O - - A) and hence also in rr̂  [(J - A) . Then the 

o 
preceding lemma assures that if z., z. 6 L O A and Y is a 

1 J Zo 
loop around 7. , then Y is equivalent in TT^ ( U - A) to some 
loop around z. • 

ii) Since A is not smooth, A^ must be ramified somewhere so that 
Ayj has at least a cusp. Suppose that Z q is near that ramifi
cation point and that Y is a loop around a point near the 
corresponding cusp. Then the loop Y1 that goes like Y until 
that cusp and then links the other point near the cusp, satisfies 
the required relation. In general one knows from i) that Y is 
conjugated to such an element. Then it remains only to remark that 
each conjugated to a geometric generator is a geometric generator. 

3 . PICARD-LEFSCHETZ THEORY . - This theory describes the monodromy of a semiuni-
versal deformation in the following way (see [5]) : the fibre over each simple r « point of A has just an isolated singularity of the type S x = 0 ; hence to 

0 1 

each geometric generator Y , there is associated a vanishing cycle e € H^fM, 2Z ) 
uniquely determined up to the sign by y . The action of Y on H^fM, 7L ) is 
given by the Picard-Lefschetz formula 

(*) h - h + (- l) S(e, h) e , h 6 H ( M , 7L ) 

where s = (r + l).(r + 2 ) ^ and < , ) : HjM, 2 ) x H^(M, 2 ) - 2 is the 
cap product. Moreover (e, e) is zero if r is odd and 2. (-1 ) r" ^r+^ ^ 2 if r 
is even. 
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Let {z^,..., ẑ } = L z H A and choose simple loops yA,..., Y m in such a way 
o 

that Y. turns positively around z. and y.. y. don ft intersect outside z i 1 i j o 
Call e^ the vanishing cycle associated to Y^ • Then Ŷ  >•••> Y m generate 
freely T T^(L z - A) and e^,..., e m are a base of H (M, 2Z ) over 7L . 

o 
THEOREM 2 . - Let I, J be a partition of { 1 , . . . , m} . There exist i 6 I and 
j € J s. th. <e ±, e > 4 0 . 

Proof. - From formula (*) one gets that the images y., y. of Y-> Y- in —-——— i j i j 
Aut H (M, 7L ) commute if (e.,e.) = 0 . Suppose that this happens for all i € I r i j 
and j € J . Fix i^ € I , j A € J ; because of theorem 1 one can write 
Y. 6 = 6.Y. where 6 € TT . (U — A) and hence 6 is a product of Y. > Y- • Since 

1/J 3 A I i J each Y- commutes with each y. one can write 6 = 6 ,.6 where 6 T is a product I J J ± ± 
_ _ _ 1 _ _ _ _ - -1 of Y. and 6. a product of Y. • So one has 6. . Y. .6, = $ T«Y. • &T and l J j J i ^ J l j ^ l 

hence Y- = Y- • This equality, with the help of formula (*) and the fact that 
e. ^ e. , gives (e. , h) = 0 for all h € H (M, 7l) . This cannot happen. 
In fact theorem 1 says that there exists a geometric generator Y1 such that 
Y. .Y'.Y- = Y'-Y- «Y' ; if e 1 denotes the vanishing cycle associated to Y' 
one sees from formula (*) that this relation is equivalent to ( ', . ) = + 1 
and this concludes the proof. 

COROLLARY. - The set of points where A is locally reducible is contained in the 
set of points where A has smaller multiplicity than at the origin. 

Proof. - Let t 1 6 A where A has irreducible components A^, ..., A g , s ̂  2 . 
Then n"~1(t') has s singular points x^ x g s.th. the multiplicity m^ 
of A^ at t' is the number of vanishing cycles at xj_ » i = 1 , . . . , s . 
Choose L near t 1 and define {z^,..., z } = A Pi , I = {1, •.., m} , 

o o s 
I = fi € I I z. 6 A } , Q - = 1 s . Suppose £ m. = m ; 

& ' 1 c r ' ^ 1 

it follows that ^ s a partition of I . Let e^ denote the vanishing cycle 
at z. . One has (e., e.) = 0 for i € I , j € I e and a 4 P J in fact 
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e^, have representative cycles lying in disjoint balls around x^ , x^ 

respectively. This cannot happen because of the theorem 2 , so.that the multi-
s 

plicity S m of A at t 1 must be less than m . 
1 0 1 

Remark. - This result can be expressed in the following way : if a deformed fibre 

of a hypersurface isolated singularity has more than one singularity, then the 

direct sum module of vanishing cycles at those singularities is a proper submodule 

of that of vanishing cycles at the original singularity. 
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