Astérisque

FULVIO LAZZERI A theorem on the monodromy of isolated singularities

Astérisque, tome 7-8 (1973), p. 269-275

<http://www.numdam.org/item?id=AST_1973_7-8_269_0>

© Société mathématique de France, 1973, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A THEOREM ON THE MONODROMY OF ISOLATED SINGULARITIES

Fulvio LAZZERI

 $\begin{array}{lll} \underline{INTRODUCTION} & - \mbox{Let } \pi: (X,\, x) \rightarrow (T,\, t) & \mbox{be a flat morphism between germs of smooth complex spaces, } (\Delta,\, t) & \mbox{its discriminant. Suppose that the fibre } (X_t,\, t) = \pi^{-1}(t) & \mbox{is a hypersurface with an isolated singularity at } x & \mbox{.} \end{array}$ Then π induces a fibre bundle on $T - \Delta$ whose fibre M has the homotopy type of a bouquet of spheres of dimension $r = \dim X - \dim T$ (see [4]) ; the associated representation $\pi_1(T - \Delta,\, t) \rightarrow {\rm Aut}({\rm H}_r({\rm M},\,{\mathbb Z}\,))$ is called the monodromy of π . By looking at the properties of a representation of $\pi_1(T - \Delta,\, t)$ in the case that π is semiuniversal, we show an irreducibility property of such a representation. As a consequence we get a no-splitting principle for a hypersurface isolated singularity, that extends a known result for curves [3].

1. <u>THE MONODROMY OF</u> π . - Let π : $(\mathbb{C}^N, 0) \to (\mathbb{C}^n, 0)$ be a flat morphism whose fibre $(X_0, 0) = \pi^{-1}(0)$ is a hypersurface with an isolated singularity at 0. Denote by $(\Delta, 0)$ the discriminant of π . Choose a small ball B around 0 in \mathbb{C}^N . Then there exists a contractible open neighborhood U of 0 in \mathbb{C}^n such that $\pi : B \cap \pi^{-1}(U) \to U$ is a smooth proper map and π is of maximal rank on $\pi^{-1}(U - \Delta) \cap B$ and on $\pi^{-1}(U) \cap \partial B$. It follows that $\pi : B \cap \pi^{-1}(U - \Delta) \to U - \Delta$ is a differentiable fibre bundle, whose fibre M is a compact differentiable 2r-dimensional manifold with boundary, where r = N - n; moreover since π is of maximal rank on $\pi^{-1}(U) \cap \partial B$ we may suppose that the group of the bundle is made with diffeomorphisms of M which are the identity on ∂M . One knows (see [4]) that M is a parallelizable manifold which is homotopically equivalent to a boucuet of μ spheres of dimension r. In particular $H_r(M, \mathbb{Z})$ is a free module of rank μ over \mathbb{Z} . Let $p \in U - \Delta$ and identify M with $\pi^{-1}(p) \cap B$. Then there is a homomorphism $\sigma: \pi_1(\mathbb{C}^n - \Delta, 0) \to \operatorname{Aut} H_r(M, \mathbb{Z})$, where $\pi_1(\mathbb{C}^n - \Delta, 0)$ denotes the local fundamental group of $\mathbb{C}^n - \Delta$ at 0.

^(*) Remark that $\pi_1(\mathbb{C}^n - \Delta, 0)$ is defined up to an inner automorphism ant that the indeterminacy of σ is just that of an inner automorphism of $\pi_1(\mathbb{C}^n - \Delta, 0)$.

LAZZERI

2. THE PRESENTATION OF $\pi_1(\mathbb{C}^n - \Delta, 0)$. - Let $(\Delta, 0) \subset (\mathbb{C}^n, 0)$ be defined by an equation

$$w^{m} + a_{1}(z)w^{m-1} + \ldots + a_{m}(z) = 0$$

where (w, z_1, \ldots, z_{n-1}) are local coordinates on (\mathbb{C}^n , 0) and $a_i(0) = 0$ for $i = 1, \ldots, m$.

Consider a nice stratification of Δ , say a stratification verifying Whitney's conditions. By the curve selection lemma one can see that there exists $\mathcal{E} > 0$ s.th. for $0 < \mathcal{E} < \mathcal{E}_0$ the hypersurface $||z|| = \mathcal{E}$ is transversal to each stratum. It follows that, if $U_{\mathcal{E}} = \{(w, z) \mid ||z|| < \mathcal{E}\}$ then for $0 < \mathcal{E}' < \mathcal{E} < \mathcal{E}_0$ the inclusion $U_{\mathcal{E}'} - \Delta \rightarrow U_{\mathcal{E}} - \Delta$ is a homotopy equivalence. Moreover let $\eta(\mathcal{E}) = \sup_{\mathcal{U}_{\mathcal{E}}} \cap \Delta$ ||w||, $U_{\mathcal{E}}, \eta(\mathcal{E}) = \{(w, z) \in U_{\mathcal{E}} \mid |w|| < \eta(\mathcal{E})\}$. Then the inclusion

 $\begin{array}{l} U_{\mathcal{E}},\eta(\epsilon) & -\Delta \rightarrow U_{\mathcal{E}} & -\Delta \mbox{ is a homotopy equivalence. Since } a_{i}(0) = 0 \mbox{ for } i = 1,\ldots,m \\ \mbox{ one has that } \eta(\epsilon) \rightarrow 0 \mbox{ as } \epsilon \rightarrow 0 \mbox{ , so that } U_{\mathcal{E}},\eta(\epsilon) \mbox{ is an arbitrary small} \\ \mbox{ neighborhood of } 0 \mbox{ in } \mathbb{C}^{n} \mbox{ . In particular if } 0 < \epsilon < \epsilon_{0} \mbox{ and } p \in U_{\mathcal{E}} - \Delta \mbox{ , then } \\ \pi_{1}(\mathbb{C}^{n} - \Delta, 0) \rightarrow \pi_{1}(U_{\mathcal{E}} - \Delta, p) \mbox{ is an isomorphism.} \end{array}$

<u>NOTATIONS</u>. - U = U_E ; V = U ∩ {w = 0}; $\varphi: U \to V$ the projection. Fix $|w_0| \gg \varepsilon$. For $z \in V$, L_z is the straight line $\varphi^{-1}(z)$ and $p_z = (w_0, z) \in L_{z_0}$. Finally let Γ denote the discriminant of $\varphi: U \cap \Delta \to V$, $\widetilde{\Gamma} = \varphi^{-1}(\Gamma)$. Suppose $z_0 \in V - \Gamma$. then one has a diagram :

$$\begin{array}{c} \circ \rightarrow \pi_{1}(L_{Z_{O}} - \Delta) \xrightarrow{j} \pi_{1}(\cup - \Delta \cup \widetilde{\Gamma}) \xrightarrow{\beta} \pi_{1}(\vee - \Gamma) \rightarrow 0 \\ \downarrow \alpha \\ \eta_{1}(\cup - \Delta) \end{array}$$

where the base point is always p_z , j and α are induced by inclusions, β by φ and γ by the map $z \leftrightarrow (w_o, z)$. Remark that $\varphi : U - \Delta U T \rightarrow V - T$ is a fibre bundle with fibre $L_z - \Delta$ and that $z \rightarrow (w_o, z)$ induces a cross section of such a bundle. So from the homotopy sequence of a fibre bundle we get

1) the horizontal line is exact and β o γ is the identity on $\pi_1(V-\Gamma)$. Moreover one has obviously

- 2) α is surjective
- 3) $\alpha \circ \gamma$ is the null homomorphism

Consider the sequence $0 \to \pi_1(V - \Gamma) \xrightarrow{\gamma} \pi_1(U - \Delta \cup \widetilde{\Gamma}) \xrightarrow{\alpha} \pi_1(U - \Delta) \to 0$. This must not be exact at $\pi_1(U - \Delta \cup \widetilde{\Gamma})$. Nevertheless one has

4) ker α is generated by the conjugated of Im γ .

<u>Proof</u>. - Obviously for $v \in \operatorname{Im} \gamma$ and $b \in \pi_1(U - \Delta \cup \widetilde{\Gamma})$ one has $b^{-1}vb \in \ker \alpha$. Let $b \in \ker \alpha$. Then $b = \partial c$ with $c \in \pi_2(U - \Delta, U - \Delta \cup \widetilde{\Gamma})$. Let us represent c by a map $\hat{c} : [0, 1] \times [0, 1] \rightarrow U - \Delta$ which is transversal to $\widetilde{\Gamma}$. Then $\hat{c}^{-1}(\widetilde{\Gamma})$ is a finite set of points, let say p_1, \ldots, p_s . The following picture shows that b is equivalent in $\pi_1(U - \Delta \cup \widetilde{\Gamma})$ to a product $w_1 \cdots w_s$ of simple loops around $\widetilde{\Gamma}$ \uparrow

<u>COROLLARY</u>. - ker $\alpha \cap$ ker β is the minimal normal subgroup N of ker β that contains the elements of the form $bvb^{-1}v^{-1}$ with $b \in \ker \beta$, $v \in \operatorname{Im} \gamma$.

Proof. - Let
$$b \in \pi_1(U - \Delta \cup \widetilde{\Gamma})$$
, $v \in Im \gamma$.
Then $bvb^{-1} = (b.\gamma\beta(b^{-1})).(\gamma\beta(b).v.\gamma\beta(b^{-1})).(\gamma\beta(b).b^{-1}) = \overline{b}.\overline{v}.\overline{b} \stackrel{-1}{}$
where $\overline{v} \in Im \gamma$, $\overline{b} \in \ker \beta$. So if $b \in \ker \alpha$, one has from 4) and this

LAZZERI

remark that $\overline{b} = b_1 v_1 b_1^{-1} \dots b_s v_s b_s^{-1}$ with $b_i \in \ker \beta$, $v_i \in \operatorname{Im} \gamma$. Moreover $b \in \ker \beta$ implies $\beta(v_1 \dots v_s) = 1$ and hence $v_1 \dots v_s = 1$, since β is injective on $\operatorname{Im} \gamma$. Let $n_i = b_i v_i b_i^{-1} v_i^{-1} \in N$; then $b = n_1 v_1 \dots n_s v_s = v_s^{-1} \dots v_1^{-1} n_1 v_1 \dots n_s v_s$. from this and the remark that $v \in \operatorname{Im} \gamma$, $n \in N$ implies that $v^{-1} n v \in N$ one deduces $b \in N$.

Let R be a straight line in V s. th. $\pi_1(R - \Gamma) \rightarrow \pi_1(V - \Gamma)$ is surjective and let H denote $\varphi^{-1}(R)$. From the preceding result we know that $\pi_1(H - \Delta)$ and $\pi_1(U - \Delta)$ have the same generators with the same relations, hence they are isomorphic. This is the local version of a theorem of Zariski - Van Kampen on the presentation of the fondamental group of \mathbf{P}_n minus a hypersurface; compare the article of Cheniot [2] in this volume. Now $H = \mathbb{C} \times \mathbb{E}$ where $\mathbb{E} = \{z \in \mathbb{C} \mid |z| < \varepsilon\}$ and $\Delta_1 = \Delta \cup H$ is defined by some equation $w^m + b_1(z)w^{m-1} + \ldots + b_m(z) = 0$, with the b_1 holomorphic on \mathbb{E} . Suppose that π is versal. Then (see [1], [6]) one may suppose that Δ_1 has the following properties :

- i) it is irreducible
- ii) it has only cusps or ordinary double points as singularities, with distinct images on E .

Let $\sigma: \widetilde{\Delta}_{1} \to \Delta_{1}$ be the normalization of Δ_{1} and consider $\tau = \varphi_{0} \sigma: \widetilde{\Delta}_{1} \to E$. Then τ is only ramified at points that correspond to cusps of Δ_{1} , and the ramification index at those points is two.

<u>LEMMA</u>. - The permutation group of the Riemann surface Δ_1 is the full group of permutations of r elements.

<u>Proof</u>. - It is sufficient to remark that a) it is transitive (because of the irreducibility of Δ_1) and b) it is generated by transpositions (because Δ_1 is simply ramified over distinct points).

Let γ be a simple loop in $L_{z_0} - \Delta$ from z_0 turning positively around some element of $L_{z_0} \cap \Delta$. Its image in $\pi_1(U - \Delta)$ will be called a geometric generator.

A THEOREM ON THE MONODROMY ...

- <u>THEOREM 1</u>. i) Let Y_1 , Y_2 be geometric generators; there exists $\delta \in \pi_1(U \Delta)$ s. th. $Y_1^{\delta} = \delta \cdot Y_2$.
 - ii) Suppose that Δ is not smooth, and let γ be a geometric generator ; there exists a geometric generator γ' s. th. $\gamma \cdot \gamma' \cdot \gamma = \gamma' \cdot \gamma \cdot \gamma'$.
- <u>Proof.</u> i) Remark first that any two loops around the same z_i are conjugated in $\pi_1(L_{z_0} \Delta)$ and hence also in $\pi_1(U \Delta)$. Then the preceding lemma assures that if z_i , $z_j \in L_{z_0} \cap \Delta$ and γ is a loop around z_i , then γ is equivalent in $\pi_1(U \Delta)$ to some loop around z_i .
 - ii) Since Δ is not smooth, Δ_1 must be ramified somewhere so that Δ_1 has at least a cusp. Suppose that z_0 is near that ramification point and that γ is a loop around a point near the corresponding cusp. Then the loop γ' that goes like γ until that cusp and then links the other point near the cusp, satisfies the required relation. In general one knows from i) that γ is conjugated to such an element. Then it remains only to remark that each conjugated to a geometric generator is a geometric generator.

3. <u>PICARD-LEFSCHETZ THEORY</u>. - This theory describes the monodromy of a semiuniversal deformation in the following way (see [5]): the fibre over each simple point of Δ has just an isolated singularity of the type $\sum_{0}^{r} \chi_{1}^{2} = 0$; hence to each geometric generator γ , there is associated a vanishing cycle $e \in H_{r}(M, \mathbb{Z})$ uniquely determined up to the sign by γ . The action of γ on $H_{r}(M, \mathbb{Z})$ is given by the Picard-Lefschetz formula

where $s = (r + 1) \cdot (r + 2)_{/2}$ and $\langle , \rangle : H_r(M, \mathbb{Z}) \times H_r(M, \mathbb{Z}) \to \mathbb{Z}$ is the cap product. Moreover $\langle e, e \rangle$ is zero if r is odd and $2 \cdot (-1)^{r \cdot (r+1)/2}$ if r is even.

LAZZERI

Let $\{z_1, \ldots, z_m\} = L_{z_0} \cap \Delta$ and choose simple loops Y_1, \ldots, Y_m in such a way that Y_i turns positively around z_i and Y_i, Y_j don't intersect outside z_0 Call e_i the vanishing cycle associated to Y_i . Then Y_1, \ldots, Y_m generate freely $\pi_1(L_{z_0} - \Delta)$ and e_1, \ldots, e_m are a base of $H_r(M, Z)$ over Z.

<u>THEOREM 2</u>. - Let I, J be a partition of $\{1, \ldots, m\}$. There exist i \in I and j \in J s. th. $\langle e_i, e_i \rangle \neq 0$.

<u>Proof</u>. - From formula (*) one gets that the images $\overline{\gamma}_i$, $\overline{\gamma}_j$ of γ_i , γ_j in Aut $H_r(M, \mathbb{Z})$ commute if $\langle e_i, e_j \rangle = 0$. Suppose that this happens for all $i \in I$ and $j \in J$. Fix $i_1 \in I$, $j_1 \in J$; because of theorem 1 one can write $\gamma_{i_1} \delta = \delta \cdot \gamma_{j_1}$ where $\delta \in \pi_1(U - \Delta)$ and hence δ is a product of γ_i , γ_j . Since each $\overline{\gamma}_i$ commutes with each $\overline{\gamma}_j$ one can write $\overline{\delta} = \overline{\delta}_J \cdot \overline{\delta}_I$ where $\overline{\delta}_I$ is a product of $\overline{\gamma}_i$ and $\overline{\delta}_J$ a product of $\overline{\gamma}_j$. So one has $\overline{\delta}_J^{-1} \cdot \overline{\gamma}_{i_1} \cdot \overline{\delta}_J = \overline{\delta}_I \cdot \overline{\gamma}_{j_1} \cdot \overline{\delta}_I^{-1}$ and hence $\gamma_{i_1} = \gamma_{j_1}$. This equality, with the help of formula (*) and the fact that $e_{i_1} \neq e_{j_1}$, gives $\langle e_{i_1}, h \rangle = 0$ for all $h \in H_r(M, \mathbb{Z})$. This cannot happen. In fact theorem 1 says that there exists a geometric generator γ' such that $\gamma_{i_1} \cdot \gamma' \cdot \gamma_{i_1} = \gamma' \cdot \gamma_{i_1} \cdot \gamma'$; if e' denotes the vanishing cycle associated to γ' one sees from formula (*) that this relation is equivalent to $\langle \cdot, \rangle_{i_1} \rangle = \pm 1$ and this concludes the proof.

<u>COROLLARY</u>. - The set of points where Δ is locally reducible is contained in the set of points where Δ has smaller multiplicity than at the origin.

- 274 -

e_i, e_j have representative cycles lying in disjoint balls around x_{α} , x_{β} respectively. This cannot happen because of the theorem 2, so that the multiplicity $\sum_{1}^{S} m_{\alpha}$ of Δ at t' must be less than m.

<u>Remark</u>. - This result can be expressed in the following way : if a deformed fibre of a hypersurface isolated singularity has more than one singularity, then the direct sum module of vanishing cycles at those singularities is a proper submodule of that of vanishing cycles at the original singularity.

BIBLIOGRAPHIE

[1]	E. BRIESKORN	"Théorie d'intersection des cycles évanouissants" not published.
[2]	D. CHENIOT	"Théorèmes de Zariski et de Van Kampen sur $\pi_1(\mathbb{P}_2 - \mathbb{C})$ " this volume.
[3]	C. HAŞ BEY	"Sur l'irréductibilité de la monodromie locale ; application à l'équisingularité" C. R. Acad. Sc. Paris, t. 275, (1972) Série A, 105-107.
[4]	J. MILNOR	"Singular points of complex hypersurfaces" Ann. of Math. Studies 61, Princeton 1968.
[5]	F. PHAM	"Formules de Picard-Lefschetz" Séminaire Leray, Collège de France, (Exposé fait le 12 Mars 1969, pp. 15-22), Paris.
[6]	B. TEISSIER	"Cycles évanescents, sections planes, et conditions de Whitney", Ch. III, this volume.