Astérisque

Fulvio Lazzeri
 A theorem on the monodromy of isolated singularities

Astérisque, tome 7-8 (1973), p. 269-275
http://www.numdam.org/item?id=AST_1973__7-8__269_0
© Société mathématique de France, 1973, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Fulvio LAZZERI

INTRODUCTION . - Let $\pi:(x, x) \rightarrow(T, t)$ be a flat morphism between germs of smooth complex spaces, ($\Delta, t)$ its discriminant. Suppose that the fibre $\left(X_{t}, t\right)=\pi^{-1}(t)$ is a hypersurface with an isolated singularity at x. Then π induces a fibre bundle on $T-\Delta$ whose fibre M has the homotopy type of a bouquet of spheres of dimension $r=\operatorname{dim} X$ - $\operatorname{dim} T$ (see [4]) ; the associated representation $\pi_{1}(T-\Delta, t) \rightarrow \operatorname{Aut}\left(H_{r}(M, Z Z)\right)$ is called the monodromy of π. By looking at the properties of a representation of $\pi_{1}(T-\Delta, t)$ in the case that π is semiuniversal, we show an irreducibility property of such a representation. As a consequence we get a no-splitting principle for a hypersurface isolated singularity, that extends a known result for curves [3].

1 . THE MONODROMY OF π. - Let $\pi:\left(\mathbb{C}^{N}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a flat morphism whose fibre $\left(x_{0}, 0\right)=\pi^{-1}(0)$ is a hypersurface with an isolated singularity at 0 . Denote by $(\Delta, 0)$ the discriminant of π. Choose a small ball B around D in \mathbb{C}^{N}. Then there exists a contractible open neighborhood U of 0 in \mathbb{C}^{n} such that $\pi: B \cap \pi^{-1}(U) \rightarrow U$ is a smooth proper map and π is of maximal rank on $\pi^{-1}(U-\Delta) \cap \stackrel{\circ}{B}$ and on $\pi^{-1}(U) \cap \partial B$. It follows that $\pi: B \cap \pi^{-1}(U-\Delta) \rightarrow U-\Delta$ is a differentiable fibre bundle, whose fibre M is a compact differentiable 2r-dimensional manifold with boundary, where $r=N-n$; moreover since π is of maximal rank on $\pi^{-1}(U) \cap \partial B$ we may suppose that the group of the bundle is made with diffeomorphisms of M which are the identity on ∂M.
One knows (see [4]) that M is a parallelizable manifold which is homotopically equivalent to a bouquet of μ spheres of dimension r. In particular $H_{r}(M, \mathbb{Z})$ is a free module of rank μ over \mathbb{Z}. Let $p \in U-\Delta$ and identify M with $\pi^{-1}(p) \cap B$. Then there is a homomorphism $\pi_{1}(U-\Delta, p) \rightarrow$ Aut $H_{r}(M, \mathbb{Z})$. Letting U vary, one deduces a homomorphism $\sigma: \pi_{1}\left(\mathbb{C}^{n}-\Delta, 0\right) \rightarrow$ Aut $H_{r}(M, \mathbb{Z})$, where $\pi_{1}\left(\mathbb{C}^{n}-\Delta, 0\right)$ denotes the local fundemental group of $\mathbb{C}^{n}-\Delta$ at 0 .
(*) Remark that $\pi_{1}\left(\mathbb{C}^{n}-\Delta, 0\right)$ is defined up to an inner automorphism ant that the indeterminacy of σ is just that of an inner automorphism of $\pi_{1}\left(\mathbb{C}^{n}-\Delta, 0\right)$.

LAZZERI

2 . THE PRESENTATION OF $\pi_{1}\left(\mathbb{C}^{n}-\Delta, 0\right)$. - Let $(\Delta, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ be defined by an equation

$$
w^{m}+a_{1}(z) w^{m-1}+\ldots+a_{m}(z)=0
$$

where $\left(w, z_{1}, \ldots, z_{n-1}\right)$ are local coordinates on $\left(\mathbb{C}^{n}, 0\right)$ and $a_{i}(0)=0$ for $i=1, \ldots, m$.

Consider a nice stratification of Δ, say a stratification verifying Whitney's conditions. By the curve selection lemma one can see that there exists $\varepsilon_{0}>0$ s.th. for $0<\varepsilon<\varepsilon_{0}$ the hypersurface $\|z\|=\varepsilon$ is transversal to each stratum. It follows that, if $U_{\varepsilon}=\{(w, z) \mid\|z\|<\varepsilon\}$ then for $0<\varepsilon^{\prime}<\varepsilon<\varepsilon_{0}$ the inclusion $U_{\varepsilon^{\prime}}-\Delta \rightarrow U_{\varepsilon}-\Delta$ is a homotopy equivalence. Moreover let $\eta(\varepsilon)=\sup _{U_{\varepsilon} \cap \Delta}|w|, \quad U_{\varepsilon, \eta(}(\varepsilon)=\left\{(w, z) \in U_{\varepsilon}| | w \mid<\eta(\varepsilon)\right\}$. Then the inclusion $U_{\varepsilon, \eta(\varepsilon)}-\Delta \rightarrow U_{\varepsilon}-\Delta$ is a homotopy equivalence. Since $a_{i}(0)=0$ for $i=1, \ldots, m$ one has that $\eta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, so that $U_{\varepsilon, \eta(\varepsilon)}$ is an arbitrary small neighborhood of 0 in \mathbb{C}^{n}. In particular if $0<\varepsilon<\varepsilon_{0}$ and $p \in U_{\varepsilon}-\Delta$, then $\pi_{1}\left(\mathbb{C}^{n}-\Delta, 0\right) \rightarrow \pi_{1}\left(U_{\varepsilon}-\Delta, p\right)$ is an isomorphism.

NOTATIONS. $-U=U_{\varepsilon} ; V=U \cap\{w=0\} ; \varphi: U \rightarrow V$ the projection. Fix $\left|w_{o}\right| \gg \varepsilon$. For $z \in V, L_{z}$ is the straight line $\varphi^{-1}(z)$ and $P_{z}=\left(w_{0}, z\right) \in L_{z}$. Finally let Γ denote the discriminant of $\varphi: U \cap \Delta \rightarrow V, \tilde{\Gamma}=\varphi^{-1}(\Gamma)$. Suppose $z_{0} \in V-\Gamma$. then one has a diagram :

$$
\begin{gathered}
0 \rightarrow \pi_{1}\left(L_{z_{0}}-\Delta\right) \stackrel{j}{\rightarrow} \pi_{1}(U-\Delta U \tilde{\Gamma}) \underset{\gamma}{\underset{\gamma}{\rightleftarrows} \pi_{1}(V-\Gamma) \rightarrow 0} \\
\downarrow \alpha \\
\pi_{1}(U-\Delta)
\end{gathered}
$$

where the base point is always $p_{z_{0}}, j$ and α are induced by inclusions, β by φ and γ by the $\underset{\sim}{\sim} \underset{\sim}{p} \sim\left(w_{0}, z\right)$.
Remark that $\varphi: U-\Delta U \tilde{T} \rightarrow V-T$ is a fibre bundle with fibre $L_{z_{0}}-\Delta$ and that $z \rightarrow\left(w_{0}, z\right)$ induces a cross section of such a bundle. So from the homotopy sequence of a fibre bundle we get

1) the horizontal line is exact and $\beta \circ \gamma$ is the identity on $\pi_{1}(V-\Gamma)$. Moreover one has obviously
2) α is surjective
3) $\alpha \circ \gamma$ is the null homomorphism

Consider the sequence $0 \rightarrow \pi_{1}(V-\Gamma) \stackrel{\gamma}{\rightarrow} \pi_{1}(U-\Delta U \tilde{\Gamma}) \xrightarrow{\alpha} \pi_{1}(U-\Delta) \rightarrow 0$. This must not be exact at $\pi_{1}(U-\Delta U \tilde{\Gamma})$. Nevertheless one has
4) ker α is generated by the conjugated of $\operatorname{Im} \gamma$.

Proof: - Obviously for $v \in \operatorname{Im} \gamma$ and $b \in \pi_{1}(U-\Delta U \tilde{\Gamma})$ one has $b^{-1} v b \in$ er α. Let $b \in$ ger α. Then $b=\partial c$ with $c \in \pi_{2}(U-\Delta, U-\Delta U \tilde{\Gamma})$. Let us represent c by a map $\hat{c}:[0,1] \times[0,1] \rightarrow U-\Delta$ which is transversal to $\tilde{\Gamma}$. Then $\hat{c}^{-1}(\tilde{\Gamma})$ is a finite set of points, let say p_{1}, \ldots, p_{s}. The following picture shows that b is equivalent in $\pi_{1}(U-\Delta U \tilde{\Gamma})$ to a product $w_{1} \ldots w_{s}$ of simple loops around $\tilde{\Gamma}$

w_{i} simple means that it is composed of an arc τ from $p_{z_{0}}$ to a point near a regular point \tilde{p} of $\tilde{\Gamma}$, a small circle around $\tilde{\Gamma}$ and then back with τ^{-1}. One can construct a cylinder in $U-\Delta U \tilde{\Gamma}$ whose boundaries are two circles, one being that of w_{i}, the other being in $V-\Gamma$. Choose an arc $\underset{\tau}{ }$ in $V-\Gamma$ from $p_{z_{0}}$ to that circle, and call v_{i} the resulting simple loop; if α_{i} is defined so that it follows τ and then a path along the cylinder from one circle to the other and then τ^{-1}, one realizes that $w_{i}=\alpha_{i} v_{i} \alpha_{i}^{-1}$. So b is a product of elements, each of which conjugated to an element of $\operatorname{Im} \gamma$.

COROLLARY. - kier $\alpha \cap$ jer β is the minimal normal subgroup N of jer β that contains the elements of the form $b v b^{-1} v^{-1}$ with $b \in$ ger $\beta, v \in \operatorname{Im} \gamma$.

Proof. - Let $b \in \pi_{1}(U-\Delta U \tilde{\Gamma}), \quad v \in \operatorname{Im} \gamma$.
Then

$$
b v b^{-1}=\left(b \cdot \gamma \beta\left(b^{-1}\right)\right) \cdot\left(\gamma \beta(b) \cdot v \cdot \gamma \beta\left(b^{-1}\right)\right) \cdot\left(\gamma \beta(b) \cdot b^{-1}\right)=\bar{b} \cdot \bar{v} \cdot \bar{b}^{-1}
$$

where $\bar{v} \in \operatorname{Im} \gamma, \bar{b} \in \operatorname{ker} \beta$. So if $b \in \operatorname{ker} \alpha$, one has from 4) and this

LAZZERI

remark that $\bar{b}=b_{1} v_{1} b_{1}^{-1} \cdots b_{s} v_{s} b_{s}^{-1}$ with $b_{i} \in \operatorname{ker} \beta, v_{i} \in \operatorname{Im} \gamma$. Moreover $b \in \operatorname{ker} \beta$ implies $\beta\left(v_{1} \ldots v_{s}\right)=1$ and hence $v_{1} \ldots v_{s}=1$, since β is injective on $\operatorname{Im} \gamma$. Let $n_{i}=b_{i} v_{i} b_{i}^{-1} v_{i}^{-1} \in N$; then $b=n_{1} v_{1} \ldots n_{s} v_{s}=v_{s}^{-1} \ldots v_{1}^{-1} n_{1} v_{1} \ldots n_{s} v_{s}$. from this and the remark that $v \in \operatorname{Im} \gamma, n \in N$ implies that $v^{-1} n v \in N$ one deduces $b \in N$.

Let R be a straight line in V s. th. $\pi_{1}(R-\Gamma) \rightarrow \pi_{1}(V-\Gamma)$ is surjective and let H denote $\varphi^{-1}(\mathrm{R})$. From the preceding result we know that $\pi_{1}(H-\Delta)$ and $\pi_{1}(U-\Delta)$ have the same generators with the same relations, hence they are isomorphic. This is the local version of a theorem of Zariski - Van Kampen on the presentation of the fondamental group of \mathbf{P}_{n} minus a hypersurface ; compare the article of Cheniot [2] in this volume. Now $H=\mathbb{C} \times E$ where $E=\{z \in \mathbb{C}| | z \mid<\varepsilon\}$ and $\Delta_{1}=\Delta U H$ is defined by some equation $w^{m}+b_{1}(z) w^{m-1}+\ldots+b_{m}(z)=0$, with the b_{i} holomorphic on E. Suppose that π is versel. Then (see [1], [6]) one may suppose that Δ_{1} has the following properties :
i) it is irreducible
ii) it has only cusps or ordinary double points as singularities, with distinct images on E.
iii) it is flat on the z-direction, i.e. z is a transversal parameter at any point of Δ_{1}.
Let $\sigma: \widetilde{\Delta}_{1} \rightarrow \Delta_{1}$ be the normalization of Δ_{1} and consider $\tau=\varphi_{0} \sigma: \widetilde{\Delta}_{1} \rightarrow E$. Then τ is only ramified at points that correspond to cusps of Δ_{1}, and the ramification index at those points is two.

LEMMA. - The permutation group of the Riemann surface Δ_{1} is the full group of permutations of r elements.

Proof. - It is sufficient to remark that a) it is transitive (because of the irreducibility of Δ_{1}) and b) it is generated by transpositions (because Δ_{1} is simply ramified over distinct points).

Let γ be a simple loop in $L_{z_{0}}-\Delta$ from z_{0} turning positively around some element of $L_{z_{0}} \cap \Delta$. Its image in $\pi_{1}(U-\Delta)$ will be called a geometric generator.

THEOREM 1. - i) Let γ_{1}, γ_{2} be geometric generators ; there exists $\delta \in \pi_{1}(U-\Delta)$ s. th. $\gamma_{1} \delta=\delta . \gamma_{2}$.
ii) Suppose that Δ is not smooth, and let γ be a geometric generator ; there exists a geometric generator $\gamma^{\prime} s_{0}$ th. $\gamma_{0} \gamma^{\prime} \cdot \gamma=\gamma^{\prime} \cdot \gamma_{0} \gamma^{\prime}$.

Proof. - i) Remark first that any two loops around the same z_{i} are conjugated in $\pi_{1}\left(L_{z_{0}}-\Delta\right)$ and hence also in $\pi_{1}(U-\Delta)$. Then the preceding lemma assures that if $z_{i}, z_{j} \in L_{z_{0}} \cap \Delta$ and γ is a loop around z_{i}, then γ is equivalent in $\pi_{1}(U-\Delta)$ to some loop around z_{j}.
ii) Since Δ is not smooth, Δ_{1} must be ramified somewhere so that Δ_{1} has at least a cusp. Suppose that z_{o} is near that ramification point and that Y is a loop around a point near the corresponding cusp. Then the loop γ^{\prime} that goes like Y until that cusp and then links the other point near the cusp, satisfies the required relation. In general one knows from i) that γ is conjugated to such an element. Then it remains only to remark that each conjugated to a geometric generator is a geometric generator.

3 . PICARD-LEFSCHETZ THEORY . - This theory describes the monodromy of a semiuniversal deformation in the following way (see [5]) : the fibre over each simple point of Δ has just an isolated singularity of the type $\sum_{0}^{r} x_{i}^{2}=0$; hence to each geometric generator γ, there is associated a vanishing cycle e $\in H_{r}(M, \mathbb{Z})$ uniquely determined up to the sign by γ. The action of γ on $H_{r}(M, \mathbb{Z})$ is given by the Picard-Lefschetz formula

$$
\begin{equation*}
h \rightarrow h+(-1)^{s}\langle e, h\rangle e \quad, \quad h \in H_{r}(M, \mathbb{Z}) \tag{*}
\end{equation*}
$$

where $s=(r+1) \cdot(r+2) / 2$ and $\langle\rangle:, H_{r}(M, \mathbb{Z}) \times H_{r}(M, \mathbb{Z}) \rightarrow \mathbb{Z}$ is the cap product. Moreover $\langle e, e\rangle$ is zero if r is odd and $2 \cdot(-1)^{r \cdot(r+1) / 2}$ if r is even.

LAZZERI

Let $\left\{z_{1}, \ldots, z_{m}\right\}=L_{z_{0}} \cap \Delta$ and choose simple loops $\gamma_{1}, \ldots, \gamma_{m}$ in such a way that Y_{i} turns positively around z_{i} and γ_{i}, Y_{j} don't intersect outside z_{0} Call e_{i} the vanishing cycle associated to γ_{i}. Then $\gamma_{1}, \ldots, \gamma_{m}$ generate freely $\pi_{1}\left(L_{z_{0}}-\Delta\right)$ and e_{1}, \ldots, e_{m} are a base of $H_{r}(M, \mathbb{Z})$ over \mathbb{Z}.

THEOREM 2. - Let I, J be a partition of $\{1, \ldots, m\}$. There exist $i \in I$ and $j \in J$ s. th. $\left\langle e_{i}, e_{j}\right\rangle \neq 0$.

Proof. - From formula (*) one gets that the images $\bar{\gamma}_{i}, \bar{\gamma}_{j}$ of γ_{i}, γ_{j} in Aut $H_{r}(M, \mathbb{Z})$ commute if $\left\langle e_{i}, e_{j}\right\rangle=0$. Suppose that this happens for all $i \in I$ and $j \in J$. Fix $i_{1} \in I, j_{1} \in J$; because of theorem 1 one can write $\gamma_{i_{1}} \delta=\delta \cdot \gamma_{j_{1}}$ where $\delta \in \pi_{1}(U-\Delta)$ and hence δ is a product of γ_{i}, γ_{j}. Since each $\bar{\gamma}_{i}$ commutes with each $\bar{\gamma}_{j}$ one can write $\bar{\delta}=\bar{\delta}_{J} \cdot \bar{\delta}_{I}$ where $\bar{\delta}_{I}$ is a product of $\bar{\gamma}_{i}$ and $\bar{\delta}_{J}$ a product of $\bar{\gamma}_{j}$. So one has $\bar{\delta}_{J}^{-1} \cdot \bar{\gamma}_{i_{1}} \cdot \bar{\delta}_{J}=\bar{\delta}_{I} \cdot \bar{\gamma}_{j} \cdot \bar{\delta}_{I}{ }^{-1}$ and hence $\gamma_{i_{1}}=\gamma_{j_{1}}$. This equality, with the help of formula $(*)$ and the fact that $e_{i_{1}} \neq e_{j_{1}}$, gives $\left\langle e_{i_{1}}, h\right\rangle=0$ for all $h \in H_{r}(M, \mathbb{Z})$. This cannot happen. In fact theorem 1 says that there exists a geometric generator γ^{\prime} such that $\gamma_{i_{1}} \cdot \gamma^{\prime} \cdot \gamma_{i_{1}}=\gamma^{\prime} \cdot \gamma_{i_{1}} \cdot \gamma^{\prime}$; if e^{\prime} denotes the vanishing cycle associated to γ^{\prime} one sees from formula (*) that this relation is equivalent to $\left\langle{ }^{\prime}, i_{1}\right\rangle= \pm 1$ and this concludes the proof.

COROLLARY. - The set of points where Δ is locally reducible is contained in the set of points where Δ has smaller multiplicity than at the origin.

Proof. - Let $t^{\prime} \in \Delta$ where Δ has irreducible components $\Delta_{1}, \ldots, \Delta_{s}, s \geq 2$. Then $\pi^{-1}\left(t^{\prime}\right)$ has s singular points $x_{1}, \ldots, x_{s} s . t h$. the multiplicity m_{i} of Δ_{i} at t^{\prime} is the number of vanishing cycles at $x_{i}, i=1, \ldots, s$.
Choose $L_{z_{0}}$ near t^{\prime} and define $\left\{z_{1}, \ldots, z_{m}\right\}=\Delta \cap L_{z_{0}}, \quad I=\{1, \ldots, m\}$, $I_{\alpha}=\left\{i \in I \mid z_{i} \in \Delta_{\alpha}\right\} \quad, \alpha=1, \ldots, s \quad$ Suppose $\sum_{1} m_{i}=m$; it follows that $\left(I_{\alpha}\right)_{\alpha}$ is a partition of I. Let e_{i} denote the vanishing cycle at z_{i}. One has $\left\langle e_{i}, e_{j}\right\rangle=0$ for $i \in I_{\alpha}, j \in I_{\beta}$ and $\alpha \neq \beta$; in fact
e_{i}, e_{j} have representative cycles lying in disjoint balls around x_{α}, x_{β} respectively. This cannot happen because of the theorem 2 , so. that the multiplicity $\underset{1}{\Sigma} m_{\alpha}$ of Δ at t^{\prime} must be less than m.

Remark. - This result can be expressed in the following way : if a deformed fibre of a hypersurface isolated singularity has more than one singularity, then the direct sum module of vanishing cycles at those singularities is a proper submodule of that of vanishing cycles at the original singularity.

BIBLIOGRAPHIE

[1] E. BRIESKORN "Théorie d'intersection des cycles évanouissants" not published.
[2] D. CHENIOT "Théorèmes de Zariski et de Van Kampen sur $\pi_{1}\left(\mathbb{P}_{2}-C\right)$ "
[3] C. HAŞ BEY "Sur l'irréductibilité de la monodromie locale ; application à l'équisingularité" C. R. Acad. Sc. Paris, t. 275, (1972) Série A, 105-107.
[4] ل. MILNOR "Singular points of complex hypersurfaces" Ann. of Math. Studies 61, Princeton 1968.
[5] F. PHAM "Formules de Picard-Lefschetz" Séminaire Leray, Collège de France, (Exposé fait le 12 Mars 1969, pp. 15-22), Paris.
[6] B. TEISSIER "Cycles évanescents, sections planes, et conditions de Whitney", Ch. III, this volume.

