Astérisque

FULVIO LAZZERI Morse theory on singular spaces

Astérisque, tome 7-8 (1973), p. 263-268 http://www.numdam.org/item?id=AST 1973 7-8 263 0>

© Société mathématique de France, 1973, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MORSE THEORY ON SINGULAR SPACES

Fulvio LAZZERI

Introduction.

Let X be a space, $f : X \to \mathbb{R}$ a map. Denote by X_a the set $\{x \in X \mid f(x) \leq a\}$. Morse theory is concerned with the homotopy type of $X \subseteq X_a$ for real numbers a < b when X is a differentiable manifold and f is a proper differentiable generic map.

Here we treat the case that X has isolated singularities. The main applications are to complex spaces. For example applying this theory we can prove that a Stein space X with isolated singularities is homotopically equivalent to a CW complex of dimension $n = \dim_{\mathbb{C}} X$. Also Lefschetz type theorems are available. They depend in general on the kind of singularities of X.

An example : let X be a complex projective algebraic variety with isolated singularities, X_{n} an hyperplane section and let

 $\sigma_i : H_i(X_0, Z) \rightarrow H_i(X, Z)$

be the homomorphism induced by the inclusion $X_0 \subset X$; in general nothing can be said on the σ_i . However if the singularities of X are "good" (for example if they are of complete intersection type) then the usual Lefschetz theorem holds, i.e. σ_i is an isomorphism for $i < \dim_{\mathbf{C}} X_0$ and surjective for $i = \dim_{\mathbf{C}} X_0$.

In the sequel we give the definitions and we state the theorems. Proofs are only sketched ; details will appear in a forthcoming paper in Annali Scuola Normale Superiore, Pisa.

1. Let X be a locally closed set in \mathbb{R}^N . Suppose that there exists a discrete subset $\Sigma \subset X$ such that X - Σ is a differentiable submanifold of \mathbb{R}^N of dimension n > 0. For $x \in X - \Sigma$ denote by $T_x(X)$ the tangent space to X at x. We shall say that X is a space with isolated singularities iff

$$\lim_{x \to y} \sin(T_x(X), x-y) = 0$$

LAZZERI

for all $y \in \Sigma$, where sin(H,v) denotes the sinus between the vector v and the linear subspace H in \mathbb{R}^N .

Remarks.

a) We suppose X embedded in some \mathbb{R}^N for simplicity only; actually every construction or result in the sequel will depend only on the struture given by the sheaf $\boldsymbol{\xi}_v$ of germs of differentiable functions on X.

b) Every analytic space with isolated singularities is a space with isolated singularities (see H. Whitney, "Tangents to analytic variety", Ann. of Math., 81 (1965), 547).

From now on X $\subset {\rm I\!R}^N$ is a space with isolated singularities of dimension n.

Let Z(X,x) denote the Zariski tangent space of X at x; namely Z(X,x) is the vector subspace of \mathbb{R}^N of all vectors c such that $df_x(v) = 0$ for every differentiable function f vanishing on X. An n-plane H in \mathbb{R}^N is said to be a tangent plane to X at x iff there exists a sequence of regular points (x_v) in X such that $x_v \rightarrow x$ and $T_{x_v}(X) \rightarrow H$, the latter limit being made in the Grassmanian of n-planes in \mathbb{R}^N . The set of all tangent planes to X at x will be denoted by $T_x(X)$; it is easily recognized as a closed subset of the Grassmanian of n-planes in Z(X,x). Remark that if x is a regular point of X, then Z(X,x) is the usual tangent space $T_v(X)$ and that it is also the single tangent n-plane to X at x.

Denote by Z'(X,x) the vector space of linear forms on Z(X,x), by D(X,x) the set of all $1 \in Z'(X,x)$ identically vanishing on some element of $T_{\mathbf{v}}(X)$ and $\Omega(X,x) = Z'(X,x) - D(X,x)$.

Proposition 1.

If X is a real analytic space, then D(X,x) is closed without interior. Moreover if f can be endowed with a complex analytic structure near x, then $\Omega(X,x)$ is connected.

Both assertions are proved by looking at $T_x(X)$. One proves that $T_x(X)$ is a closed set of Hausdorff dimension less or equal to n-1; from that the first assertion follows easily. The second is easier, since in that case $T_x(X)$ is an analytic space of dimension less or equal to n-2 in the appropriate

Grassmanian.

Let $f: X \to \mathbb{R}$ be a differentiable function. The differential df_x of f at a point x is a well defined element of Z'(X,x). We shall say that f is regular at x iff $df_x \in \Omega(X,x)$; otherwise x is said to be a critical point of f. A critical point x of f will be said non degenerate iff x is a simple point of X and (as usual) the Hessian $H(f)_x$ is non singular.

Definition.

A Morse function on X is a proper differentiable map $f : X \rightarrow \mathbb{R}$ with only non degenerate critical points.

It is easy to see that if f is a Morse function, the set of its critical points is discrete on X. Also the usual density theorems for Morse functions are available in view of proposition 1, if X is a real analytic space.

2. Let x be an isolated singularity of $X \subseteq \mathbb{R}^N$, $f : X \to \mathbb{R}$ a differentiable function regular at x, f(x) = 0.

Notations : $B(\varepsilon)$ the open ball of radius ε around x, $D(\varepsilon) = \overline{B(\varepsilon)}$,

$$S(\varepsilon) = D(\varepsilon) - B(\varepsilon)$$
, $X_{\eta} = \{y \in X \mid f(y) = \eta\}$.

Proposition 2.

There exists $\varepsilon_{\alpha} > 0$ and a continuous function $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ so that :

- i) $X_0 \cap B(\varepsilon_0)$ is a space with isolated singularities, whose only singularity is x.
- ii) for $0 < \varepsilon < \varepsilon_0$, S_e is transversal to X and X₀.
- iii) for $0 < \varepsilon < \varepsilon_0$, $0 < \eta < \eta(\varepsilon)$ the set $M(\varepsilon, \eta) = X_{-\eta} \cap D(\varepsilon)$ is a smooth compact manifold with boundary whose diffeomorphism class depends only on X, x and f; it will be called the vanishing manifold of f at x in X and denoted by M(X, x, f).

ii) and iii) have usual proofs. The proof of i) is just the following lemma on angles between linear spaces.

LAZZERI

Lemma 3.

Let H be an h-plane, K an hyperplane and v a vector in ${\rm I\!R}^N$. Suppose

$$\sin(\mathbf{v},\mathbf{H}) < \varepsilon_1, \ \sin(\mathbf{v},\mathbf{K}) < \varepsilon_2, \ \sin(\mathbf{v},\mathbf{H}\cap\mathbf{K}) > \eta$$

where $0 < \epsilon_1 < \eta$. Then

$$\sin(H,K) < (2\epsilon_1 + \epsilon_2) \cdot (\eta^2 - \epsilon_1^2)^{-1/2}$$

Proposition 4.

Let f,g be differentiable functions on X, both regular at x. If df_x and dg_x belong to the same connected component of $\Omega(X,x)$, then the vanishing manifolds M(X,x,f) and M(X,x,g) are diffeomorphic.

The proof is based on the study of the map $\pi : X \times \mathbb{R} \to \mathbb{R}^3$ defined by $\pi : (x, \lambda) \to (||x||^2, f(x) + \lambda g(x), \lambda)$; lemma 3 gives a uniformity which implies that π is of maximal rank onetc....

In view of proposition 1, if X carries a complex analytic structure, the preceding theorem assures that M(X,x,f) does not depend on f at all. In that case we can say some more. Let $X \subseteq \mathbb{C}^N$. Then $T_x(X)$ is a subset of a complex Grassmanian. A holomorphic function $g : X \to \mathbb{C}$ with g(x) = 0 will be said regular at $x \in X$ iff dg_x (the complex differential of g at x) is not identically zero on any element of $T_x(X)$. Let $0 < \varepsilon \ll 1$ and $0 < \eta \ll 1$ and define $M_{\mathbb{C}}(X,x,g) = \{y \in X \mid g(y) = \eta\} \cap D(\varepsilon)$. Then $M_{\mathbb{C}}(X,x,g)$ is a compact manifold with boundary that does not depend on ε , η or g. Moreover the function \widetilde{g} = real part of g is a function $X \to \mathbb{R}$ which is regular at x.

Proposition 5.

 $M_{m}(X, x, g)$ is a deformation retract of M(X, x, g).

The proof is just the construction of a vector field on M(X,x,f)whose flow gives the required deformation ; it is constructed with the gradient of the function $(g^1)^2$ where g^1 is the imaginary part of g. 3. Let $f : X \to \mathbb{R}$ be a Morse function. For $a \in \mathbb{R}$ denote by M_a the set $\{y \in X \mid f(y) \le a\}$. Let x be a singular point of X, f(x) = c; suppose $a \le c \le b$ and that $f^{-1}([a,b]) - \{x\}$ does not countain singular points of X or critical points of f.

We shall describe the map $M_a \hookrightarrow M_b$ in the homotopical category. First let us recall some definition. Let Z be a topological space, Y a subset in Z. In the dijoint union of Z with {Y} (a one-point space) identify {Y} with all $y \in Y \subset Z$. The resulting space is denoted by Z/Y. In particular $Z \times [0,1]/Z \times \{1\}$ is called the cone over Z and denoted by C(Z). Next identify in the dijoint union of Z with C(Y) each $y \in Y \subset Z$ with $y \times \{0\} \in C(Y)$. The resulting space is denoted by C(Z,Y).

Proposition 6.

- i) There exist a compact set K in $f^{-1}(a)$ and a homeomorphism $M_a/K \rightarrow M_a$ that is the identity on $M_{a-\epsilon}$ for some $0 < \epsilon \ll 1$.
- ii) M_a is a deformation retract of M_b.
- iii) K can be chosen homeomorphic with the vanishing manifold M(X,x,f).

The proofs of i) ii) are similar. Start with the gradient of f on X, normalized so that if $\sigma(t)$ is an integral of it, then $\frac{d}{dt} f(\sigma(t)) = 1$. Then multiply by a function equal to 1 on $f^{-1}([a,b])$ and 0 out of $f^{-1}(]a-\epsilon,b+\epsilon[)$ for small ϵ . The vector field one gets is not defined at x. However studying the associated flow, one sees that each integral starting on M can be extended to the interval [0,c-a] to obtain a continuous map $\rho : M \underset{a}{\times} [0,c-a] \rightarrow M_c$. From this it is easy to show ii). Then consider $\rho_{c-a} : M_a \rightarrow M_c$. Define $K = \rho_{c-a}^{-1}(x)$; ρ_{c-a} is a diffeomorphism between $M_a - K$ and $M_c - \{x\}$ and this proves i). To prove iii) remark first that for small ϵ , $M \cap D(\epsilon)$ is the cone over $M_c \cap S(\epsilon)$ and $f^{-1}(c) \cap D(\epsilon)$ the cone over $f^{-1}(\epsilon) \cap S(\epsilon)$; this follows from the proposition 2 applying standard techniques. Moreover from the description above one has that $M_c/f^{-1}(c) \cap D(\epsilon)$ is homeomorphic with $M_c/f^{-1}(c) \cap D(\epsilon)$ and so concludes the proof.

Lemma 7.

Let Y be a compact manifold with boundary, H the set

 $\{(y,t) \in C(Y) \mid y \in \partial Y, 1/2 \le t \le 1\}$.

- 267 -

LAZZERI

There exists a homeomorphism between C(Y) and C(Y)/H which is the identity on $Y_X\{0\}$.

Remark now that $M_a \xrightarrow{\rightarrow} M_a/M(X,x,f)$ is homotopically equivalent to $M_a \subseteq C(M_a, M(X,x,f))$. Also, if $K \subseteq M(X,x,f)$ is a deformation retract of M(X,x,f), then $M_a \subseteq C(M_a, M(X,x,f))$ is homotopically equivalent to $M_a \subseteq C(M_a,K)$, so that the former proposition gives the following result

Theorem 8.

Let $K \subseteq M(X, x, f)$ be a deformation retract of M(X, x, f). Then $M_a \subseteq M_b$ is homotopically equivalent to $M_a \subseteq C(M_a, K)$.

Remark now that if $H \subset M_a$ is obtained from a non empty subset $K \subset M_a$ by adjoing a cell e_{λ} , then $C(M_a, H)$ is obtained from $C(M_a, K)$ by adjoing a cell $e_{\lambda+1}$. This proves the following <u>Theorem 9</u>.

Let M(X,x,f) retract with a deformation on a finite spherical complex obtained from a point p by adjoining successively cells $e_{i_1}^{(1)}, \ldots, e_{i_r}^{(r)}$. Then $M_a \subseteq M_b$ is homotopically equivalent to adjoining successively cells $e_{i_1+1}^{(1)}, \ldots, e_{i_r+1}^{(r)}$ to M_a .

The same remark applied to a Morse function on M(X,x,f) gives the following

Theorem 10.

Let ϕ : $M(X,x,f) \rightarrow \mathbb{R}$ be a differentiable function with the following properties :

- i) φ has critical points p_0, p_1, \dots, p_r , each non degenerate and not in $\partial M(X, x, f)$.
- ii) $\partial M(X, x f)$ is a fibre of φ .
- iii) $\varphi(\mathbf{p}_{a}) \leq \ldots \leq \varphi(\mathbf{p}_{r})$

Denote by λ_i the index of φ at p_i , $i = 1, \dots, r$. Then $M_a \hookrightarrow M_b$ is homotopically equivalent to attaching successively cells $l_{\lambda_1+1}^{(1)}, \dots, l_{\lambda_m+1}^{(r)}$ to M_a .